当前位置:文档之家› 碳化硅颗粒表面改性及其分散稳定性的研究演示教学

碳化硅颗粒表面改性及其分散稳定性的研究演示教学

碳化硅颗粒表面改性及其分散稳定性的研究演示教学
碳化硅颗粒表面改性及其分散稳定性的研究演示教学

碳化硅颗粒表面改性及其分散稳定性的研

碳化硅颗粒表面改性及其分散稳定性的研究

欧阳唐哲

【摘要】:再结晶碳化硅(RSiC)具有高温强度高、抗氧化性能强,以及特殊的电学和热学性能等,因而作为一种有广泛应用前景的结构与功能材料,受到了许多科研工作者的关注。但由于RSiC的烧成机理为蒸发-凝聚原理,在烧成过程中并不产生收缩,所以RSiC是一种多孔材料,其孔隙率取决于它的生坯密度,且对材料的高温强度、抗氧化性、导热、导电等性能有重要影响。要提高RSiC的生坯密度,关键是对SiC粉体进行表面改性,降低生坯的含水量,提高生坯密度。本文较系统地研究了三种阳离子型表面活性剂(聚乙烯亚胺、溴化十六烷基吡啶、聚乙烯吡咯烷酮)对SiC粉体进行表面改性的效果。用zeta电位仪和Washburn法研究了表面活性剂吸附在SiC粉体表面后,粉体的表面zeta电位及其与水接触角的变化;用UV-Vis,FTIR研究了表面活性剂在SiC粉体表面的吸附状态与吸附机理;用旋转粘度计表征了表面活性剂的加入对SiC浆料流变性的影响,并考察了对生坯密度的影响。得出以下结论: 1阳离子表面活性剂在SiC粉体表面的吸附主要是通过静电和氢键等作用吸附在SiC粉体表面。2表面活性剂吸附在SiC粉体表面后,SiC粉体的表面zeta电位有了显著的提高,其与水的接触角降低,这说明改性后SiC粉体的亲水性提高。 3阳离子型表面活性剂的加入改变了SiC浆料的“梭型”触变环。减小了环面积,这说明SiC 浆料的触变性变小,同时破坏SiC浆料触变结构所需要的能量也减少。同时表明表面活性剂的加入可以提高碳化硅生坯密度,降浆料含水量。

【关键词】:碳化硅流变性表面改性zeta电位

【学位授予单位】:湖南大学

【学位级别】:硕士

【学位授予年份】:2012

【分类号】:TB306

【目录】:

?摘要5-6

?Abstract6-9

?插图索引9-11

?附表索引11-12

?第1章绪论12-24

? 1.1 前言12-13

? 1.2 SiC陶瓷的制备方法13-16

? 1.2.1 常压烧结14

? 1.2.2 反应烧结14-15

? 1.2.3 热压烧结15

? 1.2.4 再结晶法15-16

? 1.3 碳化硅粉体的表面性质16-18 ? 1.4 SiC 粉体的表面改性18-23

? 1.4.1 SiC 颗粒表面的物理改性19 ? 1.4.2 SiC 颗粒表面的化学改性19-23 ? 1.5 选题意义和研究内容23-24

? 1.5.1 选题意义23

? 1.5.2 主要研究内容23-24

?第2章实验研究与表征方法24-29

? 2.1 实验原料24-25

? 2.2 仪器和设备25

? 2.3 实验过程25

? 2.3.1 SiC 原料的预处理25

? 2.3.2 表面活性剂在 SiC 颗粒表面的吸附25

? 2.4 检测方法25-29

? 2.4.1 改性前后SiC粉体的紫外光谱分析25-26

? 2.4.2 改性前后的SiC 粉体的红外光谱分析26-27

? 2.4.3 改性前后SiC粉体的zeta电位分析27

? 2.4.4 改性前后SiC粉体的接触角测试27

? 2.4.5 改性前后SiC粉体的流变性测试27-28

? 2.4.6 改性前后SiC生坯的含水量与密度测试28-29

?第3章表面活性剂在SiC表面的吸附行为研究29-40

? 3.1 前言29

? 3.2 实验结果与分析29-39

? 3.2.1 聚乙烯亚胺在SiC颗粒表面的吸附行为29-33

? 3.2.2 溴化十六烷基吡啶在SiC颗粒表面的吸附行为33-36 ? 3.2.3 聚乙烯吡咯烷酮在SiC颗粒表面的吸附行为36-39 ? 3.3 本章小结39-40

?第4章表面活性剂的吸附对SiC颗粒表面性质的影响40-47 ? 4.1 前言40

? 4.2 实验结果与分析40-46

? 4.2.1 聚乙烯亚胺的加入对SiC颗粒表面性质的影响40-42

? 4.2.2 溴化十六烷基吡啶的加入对SiC颗粒表面性质的影响42-44 ? 4.2.3 聚乙烯吡咯烷酮的加入对SiC颗粒表面性质的影响44-46 ? 4.3 本章小结46-47

?第5章表面活性剂改性对SiC浆料及生坯特性的影响47-56

? 5.1 前言47

? 5.2 实验结果与分析47-55

? 5.2.1 聚乙烯亚胺的加入对SiC浆料及生坯特性的影响47-50

? 5.2.2 溴化十六烷基吡啶的加入对SiC浆料及生坯特性的影响50-53 ? 5.2.3 聚乙烯吡咯烷酮的加入对SiC浆料及生坯特性的影响53-55 ? 5.3 本章小结55-56

?结论56-57

?参考文献57-62

?致谢62-63

?附录 A 攻读硕士学位期间所发表的学术论文63

聚甲醛学名聚氧亚甲基(简称POM)

聚甲醛 求助编辑 聚甲醛结构式 聚甲醛(英文:polyformaldehyde)热塑性结晶聚合物。被誉为“超钢”或者“赛钢”,又称聚氧亚甲基。结构为,英文缩写为POM。通常甲醛聚合所得之聚合物,聚合度不高,且易受热解聚。 目录 编辑本段

