当前位置:文档之家› 初中数学 构造辅助圆探求最值问题

初中数学 构造辅助圆探求最值问题

初中数学 构造辅助圆探求最值问题
初中数学 构造辅助圆探求最值问题

构造辅助圆探求最值问题

最值问题是中考舞台上的常青树,涉及知识面广,解决的方法活,且富有一定的技巧,所以

倍受命题老师的青睐.下面就谈谈辅助圆在求最值时的精彩,供学习时借鉴.

1.构造辅助圆直接求线段的最小值

例1 如图1,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠

PAB=∠PBC ,则线段CP 长的最小值为 ( )

A.32

分析:如图1,根据已知条件,我们不难发现,动点P 在以AB 为直径的圆上运动,而点C

在辅助圆的外部,根据点与圆的关系,知道,当O,P ,C 三点共线时,CP 最短.

解:因为∠PBA+∠PBC=90°,∠PAB=∠PBC ,所以∠PBA+∠PAB=90°,所以∠APB=90°,所

以点P 在以AB 为直径的圆上,当O,P ,C 三点共线时,CP 最短,因为AB=6,所以OB=3,因为

BC=4,所以OC=5,所以CP=OC-OP=5-3=2,所以CP 的最小值为2,所以选B.

点评:构造辅助圆,把不容易确定的线段的最小值问题转化为点与圆的关系是解题的关键,

要学会这门技巧.

2.构造辅助圆间接求线段的最小值

例2 如图2,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,

将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为 ( ) A. 5 B. 7 C. 8 D.132

分析:如图2,当点Q在运动时,不难发现点A的对称点A'在以P为圆心,PA为半径的圆上,由BP=3,知道PA=5,连接PC与圆交于点F,由点C是圆P外的一点,根据点与圆的关系知道,当A'与点F重合时,CF=C A'最短,找到了最短位置,接下来就是求CQ的数值了. 根据图形的对称性知道:∠QPA=∠CPQ,根据菱形的性质,知道:AB∥CD,所以∠QPA=∠CQP,所以∠CPQ=∠CQP,,所以CQ=CP.过点C作CE⊥AB,垂足为E,根据三角形ABC 是等边三角

形,且AB=8,所以,因为BP=3,所以EP=1,在直角三角形CEP中,

=所以CQ=7.

解:选B.

点评:巧妙把线段的最小值转化成圆外一点与圆的关系是解题的关键,也是一种常用的方法,希望平时学习时多加练习.

3.直接应用给定的半圆,探求最值

例3 如图3,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值和最小值的和是()

32 3

分析:要想求最值的和,首先要结合条件,确定PQ的最大值在什么位置上取的,最小值在什么位置上取的,并能求得,和自然就得到.

解:如图3,当点Q与点E重合,点P与点B重合时,线段PQ有最大值,设半圆与AC的切点为D,连接OD,则OD⊥AC,因为AB=10,AC=8,BC=6,所以BC⊥AC,所以OD∥BC,因为OA=OB,所以OD是三角形ABC的中位线,所以AD=DC=4,OD=OE=OF=3,所以AE=OA-OE=5-3=2,所以线段PQ的最大值为PQ=10-2=8;

过点O作ON⊥BC,交半圆于点M,过点M作GH∥BC,所以当点Q与点M重合,点P与点N重合时,线段PQ有最小值,PQ=MN=CH=DC-DH=4-3=1,,所以线段PQ的最小值为PQ=1;

所以PQ的最大值与最小值的和为8+1=9,所以选C.

点评:能顺利找到PQ取的最大值与最小值时,线段所对应的位置和条件,是解题的关键.

4.构造辅助圆,借助弦心距的最大值求解

例4 如图4,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.

(1)当AN平分∠MAB时,求DM的长;

(2)连接BN ,当DM=1时,求△ABN的面积;

(3)当射线BN 交线段CD于点F时,求DF的最大值.