性能数值 聚甲醛制品1 比重 1.43 熔点175°C 伸强度(屈服) 70MPa 伸长率(屈服) 15% (断裂) 15% 冲击强度(无缺口) 108KJ/m2 (带缺口) 7.6KJ/m2 均聚甲醛的合成一般以甲醛的水溶液在酸的存在下缩合聚合。得到聚合度为100以上的a-聚甲醛,然后将其加热分解成甲醛气体,经精制和脱水后,通常利用部分预聚合的方法纯化单体,然后通入含少量引发剂的干燥溶剂中进行聚合。因为水的存在,使分子量显著降低。引发剂可用路易斯酸或碱等。但大多用叔胺进行负离子加成聚合,反应如下:聚甲醛的端基为半缩醛(—CH2OH),当温度高于100℃ 时,端基易断裂,一般需经端基处理使之稳定化。稳定化处理后可耐热到230 ℃。多聚甲醛可在 170~200 ℃的温度下加工,如注射、挤出、吹塑等。主要用作工程塑料,用于汽车、机械部件等。 典型应用范围 POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。 注塑模工艺条件: 干燥处理:如果材料储存在干燥环境中,通常不需要干燥处理。

熔化温度:均聚物材料为190~230℃;共聚物材料为190~210℃。 模具温度:80~105℃。为了减小成型后收缩率可选用高一些的模具温度。 注射压力:700~1200bar。 注射速度:中等或偏高的注射速度。 流道和浇口:可以使用任何类型的浇口。如果使用隧道形浇口,则最好使用较短的类型。对于均聚物材料建议使用热注嘴流道。对于共聚物材料既可使用内部的热流道也可使用外部热流道。 化学和物理特性 POM是一种坚韧有弹性的材料,即使在低温下仍有很好的抗蠕变特性、几何稳定性和抗冲击特性。POM既有均聚物材料也有共聚物材料。均聚物材料具有很好的延展强度、抗疲劳强度,但不易于加工。共聚物材料有很好的热稳定性、化学稳定性并且易于加工。无论均聚物材料还是共聚物材料,都是结晶性材料并且不易吸收水分。POM的高结晶程度导致它有相当高的收缩率,可高达到2%~3.5%。对于各种不同的增强型材料有不同的收缩率。 编辑本段主要用途 聚甲醛(pom)是一种性能优良的工程塑料,在国外有“夺钢”、“ 聚甲醛制品2 超钢”之称。pom具有类似金属的硬度、强度和钢性,在很宽的温度和湿度范围内都具有很好的自润滑性、良好的耐疲劳性,并富于弹性,此外它还有较好的耐化学品性。pom以低于其他许多工程塑料的成本,正在替代一些传统上被金属所占领的市场,如替代锌、黄铜、铝和钢制作许多部件,自问世以来,pom已经广泛应用于电子电气、机械、仪表、日用轻工、汽车、建材、农业等领域。在很多新领域的应用,如医疗技术、运动器械等方面,pom也表现出较好的增长态势。 应用消费持续增长 pom用在那些对润滑性、耐磨损性、刚性和尺寸稳定性要求比较严格的滑动和滚动的机械部件上,性能尤为优越,因此主要用于工业机械、汽车、电子电气、管件和灌溉用品等方面。近年我国pom市场增长迅速,2002年

SiC粉体的表面改性

SiC粉体的表面改性 一、背景 1.简介: 碳化硅分子式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。 碳化硅晶体结构分为六方晶系的α-SiC和立方晶系的β-SIC,β-SiC于2100℃以上时转变为α-SiC。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体。 碳化硅在大自然也存在罕见的矿物,莫桑石。 2.问题: 经机械粉碎后的SiC 粉体形状不规则,且由于粒径小,表面能高,很容易发生团聚,形成二次粒子,无法表现出表面积效应和体积效应,难以实现超细尺度范围内不同相颗粒之间的均匀分散以及烧结过程中与基体的相容性,进而影响陶瓷材料性能的提高。加入表面改性剂,改善SiC 粉体的分散性、流动性,消除团聚,是提高超细粉体成型性能以及制品最终性能的有效方法之一。 二、过程 1.改性方法分类: 碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。 (1)固相法 固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。 SiC粉体制备最初是采用Acheson法,用焦炭在高温下(2400 ℃左右)还原SiO2制备的。 20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。 L N. Satapathy等以Si+2C为起始反应物,采用 2.45GHz的微波在

1200-1300℃时保温5分钟即可实现完全反应,再通过650℃除碳即可获得纯的β-SiC,其平均粒径约0.4μm。 硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。 SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。 (2)液相法 液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。 溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等以粒径9.415μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术。 一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC粉末。 (3)气相法 气相合成碳化硅陶瓷超细粉末目前主要是运用气相反应沉积法(CVD)、等离子体法(Plasma Induced CVD)、激光诱导气相法(Laser Induced CVD)等技术高温分解有机物,所得粉末纯度高,颗粒尺寸小,颗粒团聚少,组分易于控制,是目前比较先进的方法,但成本高、产量低,不易实现大批量生产,较适合于制取实验室材质和用于特殊要求的产品。 我们主要讲的是用硅烷偶联剂对SiC进行改性,也就是液相法。 2.实验过程: (1)原料: 选用自行加工的SiC 粉体,D50 = 0.897 μm,SiC 含量为98.98% (质量分数,下同);硅烷偶联剂(KH–550,NH2CH2CH2CH2Si(OC2H5)3);丙三醇(分析纯);甲苯(分析纯);丙酮(分析纯);氮气(99.99%)。 (2)工艺过程: 硅烷偶联剂的烷氧基是与SiC 粉体表面的—Si—OH 反应的主要基团,它极易水解生成醇类[8],故表面改性反应必须选择在非水和非醇类介质中进行。在四口烧瓶中加入350 mL 甲苯、50 g SiC 微粉和相应比例的硅烷偶联剂,通入N2,在N2 气流下升温至85 ℃并搅拌反应6 h。反应结束后,产物趁热真空抽滤,经多次超声分散(超声介质为水、丙酮;时间为30 min)、离心洗涤(介质:水、丙酮;时间:25 min)后,于105 ℃烘箱中干燥12 h,冷却后待用。 三、表征 1.粘度

POM聚甲醛知识大全

POM聚甲醛知识大全 1 POM(聚甲醛) 聚甲醛学名聚氧化聚甲醛(简称POM),又称赛钢、特钢。它是以甲醛等为原料聚合所得。POM-H(聚甲醛均聚物),POM-C(聚甲醛共聚物)是高密度、高结晶度的热塑性工程塑料。具有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。聚甲醛是一种无侧链高密度结晶性聚合物,具有优异的综合性能。 聚甲醛是一种表面光滑,有光泽的硬而致密的材料,淡黄或白色,可在-40- 100°C温度范围内长期使用。它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油,耐过氧化物性能。很不耐酸,不耐强碱和不耐紫外线的辐射。(加入UV剂,能大大提高其耐紫外线等级) 1物理性质 POM塑胶 聚甲醛塑料是继尼龙之后发展的又一优良树脂品种,具有优良的综合性能。 聚甲醛有着良好的耐溶剂、耐油类、耐弱酸、弱碱等性能。聚甲醛有着很高的硬度和钢性,具有高度抗蠕变和应力松弛能力,优良的耐磨性,自润滑性,耐疲劳性 聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物,具有优异的综合性能。聚甲醛的拉伸强度可达70MPa,可在104℃下长期使用,脆化温度为-40℃,吸水性较小。但聚甲醛的热稳定性较差,耐候性较差,长期在大气中曝晒会老化。 聚甲醛的力学性能相当好,它具有较高的强度的弹性模量,摩擦系数小,耐磨性能好。聚甲醛还具有高度抗蠕变和应力松弛的能力。 聚甲醛尺寸稳定性好,吸水率很小,所以吸水率对其力学性能的影响可以不予考虑。聚甲醛有较好的介电性能,在很宽的频率和温度范围内,它的介电常数和介质损耗角正切值变化很小。 聚甲醛的耐热性较差,在成型温度下易降解放出皿醛,一般在造粒时加入稳定剂。若不受力,聚甲醛可在140℃下短期使用,其长期使用温度为85℃。 聚甲醛耐气候性较差,经大气老化后,一般性能均有所下降。但它的化学稳定性非常优越,特别是对有机溶剂,其尺寸变化和力学性能的降低都很少。但对强酸和强氧化剂如硝酸、硫酸等耐蚀性很差。 聚甲醛的拉伸强度达70MPa,吸水性小,尺寸稳定,有光泽,这些性能都比尼龙好,聚甲醛为高度结晶的树脂,在热塑性树脂中是最坚韧的。具抗热强度,弯曲强度,耐疲劳性强度均高,耐磨性和电性能优良。 POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。 POM物性表:密度 1.39g/cm3,吸水率1.2%,连续使用温度20-110℃,屈服抗拉强度63MPa,缺口冲击韧度6Kj/㎡,洛氏硬度135MPa,邵氏硬度85MPa,弹性模量2600MPa,软化温度150℃,热变形温度HDT155℃,热线膨胀系数1.1,热导率W/(m×K)031,摩擦系数1.35 2优点 1、具高机械强度和刚性; 2、最高的疲劳强度; 3、环境抵抗性、耐有机溶剂性佳; 4、耐反覆冲击性强; 5、广泛的使用温度范围(-40℃~120℃); 6、良好的电气性质; 7、复原性良好; 8、具自已润滑性、耐磨性良好; 9、尺寸安定性优。用途:电子电器:洗衣机,果汁机定时器等组件; 汽车:车把,电动窗等零件;机械零件,齿轮,把手,螺杆,玩具等; 分类:玻纤/碳纤增强POM,防火POM,抗紫外线耐候POM,加铁氟龙POM,防静电/导电