分析:如图4-3,我们不难发现,点N在以A为圆心,以3为半径的圆上运动,过点A作AH ⊥BF,垂足为H,在整个运动过程中,直线BF与圆A的关系,从相交逐步演绎到相切,直到相离,此时圆心到弦的弦心距AH,遵循着从小到大,再到无得变化规律,当弦心距最大时,BN是圆的切线,在直角三角形ABN中,AB长度不变,AH(AN)最大,此时BN取得最小值,且满足点F和点M重合,如图4-4,这种条件下,三角形ABN和三角形BFC是全等三角

形,也就是说此时CF 恰好取到最小值,由于DC 的长度是一个定值,从而DF 取到最大. 解:

(1)因为△ADM 沿直线AM 对折,得到△ANM ,根据折叠的性质,得∠DAM=∠NAM ,因为AN 平分∠MAB 时,所以∠NAM=∠NAB ,所以∠DAM=∠NAM=∠NAB ,因为∠DAB=90°,

所以∠DAM=30°,所以DM=ADtan30°=3×3; (2)如图4-2,延长MN 交AB 延长线于点Q ,因为四边形ABCD 是矩形,所以AB ∥CD ,∠DMA=∠MAQ, 由折叠的性质,知 ∠DMA=∠AMQ,AN=AD=3,MN=MD=1,所以∠MAQ=∠AMQ,所以QM=QA,设NQ=x ,则AQ=MQ=1+x ,在直角三角形ANQ 中,222AQ QN AN =+,所以222(1)3x x +=+,解得x=4,所以NQ=4,AQ=5,设点N 到AB 的距离为h ,所以AQ ×h=3×4,所以h=

125,因为三角形ABN 和三角形ANQ 同高,所以三角形ABN 的面积为:11124225AB h ??=??=245

; (3)因为点N 在以A 为圆心,以3为半径的圆上运动,过点A 作AH ⊥BF ,垂足为H ,当弦心距AH 最大时,BN 是圆的切线,在直角三角形ABN 中,AB 长度不变,AH (AN )最大,此时BN 取得最小值,

且满足点F 和点M 重合,如图4-4,所以,因为AN=BC, ∠ABN=∠BNC,

∠ANB=∠BCN,所以△ABN ≌△BNC ,所以,所以,所以DF 的最大

值为.

点评:灵活把线段的最大值,先转化为弦心距的最大值,再把弦心距的最大值转化为线段的最小值,最后借助线段的差把最小值再转化为所求线段的最大值,这是平时解题不常见的方法,需要加强训练.

5.构造辅助圆,借助同圆的半径相等求解

例5 如图5是由两个长方形组成的工件平面图(单位,mm),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm.

分析:根据对称性,知道覆盖圆的圆心一定在直线l 上,且圆心到点B ,点A 的距离一定相等,这样我们就可以利用半径相等,借助勾股定理建立起等式,求最小的半径.

解:设圆心为O ,OD=x ,则OC=70-x ,根据勾股定理,得 22223040(70)x x +=+-,解得x=40,所以圆的半径为50mm.

点评:根据对称性,假定圆心,利用勾股定理建立等式求解是解题的关键.

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

最新初中数学常见8种最值问题

最值问题,也就是最大值和最小值问题。它是初中数学竞赛中的常见问题。这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。本文以例介绍一些常见的求解方法,供读者参考。 一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则 的最大值为________。 解:设,易知 由,得 从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则 可取得的最小值为() A. 3 B. C. D. 6 解:设,则

从而可知,当时,取得最小值。故选(B)。 三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。 即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法 例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足 。设,记为m的最小值,y为m的 最大值。则__________。 解:由得 解得

由是非负实数,得 从而,解得。 又, 故 于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。解:设矩形B的边长为x和y,由题设可得。 从而x和y可以看作是关于t的一元二次方程的两个实数根,则 因为, 所以, 解得 所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为_________。

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析 一、选择题 1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( ) A .3cm B .2cm C .23cm D .4cm 【答案】A 【解析】 【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可. 【详解】 解:如图所示,正六边形的边长为2cm ,OG ⊥BC , ∵六边形ABCDEF 是正六边形, ∴∠BOC=360°÷6=60°, ∵OB=OC ,OG ⊥BC , ∴∠BOG=∠COG= 12 ∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG= 12BC=12×2=1cm , ∴OB=sin 30 BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm , 故选:A . 【点睛】

本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键. 2.如图,正方形ABCD内接于⊙O,AB=22,则?AB的长是() A.πB.3 2 πC.2πD. 1 2 π 【答案】A 【解析】 【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可. 【详解】连接OA、OB, ∵正方形ABCD内接于⊙O, ∴AB=BC=DC=AD, ∴???? AB BC CD DA ===, ∴∠AOB=1 4 ×360°=90°, 在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2, ∴?AB的长为902 180 π′ =π, 故选A. 【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键. 3.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