碳化硅晶须的分散稳定性

硅酸盐学报 · 1432 ·2008年 碳化硅晶须的分散稳定性 熊昆1,徐光亮1,李松涛1,宋春军2 (1. 西南科技大学新材料研究所,材料科学与工程学院,四川绵阳 621010;2. 中国科学院合肥物质研究院 固体物理研究所,合肥 230031) 摘要:以蒸馏水、乙醇与乙二醇的混合液为分散介质,聚乙烯亚胺(polyethylene imine, PEI)、非离子型聚丙烯酰胺(nonionic polyacry lamide, PAM)为分散剂,对碳化硅晶须(SiC w)悬浮液的均匀稳定分散性进行研究。结果表明:以75%(体积分数)乙二醇与25%(体积分数)无水乙醇的混合液为分散介质,分散效果最佳;添加1.5%(质量分数)PEI时,SiC w能在pH=4~10的范围内实现均匀稳定分散,添加0.1%~0.3%(质量分数)PAM时,仅在pH=8~10,能实现SiC w均匀稳定分散。 关键词:碳化硅晶须; 分散; 聚乙烯亚胺; 聚丙烯酰胺 中图分类号:TQ174 文献标识码:A 文章编号:0454–5648(2008)10–1432–05 DISPERSION STABILITY OF SILICON CARBIDE WHISKER XIONG Kun1,XU Guangliang1,LI Songtao1,SONG Chunjun2 (1. New Materials Laboratory, Material Science and Engineering Department, Southwest University of Science and Technology, Mianyang 621010, Sichuan; 2. Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China) Abstract: The dispersion stability of silicon carbide whisker (SiC w) was researched using distilled water and mixtures containing ethanediol and ethanol as the dispersing medium, and using polyethylene imine (PEI) and nonionic polyacry lamide (PAM) as the dispersants. The results indicate that the dispersing state of SiC w is the best by using the mixtures as the dispersing medium; in these conditions, the dispersing medium contained 75% (in volume) ethanediol and 25% (in volume) ethanol. SiC w can be dispersed homo-geneously at pH=4 to 10 by using 1.5% (in mass) PEI as the dispersant; however, with 0.1% to 0.3% (in mass) PAM as the dispersant, it can only be dispersed well at pH=8 to 10. Key words: silicon carbide whisker; disperse; polyethylene imine; polyacry lamide 由于具有高弹性模量、高强度等优点,碳化硅晶须(silicon carbide whisker,SiC w)被视为一种优良的强化增韧材料。利用晶须产生的裂纹偏转、晶须拔出及桥联等作用,使得晶须强化增韧陶瓷基体材料的高温力学性能得到了显著的提高。但是,由于表面力及静电作用,晶须容易团聚。晶须团聚导致材料产生致命的缺陷,严重影响材料的力学性能。因此,制备一个均匀分散的SiC w分散体系是非常必要的。 Varga[1]研究指出可以通过调节pH值使其远离等电点,获得分散性好的陶瓷粉体悬浮液。Widegren 等[2]在研究酸对陶瓷粉体在乙醇中的分散性和稳定性的作用时指出,在控制溶液的静电稳定性方面,表面电位和离子强度是2个重要的参数。Valdivieso 等[3]认为聚合物分散剂是否能很好地吸附在陶瓷粉体表面,与陶瓷粉体表面的酸碱性有很大的关系,酸性聚合物和碱性粉体表面有较好的亲附性。 目前针对SiC w的稳定均匀分散问题的研究结果表明:以聚乙烯亚胺(polyethylene imine,PEI)、[4–6] 焦磷酸钠、[7] 硅烷偶联剂、[8] 聚乙二醇[9]等为分散剂, 收稿日期:2008–01–04。修改稿收到日期:2008–05–08。基金项目:国防基础科研(A3120061156)资助项目。 第一作者:熊昆(1983—),男,硕士研究生。 通讯作者:徐光亮(1965—),博士,教授。Received date:2008–01–04. Approved date: 2008–05–08. First author: XIONG Kun (1983–), male, graduate student for master de-gree. Correspondent author: XU Guangliang (1965–), doctor, professor. E-mail: xuguangliang@https://www.doczj.com/doc/595876114.html, 第36卷第10期2008年10月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 10 October,2008

粉体表面改性设备介绍

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •。重力混合器 •。气动混合器 •。转鼓式混合机 •。v型混合机 •。Z型混合机 •。高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •。开炼机 •。密炼机 •。混炼型单螺杆挤出机,布斯混炼机 •。双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。 从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

碳化硅粉体的制备及改性技术

随着科学技术的发展, 现代国防,空间技术以及汽车工业等领域不仅要求工程材料具备良好的机械性能,而且要求其具有良好的物理性能。碳化硅(SiC)陶瓷具有高温强度和抗氧化性好、耐磨性能和热稳定性高、热膨胀系数小、热导率高、化学稳定性好等优点,因而常常用于制造燃烧室、高温排气装置、耐温贴片、飞机引擎构件、化学反应容器、热交换器管等严酷条件下的机械构件,是一种应用广泛的先进工程材料。它不仅在正在开发的高新技术领域(如陶瓷发动机、航天器等)发挥重要作用,在目前的能源、冶金、机械、建材化工等[1]领域也具有广阔的市场和待开发的应用领域。为此,迫切需要生产不同层次、不同性能的各种碳化硅制品。碳化硅的强共价键导致其熔点很高,进而使SiC粉体的制备、烧结致密化等变得更加困难。本文综述了近些年碳化硅粉体的制备及改性、成型和烧结工艺三个方面的研究进展。 [1]蔡新民,武七德,刘伟安.反应烧结碳化硅过程的数学模型[J].武汉理工大学学报, 2002, 24(4): 48-50 1 碳化硅粉体的制备及改性技术 碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。 1.1 固相法 固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。SiC粉体制备最初是采用Acheson法[2],用焦炭在高温下(2400 ℃左右)还原SiO2制备的,但此方法获得的粉末粒径较大(>1mm),耗费能量大、工艺复杂。20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。随着微波与固体中的化学物质有效而特殊的聚合作用逐渐被弄清楚,微波加热合成SiC粉体技术也日趋成熟。最近,L N. Satapathy等[3]优化了微波合成SiC的工艺参数。他们以Si+2C为起始反应物,采用2.45 GHz的微波在1200-1300 ℃时保温5分钟即可实现完全反应,再通过650 ℃除碳即可获得纯的β-SiC,其平均粒径约0.4 μm。硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。 [2] 宋春军,徐光亮. 碳化硅纳米粉体的合成、分散与烧结工艺技术研究进展[J].材料科学与工艺,2009,17(2):168~173 [3] L N. Satapathy,P D. Ramesh,Dinesh Agrawal,et al. Microwave synthesis of phase-pure, fine silicon carbide powder[J].Materials Research Bulletin, 2005, 40(10):1871-1882. [4] 杨晓云, 黄震威. 球磨Si, C 混合粉末合成纳米SiC 的高分辨电镜观察. 金属学报,2000, 36(7): 684-688. 1.2 液相法 液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等[5]以粒径9.415 μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术:一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC 粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC 粉末。