初中数学--辅助线典型做法汇总

初中数学| 辅助线典型做法汇总(珍藏版) 三角形中常见辅助线的添加 1. 与角平分线有关的 (1)可向两边作垂线。 (2)可作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形 2. 与线段长度相关的 (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可 (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可 (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。 (4)遇到中点,考虑中位线或等腰等边中的三线合一。 3. 与等腰等边三角形相关的 (1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 ° 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。 (1)利用一组对边平行且相等构造平行四边形 (2)利用两组对边平行构造平行四边形 (3)利用对角线互相平分构造平行四边形 2. 与矩形有辅助线作法

(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。 (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。和矩形有关的试题的辅助线的作法较少。 3. 和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。 (1)作菱形的高 (2)连结菱形的对角线 4. 与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。 5. 与梯形有关的辅助线的作法 和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型: (1)作一腰的平行线构造平行四边形和特殊三角形 (2)作梯形的高,构造矩形和直角三角形 (3)作一对角线的平行线,构造直角三角形和平行四边形 (4)延长两腰构成三角形 (5)作两腰的平行线等 圆中常见辅助线的添加 1. 遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用: ①利用垂径定理 ②利用圆心角及其所对的弧、弦和弦心距之间的关系 ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量 2. 遇到有直径时,常常添加(画)直径所对的圆周角 作用:利用圆周角的性质得到直角或直角三角形 3. 遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点 作用:利用圆周角的性质,可得到直径

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

初中数学证明题常见辅助线作法规律.

初中数学证明题常见辅助线作法规律 初中数学证明题常见辅助线作法记忆歌诀;及几何规律汇编;人们从来就是用自己的聪明才智创造条件解决问题的,;初中几何常见辅助线作法歌诀;人说几何很困难,难点就在辅助线;辅助线,如何添?把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形;图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试 初中数学证明题常见辅助线作法记忆歌诀 及几何规律汇编 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 初中几何常见辅助线作法歌诀 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

初中数学圆中常作哪些辅助线

圆中常作哪些辅助线? 通过作辅助线能使复杂问题简单化,圆问题中常用的辅助线是哪些呢?现把一些规律总结如下: 弦与弦心距,密切紧相连. 直径对直角,圆心作半径. 已知有两圆,常画连心线. 遇到相交圆,连接公共弦. 遇到相切圆,作条公切线. “有点连圆心,无点作垂线.” 切线证明法,规律记心间. 一、作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.因此“弦与弦心距,密切紧相连.”. 例1.如图,AB是⊙O 的直径,PO ⊥AB 交⊙O 于P 点,弦PN 与AB 相交于点M ,求 证:PM ?PN=2PO 2. 分析:要证明PM ?PN=2PO 2,即证明PM ? PN 2 1 =PO 2, 过O 点作OC ⊥PN 于C ,根据垂经定理 PN 2 1 =PC ,只需证明 PM ?PC=PO 2,由POC PMO O P M P C P O P ???? = 。。 。 。。,“三点定型”法可判断需证 明Rt △POC ∽Rt △PMO. 证明: 过圆心O 作OC ⊥PN 于C ,∴PC= 2 1PN ∵PO ⊥AB, OC ⊥PN ,∴∠MOP=∠OCP=900. 又∵∠OPC=∠MPO ,∴Rt △POC ∽Rt △PMO. P B A N O C M

∴ PO PM PC PO ,即∴PO 2= PM ?PC. ∴PO 2= PM ?2 1 PN ,∴PM ?PN=2PO 2. 二、连结半径 圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“过切点的半径与切线相互垂直”都与圆的半径有关.连结半径是常用的方法之一. 例2.已知:△ABC 中,∠B=900,O 是AB 上一点,以O 为圆心,以OB 为半径的圆切AC 与D 点,交AB 与E 点,AD=2,AE=1. 求证:CD 的长. 分析:D 为切点,连结DO ,∠ODA=900.根据切线长定理 CD=CB.DO=EO= 半径r ,在Rt △ADO 中根据勾股定理或 Rt △ADO~ Rt △ABC ,求出CD. 证明: 连结DO ∴OD ⊥AC 于D, ∴∠OCP=900. ∵AB 过O 点, ∠B=900. ∴BC 为⊙O 的切线, ∴CD=CB 设CD=CB=x,DO=EO=y 在Rt △ADO 中,AO 2 =AD 2+ DO 2,AD=2,AE=1 ∴(1+y)2=22+y 2, ∴ y= 2 3 在Rt △ABC 中,AC 2 =AB 2+ BC 2,即(2+x)2=(1+ 23+2 3)2+x 2 , ∴x=3 ∴CD=3. 三、连结公共弦 在处理有关两圆相交的问题时,公共弦像一把 A B C D E O C A B D E O 2 O 1 P