聚甲醛简介

聚甲醛 一、简介 聚甲醛(POM)是一种新兴的具有广泛用途和广阔发展前景的一种材料。外观是半透明或不透明粉料或粒料,与象牙相似。POM是5大通用工程塑料之一,广泛用于电子电气、汽车、轻工、机械、化工、建材以及军事等领域,由于它在各方面所表现出来的优良性能,它的应用已几乎涉及各种行业领域,特别是对许多新兴产业它是一种十分适用的材料 二、性能 聚甲醛树脂在较大的温度范围内具有较高的弹性模数、硬度、刚性和机械性能,可在104℃以下长期使用,脆化温度-40℃,吸水性极小。摩擦系数低,动磨擦系数与静磨擦系数相同,自润滑耐磨损性能优异。机械性能与金属类似,且比重小,广泛应用于替代钢铁、铜、锌、铝等金属材料和其它塑料,有“塑料中的金属”之称。 三、聚甲醛的应用 1、电子器械:录像带转轴,彩电频道预选器,照相机零件,洗衣机定时器,各类仪器仪表的传动齿轮等。 2、汽车工业:汽车板弹簧销套、千斤顶螺母、摇窗机、刮水板、空调控制器、油箱盖、指示器开关、齿轮、数字轮等。 3、机械工业:纺织机械零件、采煤机械、推土机轴瓦、火车轴瓦头、食品和饮料传送链片、电动工具零件。 4、轻工业:拉链、圆珠笔、活动笔零件、打火机、化妆品气压喷嘴、煤气减压阀、箱包搭扣、剃须刀电机、饼干模具等 5、其他领域:各种类型喷雾器筒、螺母等 四、市场前景 从政策方面看,在十一五规划中明确指出重点发展特种功能材料、高性能结构材料、复合材料、环保节能材料等产业群,建立和完善新材料创新体系。聚甲醛属于一种新型材料,耗能小,节能环保,正符合目前发展潮流,国家政策给予积极鼓励的政策,将会促进我国聚甲醛行业的发展。十二五期间国家对工程塑料市场发展提出明确发展方向,通过科技创新,提高工程塑料技术水平,增强竞争力,促使由塑料大国向塑料强国转变成为工程塑料市场发展的目标。 五、存在问题 1、我国聚甲醛工业发展与国外先进水平相差甚远,聚甲醛属于高技术产品,目前国内所需聚甲醛尚需大量进口。虽然我国很早就开始研制聚甲醛,但是经过几十年的发展,技术水平没有重大突破。与国外公司相比,规模太小。2010年,我国聚甲醛的表观需求量为31.4万吨,其中进口量达到22.3万吨进口依存度高达70%以上。

粉体考点

粒径分布函数:能够反映出具有相同或相似粒径分布特性的共性规律的数学函数。 粒径:粉体中颗粒的大小,用其在空间范围所占据的线性尺寸来表示 粒径分布:不同粒径范围内所含粒子的个数或质量,称为粒径分布 形状因子:形状因子是一种粒子间相互作用矩阵元中含有的洛伦兹标量函数因子。按照相对论协变性的普遍要求,可以得到相互作用矩阵元的一般表达式,其中含有一些标量函数因子。这些因子是相互作用过程中始态和末态粒子之间动量转移的函数,它们反映了相互作用振幅随动量转移的变化关系,称做形状因子。 频率分布:表示各个粒径范围内对应的颗粒百分比量。 累计分布:表示大于或小于某粒径的颗粒占全部颗粒的百分比量与该粒径的关系。 形状指数:表示颗粒外形的几何量各种无因次组合。 容积密度:指在一定填充状态下,包括颗粒的全部空隙在内的整个填空层单位体积中颗粒的量。 理论密度:指颗粒的质量处以不包括开孔或闭孔在内的颗粒真体积。 表观密度:颗粒的质量除以包含闭孔在内的颗粒体积。 安息角:又称休止角,通常是指粉体堆积层的自由斜面与水平面所形成的最大角。 内摩擦角:土体中颗粒间相互移动和胶合作用形成的摩擦特性。其数值为强度包线与水平线的夹角。 壁摩擦角:粉体层与体壁面之间的摩擦特性,用表示,表示单一粒子与壁面的摩擦。粉碎化:物料与粉碎前的平均粒径D与粉碎后的平均粒径d之比称为平均粉碎化 公称粉碎化:粉碎设备所允许的最大进料口尺寸与最大出料口尺寸之比 粉碎级数:串联的粉碎机太俗称为粉碎级数 升流粉碎流程:不带检查筛分或选粉设备的粉碎流程称为开路(升流)粉碎流程 闭流粉碎流程:凡带检查筛分或选粉设备的粉碎流程称为闭路(圈流)粉碎流程 循环负荷率:粗颗粒回料质量与闭路粉碎流程粉碎产品质量之比称为循环负荷率 固体比表观能:使固体物料表面增加单位面积所需要的能量 固体的比断裂表面能:产生新表面,裂纹到附近的塑形变形之和为比断裂表面能 固定床:当流体速度很小时,粉体层静止不动,流体从彼此相互接触的颗粒间的空隙通过此时床层为固定床 流化床:当空气自下而上地穿过固体颗粒随意填充状态的料层,而气流速度达到或超过颗粒的临界流化速度时,料层中颗粒呈上下翻腾,并有部分颗粒被气流夹带出料层的状态。 气力输送:用压力气流作载体,以一定速度运送[容器盛装的]散料的输送方式。

SLG 型连续式粉体表面改性机应用研究

SLG型连续式粉体表面改性机应用研究 郑水林1李 杨2骆剑军3 1.中国矿业大学北京校区,北京 100083; 2.北京工业大学; 3.江阴市启泰非金属工程有限公司 摘 要:在论述粉体表面改性设备应具备的工艺特性的基础上,介绍了新研制开发的SLG型连续式粉体表面改性机的结构、工作原理、性能特点以及在重钙、轻钙、纳米氧化锌、纳米碳酸钙、煅烧高岭土等无机粉体表面改性中的应用。工业应用结果表明,SLG型连续式粉体表面改性机对粉体和表面改性剂具有良好的分散性,能使它们充分和机会均等地接触,对粉体,特别是对超细粉体和无机纳米粉体的表面改性或处理效果较好,且能耗低、无粉尘污染、操作简单、运行平稳。 关键词:粉体 表面改性 改性机 超细粉体 纳米粉体 在现代有机/无机和无机/无机复合材料中,广泛应用各种无机粉体原(材)料。这些粉体原料的分散性及与有机基料或其它无机组份的相容性,对复合材料的性能,尤其是力学性能有重要的影响。而且,随着粉体制备技术向亚微米及纳米尺度推进,解决粉体的团聚问题就成为其应用的关键。此外,随着对粉体材料功能性要求的提高,粒子表面性能的优化和设计也越来越重要。因此,现代粉体材料,尤其是超细和纳米粉体材料的表面改性或表面处理技术,已成为重要和必需的粉体深加工技术之一。 粉体的表面改性或表面处理技术,包括表面改性方法、工艺、表面改性剂及其配方、表面改性设备等。其中在表面改性工艺和改性剂配方确定的情况下,表面改性设备的优劣就成为粉体表面改性或表面处理的关键。性能好的表面改性设备应具备以下基本工艺特性:①对粉体及表面改性剂的分散性好;②粉体与表面改性剂的接触或作用机会均等;③改性温度可调;④单位产品能耗低;⑤无粉尘污染;⑥操作简便、运行平稳。 我国粉体表面改性技术的发展较晚,在2000年之前基本上无专业化的表面改性设备。除湿法改性之外,干法改性大多采用塑料加工行业的高速加热混合机或其它带导热油加热的混合设备。由于不是针对粉体表面改性处理,尤其是不是针对超细和纳米粉体表面改性设计的,这些设备难以满足超细粉体表面改性的要求。在这种背景下,原武汉工业大学北京研究生部与江阴市启泰非金属工程设备有限公司合作研制开发了专门针对超细粉体表面改性或表面

纳米碳化硅材料

纳米碳化硅材料 摘要:本文主要讨论的是关于纳米碳化硅材料的结构、性能及其应用,主要在其 光学性质、力学性质等方面对其进行讨论。 关键词:纳米碳化硅光学性质力学性质 1. 引言 SiC纳米材料具有高的禁带宽度,高的临界击穿电场和热导率,小的介电常 数和较高的电子饱和迁移率,以及抗辐射能力强,机械性能好等特性,成为制作 高频、大功率、低能耗、耐高温和抗辐射器件的电子和光电子器件的理想材料。 SiC 纳米线表现出的室温光致发光性,使其成为制造蓝光发光二极管和激光二极 管的理想材料。近年来的研究表明:微米级SiC晶须已被应用于增强陶瓷基、金 属基和聚合物基复合材料,这些复合材料均表现出良好的机械性能,可以想象用 强度硬度更高及长径比更大的SiC 一维纳米材料作为复合材料的增强相,将会 使其性能得到进一步增强。随着研究的深入,研究者还发现一维SiC纳米结构在 储氢、光催化和传感等领域都有广泛的应用前景。 2. 纳米碳化硅结构 碳化硅(SiC)俗称金刚砂,又称碳硅石是一种典型的共价键结合的化合物, 自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面 体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC 具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立 方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为 工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关 系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H 多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃, 也是非常稳定的。下面是三种SiC多形体结构图

纳米碳化硅材料

纳米碳化硅材料 王星 (武汉工业学院化学与环境工程学院湖北武汉430023) 摘要:本文介绍了碳化硅的结构,纳米碳化硅几种常用的制备的方法和它掺杂改性以及应用。虽然SiC纳米材料制备规模小、成本高、工序复杂,近期难以实现大规模生产,但SiC纳米材料性能优于传统的SiC材料,能够达到高新技术领域的严格要求,具有更为广泛的用途,为此,应进一步加大对SiC纳米材料的研究。 关键词:纳米碳化硅掺杂改性应用 1 引言 纳米材料的出现是21世纪材料科学发展的重要标志,它所表现出的强大的科学生命力不仅是因为揭示出科学的深刻物理含义,而更重要的是它所发现的新结构、新现象、新效应源源不断地被用来开发具有新结构、新性能的固体器件,对通讯、微电子等高新技术产生极其深远的影响。SiC纳米材料具有高的禁带宽度,高的临界击穿电场和热导率,小的介电常数和较高的电子饱和迁移率,以及抗辐射能力强,机械性能好等优点,成为制作高频、大工率、低能耗、耐高温和抗辐射器件的电子和光电子器件的理想材料。SiC 纳米线表现出的室温光致发光性,使其成为制造蓝光发光二极管和激光二极管的理想材料。所以,对纳米碳化硅材料的研究具有十分重要的意义。 2碳化硅的结构 碳化硅(SiC)俗称金刚砂,又称碳硅石是一种典型的共价键结合的化合物,自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC 具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H 多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。下面是三种SiC多形体结构图

纳米级碳化硅

纳米级碳化硅 金蒙新材料生产的纳米级碳化硅,对红外波有较强的吸收能力,可用作红外吸波和透波材料,做成功能性的薄膜或纤维,也可用于抛光研磨。 金蒙新材料通过特殊工艺生产的纳米碳化硅,具有纯度高、粒径分布范围小、比表面积高、化学性能稳定、导热系数高(165W/MK)、热膨胀系数小、硬度高等特点。其莫氏硬度达9.5,显微硬度为2840-3320kg/mm2,介于刚玉和金刚石之间,机械强度高于刚玉,是首选的材料耐磨添加剂。 纳米碳化硅具有优良的导热性能,还是一种半导体,高温时能抗氧化;纳米碳化硅耐磨,耐高温,耐腐蚀,耐酸碱溶剂,广泛应用于涂料、油漆等领域,增加耐磨性。 金蒙新材料纳米级碳化硅主要应用领域: 1.改性高强度尼龙材料:纳米SiC粉体在高分子复合材料中相容性好、分散性好,和基体结合性好,改性后高强度尼龙合金抗拉强度比普通PA6提高150%以上,耐磨性能提高3倍以上。主要用于装甲履带车辆高分子配件,汽车转向部件,纺织机械,矿山机械衬板,火车部件等。在较低温度下烧结就能达到致密化。 2.改性聚醚醚酮(PEEK,特种工程塑料):金蒙碳化硅公司表面处理后的纳米碳化硅,添加量为5%左右时,可极大改善PEEK的耐磨性(提高原来的30%以上)。 3.橡胶行业的应用:添加2%左右金蒙纳米碳化硅,不改变原胶配方