2013中考总结复习冲刺练:初中数学“最值问题” 集锦

2013中考总结复习冲刺练:“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P 点时A’P’+B’P’=A’B,所以这时PA+P B最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB ∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R 的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有

20年苏教版初中数学《圆有关的最值问题》专题

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x (2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

九年级数学圆中常见辅助线作法

圆中常见辅助线的作法 典型例题: 例题1、如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是 弧AB 上 任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周长为12,则PA 长为______________ 例题2、如图所示,已知AB 是⊙O 的直径,AC ⊥L 于C ,BD ⊥L 于D ,且AC+BD=AB 。 求证:直线L 与⊙O 相切。 例题3、如图,AB 是⊙O 的直径,弦AC 与AB 成30°角,CD 与⊙O 切于C , 交AB?的延长线于D ,求证:AC=CD . 例题4、如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点, 那么OP 的长的取值范围是_________.

B A C B 1. 遇到弦时(解决有关弦的问题时) 1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 2. 遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3. 遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4. 遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点 作用:利用切线的性质定理可得OA ⊥AB ,得到直角或直角三角形。 (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。 5. 遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线 段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

精选初中数学常见8种最值问题

初中数学最值问题常见的8种解题方法一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则的最大值为________。 解:设,易知 由,得

从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为() A. 3 B. C. D. 6 解:设,则 从而可知,当时,取得最小值。故选(B)。

三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法

例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。设,记为m的最小值,y为m的最大值。则__________。 解:由得 解得 由是非负实数,得 从而,解得。 又, 故

于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。 解:设矩形B的边长为x和y,由题设可得。从而x和y可以看作是关于t的一元二次方程 的两个实数根,则 因为, 所以, 解得

所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为 _________。 解:由得,代入得。 而由和可知的整数。 所以,当时,取得最大值,为。 七. 借助几何图形法 例8. (2004年四川省初中数学联赛)函数 的最小值是________。 解:显然,若,则。因而,当取最小值时,必然有。

初中数学圆的辅助线八种作法

中考数学圆的辅助线 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90° => △OPE ≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证 AB ( BD , ( CD ( D C B P O A E F P B 图 1 AC ( AC ( BD ( AB ( CD (

∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AC=BD =>AP=DP OA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP 2.有直径,可作直径上的圆周角 对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。 例2 如图2,在△ABC 中,AB=AC , 以AB 为直径作⊙O 交BC 于点D ,过D 作⊙O 的切线DM 交AC 于M 。求证 DM ⊥AC 。 分析:由AB 是直径,很自然想到其所 B D C M A O . A 2 1 图 2 D C B P O A P B 图1-1

人教版初中数学九年级上册17.圆中的最值问题

人教版初中数学 重点知识精选 掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!

拔高专题 圆中的最值问题 一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的 对称 点,对称点与另一点的连线与直线L 的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。 解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点, ∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′. 【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知

识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值 解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2, ∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 , ∴OA=6,∴OP= =3,∴. ?OA OB AB 【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值. 解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP , ∵AB 切⊙O 于P , ∴OP ⊥AB , 取AB 的中点C , ∴AB=2OC ; 当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.

初中数学最值问题专题分类讲解全书

初中数学最值问题专题分类讲解全书 ●平面几何中的最值问题 ●几何的定值与最值 ●最短路线问题 ●对称问题 ●巧作―对称点‖妙解最值题 ●数学最值题的常用解法 ●求最值问题 ●有理数的一题多解

●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’=AP,

在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好?

中考数学中的最值问题解法

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 典型例题: 例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】 A1B C. 55 D. 5 2 例2.在锐角三角形ABC中,BC=2 4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN 的最小值是▲ 。 例3.如图,圆柱底面半径为2cm,高为9cm π,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

练习题: 1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】 A.13cm B.12cm C.10cm D.8cm 2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC= 23 BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6 (4)π+㎝ B 、5cm C 、㎝ D 、7cm 3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ . 二、应用垂线段最短的性质求最值:典型例题: 例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

相关主题
文本预览
相关文档 最新文档