进行改性处理,不降低原有性能和质量,可将耐磨性提高20%—40%。纳米碳化硅同时被广泛应用在橡胶胶辊、打印机定影膜等领域。 4.金属表面纳米SiC复合镀层:采用纳米级混合颗粒,在金属表面形成高致密度,结合力强的电沉积复合镀层。复合镀层显微硬度大幅度提高,耐磨性提高2-3倍,使用寿命提高3-5倍,镀层与基体的结合力提高40%,覆盖能力强、镀层均匀、平滑、细致。 5.其他应用:高性能结构陶瓷(如火箭喷嘴,核工业等),吸波材料,点火器,抗磨润滑油脂,高性能刹车片,高硬度耐磨粉末涂料,复合陶瓷增强增韧,电气工业用电热元件,远红外线发生器,航空航天工业领域的结构涂层、功能涂层、防护涂层、吸波材料、隐身材料,坦克及装甲车的防护装甲,陶瓷刀具、刃具、量具、模具,特殊用途的结构陶瓷、功能陶瓷、工程陶瓷。

国内外聚甲醛技术特点比较

国内外聚甲醛技术特点比较 一、聚甲醛产品用途概述 聚酰胺(PA)、聚碳酸酯(PC)、聚甲醛(POM)、聚酯(PBT)和聚苯醚(PPO)被合称为五大工程塑料。工程塑料和通用塑料相比,在机械性能、耐热性、耐久性、耐腐蚀性等方面能达到更高的要求,而且加工更为方便,可替代金属等材料,因而在汽车、通讯设备、建筑材料、家用电器乃至航空航天等方面有着广阔的用途,受国家一系列拉动内需政策和下游汽车、家电等销售不断攀升影响,PC、PBT、PA、POM、PPO工程塑料已成为塑料工业中最为活跃的领域。工程塑料已占轿车总重量的20%。 1.聚甲醛是以上五大工程塑料中仅次于PA和PC居第三位,聚甲醛具有较高的弹性模量、刚性和硬度,且摩擦系数小,耐磨耗,尺寸稳定性好。POM常用来代替铜、锌、锡、铅等有色金属,有“夺钢”、“超钢”之称。 与聚甲醛同其他工程塑料(PA、PC、PBT)相比,它具有优良的耐疲劳性能和耐磨耗性,较小的蠕变性能被广泛地应用于汽车、军工、电器、建材和日用行业。 2. 电器行业 由于聚甲醛介电强度和绝缘电阻较高,具有耐电弧性等性能,使之被广泛的应用于电子电器领域。聚甲醛在办公设备用于电话、无线电、录音机、录像机、电视机、计算机和传真机的零部件、计时器零件,录音机磁带座。在家用电器行业用来制造电源插头、电源开关、按钮、继电器、洗衣机滑轮、空调曲柄轴、微波炉门摇杆、电饭锅开关安装板、电冰箱、电扳手外壳、电动羊毛剪外壳、煤钻外壳和开关手柄等。 3.汽车行业 聚甲醛在汽车工业中的应用量较大,用来制造汽车泵、汽化器、输油管、动力阀、万向节轴承、刹车衬套、车窗升降器、安全带扣、门把手、门锁、滑块、负荷指示器外齿轮、钢板弹簧减震衬套、推力杆球座、散热器水管阀门、散热器箱盖、冷却液的备用箱、水阀体、燃料油箱盖、水本叶轮、气化器壳体、油门踏板等零件。 4.国防军工 用来制造自行式迫击炮、坦克装甲车辆中聚甲醛用于制造水散热器、排水管、散热风扇、坦克操纵转动开关、转动轴轴套等。5.建材和日用行业水龙头、窗框、洗漱盆、水箱、门帘滑轮、水表、壳体和水管接头等。聚甲醛还可用于消防水龙头、滑雪板、溜旱冰鞋、渔具滑轮、木梳、衣服拉链、密封圈等。 6.聚甲醛的改性 聚甲醛改性技术近几年有很大发展,聚甲醛改性可以使聚甲醛性能大幅度提高,进一步拓宽聚甲醛的应用领域,提高了聚甲醛的应用价值

碳化硅颗粒表面改性及其分散稳定性的研究演示教学

碳化硅颗粒表面改性及其分散稳定性的研 究

碳化硅颗粒表面改性及其分散稳定性的研究 欧阳唐哲 【摘要】:再结晶碳化硅(RSiC)具有高温强度高、抗氧化性能强,以及特殊的电学和热学性能等,因而作为一种有广泛应用前景的结构与功能材料,受到了许多科研工作者的关注。但由于RSiC的烧成机理为蒸发-凝聚原理,在烧成过程中并不产生收缩,所以RSiC是一种多孔材料,其孔隙率取决于它的生坯密度,且对材料的高温强度、抗氧化性、导热、导电等性能有重要影响。要提高RSiC的生坯密度,关键是对SiC粉体进行表面改性,降低生坯的含水量,提高生坯密度。本文较系统地研究了三种阳离子型表面活性剂(聚乙烯亚胺、溴化十六烷基吡啶、聚乙烯吡咯烷酮)对SiC粉体进行表面改性的效果。用zeta电位仪和Washburn法研究了表面活性剂吸附在SiC粉体表面后,粉体的表面zeta电位及其与水接触角的变化;用UV-Vis,FTIR研究了表面活性剂在SiC粉体表面的吸附状态与吸附机理;用旋转粘度计表征了表面活性剂的加入对SiC浆料流变性的影响,并考察了对生坯密度的影响。得出以下结论: 1阳离子表面活性剂在SiC粉体表面的吸附主要是通过静电和氢键等作用吸附在SiC粉体表面。2表面活性剂吸附在SiC粉体表面后,SiC粉体的表面zeta电位有了显著的提高,其与水的接触角降低,这说明改性后SiC粉体的亲水性提高。 3阳离子型表面活性剂的加入改变了SiC浆料的“梭型”触变环。减小了环面积,这说明SiC 浆料的触变性变小,同时破坏SiC浆料触变结构所需要的能量也减少。同时表明表面活性剂的加入可以提高碳化硅生坯密度,降浆料含水量。 【关键词】:碳化硅流变性表面改性zeta电位 【学位授予单位】:湖南大学

硅铝氧化物二元包覆钛白粉颗粒的有机改性

V01.22 2001年1月 高等学校化学学报 CHEMICALJOURNALOFCHINESEUNIVERSITIES NO.1 硅铝氧化物二元包覆钛白粉颗粒的有机改性 林玉兰王亭杰覃操杨俊金涌 (清华大学化学工程系.北京100084) 摘要在二元包覆SiO:,AIzO。薄膜的基础上,用钛酸醋偶联剂、硅烷偶联剂及三乙醇胺、季戊四醇对亚微米TiO。颗粒表面进行有机改性.考察了改性条件对颗粒表面改性结果的影响.通过疏水性试验和润湿性试验对改性前后TiOz颗粒的表面特性进行了表征.高温裂解色谱、热重分析、x光电子能谱的测试结果表明,不同改性剂与颗粒表面存在不同程度的化学键合作用.分析了改性剂在颗粒表面的包覆状态与结构. 关键词表面改性;分散;二氧化钛;超细粉;疏水 中圈分类号0612.4文献标识码A文章编号0251—0790(2001)01—0104—04 由于钛白粉具有独特的物理化学性质和优良的颜料性能,已广泛用于涂料、塑料、化纤、橡胶和油墨等行业.高档颜料的钛白粉必须经过表面处理,以抑制其光催化活性,并提高其在介质中的分散性.以硅、铝等氧化物进行无机改性可提高TiO。的耐候性“。],而以钛酸酯偶联剂o]、硅烷偶联剂“]、有机胺及其盐…、DWAE“、聚合物‘“、表面活性剂啪等进行有机改性则可有效地改进TiO。在介质中的润湿性和分散性.金红石型钛白粉经硅、铝氧化物包覆后,纳米级SiO。,A1。0。包覆层与TiO。颗粒表面键合牢固。耐侯性好[9],但因其表面亲水,在非水体系中的分散性较差,影响了其在高档油漆、填料等行业中的应用性能.本文在s|02,Al。0。二元薄膜包覆的基础上,用钛酸酯偶联剂、硅烷偶联剂及三乙醇胺、季戊四醇对平均粒径0.3,urn的金红石型Ti0。颗粒进行表面改性,研究了颗粒表面由亲水向疏水转变的改性条件,通过疏水性试验及润湿性试验对改性前后TiO。的表面性质进行了表征.采用高温裂解色谱、热重分析、x光电子能谱分析了改性颗粒表面的包覆状态与结构. 1实验部分 1.1试剂 钛酸酯偶联剂NDZl01I-CA6,(CH。):cHOTi(OCOOR)20P(O)(OR7)a异丙基三一(焦磷酸酯二辛酯)钛酸酯[CA7,(CH。)2CHOTi(OP(O)(OH)OP(O)(OC。H。,)。)。]及硅烷偶联剂双一(y一三乙氧基硅基丙基)一四硫化物[CAl,(c。H。o)。siC,H。S。C。H。Si(OC。H。)3]、3一环氧丙氧基丙基三甲氧基硅烷[CA8,CH30CHCHzOC。HeSi(OCHa)a]、批甲基丙烯酰氧基丙基三甲氧基硅烷[KH570,CH。C(CH:)C(0)OCaH。Si(OCH。)。](南京曙光化工一厂)均为工业级产品;三乙醇胺(北京益利精细化学品有限公司)为化学纯试剂}季戊四醇(北京通县育才精细化工厂)、丙酮(北京化工厂)、异丙醇(北京益利精细化学品有限公司)均为分析纯试剂;金红石型TiO。(镇江钛白粉厂)为工业级产品. 1.2样品制备与分析 自制SiO。,AI。O。二元包覆TiO:[9].以钛酸酯偶联剂、硅烷偶联剂改性时,将其分别溶于异丙醇、丙酮溶剂中,在一定温度下加入二元包覆后的TiO。颗粒,质量分数为20%~50“,搅拌一定时间后过滤、干燥;而以三乙醇胺、季戊四醇改性时,则将其溶解在水中,二元包覆后的TiO。粉末制成质量分数为20%~50%的浆液,在一定温度下,将改性剂溶液加入TiO。浆液中,搅拌恒定时间后过滤、干燥,以能溶解表面改性剂的相应溶剂索式抽提样品8~9h,于120℃干燥后用于分析检测.针对不同 收穑日期:1999—12-24. 基金项目:国家自然科学基金(批准号:29906004)、高等学校博士学科点专项科研基金(批准号.99000331)资助. 联系人简介:王亭,W/S(1964年出生),男t博士,副教授,从事擞细曩粒制备与改性研究E-miltwangti@mall.tainghua.edu.cn

相关主题
文本预览
相关文档 最新文档