当前位置:文档之家› 高数教案数列极限

高数教案数列极限

高数教案数列极限
高数教案数列极限

数学MATH

课 题: 数列的极限 目的要求:

教学重点: 教学难点: 教学课时: 教学方法: 教学内容与步骤:

数列的极限

设x n =f (n )是一个以自然数集为定义域的函数,将其函数值按自变量大小顺序排成一列,x 1, x 2,…x n , …, 称为一个数列. x n 称为数列的第n 项,也称为通项,数列也可表示为{x n }或x n =f (x n ))例:

看数列1. n

x n 11+

=

从直观上看,这个数列当n 越来越大时, 对应的项xn 会越来越接近于1,或者说“当n 趋向

于无穷大时, 数列xn 趋近于1''.如何用精确的, 量化的数学语言来刻划这一事实?

注意到,实数a , b 的接近程度由| a -b |确定. | a -b |越小, 则a , b 越接近.因此, 要说明“ 当n 越来越大时, x n 越来越接近于1”就只须说明“ 当n 越来越大时, |x n -1 |会越来越接近于0”.而要说明“|x n -1 |越来越接近于0”则只须说明“ 当n 充分大时,| x n -1 |能够小于任意给定的, 无论多么小的正数ε” 就行了,也就是说无论你给一个多么小的正数ε, 当n 充分大时, | x n -1 | 比ε还小,由于ε是任意的,从而就说明了|x n -1| 会越来越接近于0. 事实上,n

x n

1|1|=-,给10001=

ε很小, 要1000

11|1|<

=-n x n 只须

n >1000 即可, 也

即在这个数列中,从第1001项开始,以后各项都有1000

1|1|<

-n x 又给:100001=

ε则从第10001项开始,以后各项都有10000

1|1|<-n

x ,一般, 任给ε >0,

不论多么小, 要使ε<=-n

x n 1|1|, 只须ε

1>n ,因此, 从第11+?

?

????ε项开始, 以后各项都

有ε<-|1|n x ,因ε是任意的, 这就说明了当n 越来越大时,

x n 会越来越接近于1.

定义: 设{x n }是一个数列, a 是一个常数, 若?ε >0, ?正整数N , 使得当n >N 时, 都有|x n -a |<ε,则称a 是数列{x n }当n 无限增大时的极限, 或称{x n }收敛于a ,

记作:

这时, 也称{x n }的极限存在, 否则, 称{x n }的极限不存在, 或称{x n }是发散的. 比如,

对于刚才的数列

1.

有1)11(lim =+∞→n

n ,,0)1(lim =-∞→n n

n

.lim 2

1

)1(lim 2不存在和而n n n n ∞→∞→+- 注1. 定义中的ε是预先给定的, 任意小的正数, 其任意性保证了x n 可无限接近于a ,另外, ε又是确定的, 它不是变量.

注2. 一般说来, N 随给定的ε变化而变化, 给不同的ε 确定的N 也不同,另外, 对同一个ε来说, N 不是唯一的(若存在一个N , 则N +1, N +2, …, 均可作为定义中的N .)

注3.定义中“ 当n >N 时, 有| x n -a |<ε”的意思是说, 从第N +1项开始,以后各项都有|x n -a |<ε,至于以前的项是否满足此式不必考虑. 可见一个数列是否有极限只与其后面的无穷多项有关. 而与前面的有限多项无关. 改变, 去掉数列的前有限项, 不改变数列收敛或发散的性质. 几何意义:

由于| x n -a |<ε ? a-ε

例1. 若x n =c (常数), 则c c n =∞

→lim

证明:?ε >0. 由于|x n –1|=|c – c |= 0,取N =1, 当n >N 时, 有|xn –c |=0<ε,故c c n =∞

→lim 即

常数的极限就是常数本身.

例2. 设q 是满足 |q |<1的常数, 证明.0lim =+∞

→n

n q

证: 若 q = 0 , 结论显然成立.

设 0 < |q |<1.

现在, x n = q n , a = 0.

?ε > 0. (要证?N , 当n >N 时, 有 |q n -0| <ε )

因 | x n - a | = |q n -0| = |q n | = |q | n , 要使| x n - a | < ε , 只须 |q | n <ε 即可.

即 n ln

|q | < ln ε , .

|

|ln ln 即可或q n ε>

取正整数 ,||ln ln ??

?

???≥q N ε则当 n > N 时, 有,||ln ln ||ln ln q q n εε≥>从而有| q n - 0 | <ε

.0lim =+∞

→n n q 故

练习. 证明:0cos 1

lim

=∞→πn n

n 证: ?ε >0(要证?N , 当n >N 时, 有) |0cos 1

|

επ<-n n

.1|0cos 1||0|n n n x n ≤-=-π因要使ε<-|0|n x ,,1

ε

],1[.1εε=>N n 取即则,当n >N 时, 有.|0cos 1

||0|επ<-=-n n x n

.0cos 1

lim =∞→πn n

n 故 练习:..1lim

2

2为常数其中证明a n

a n n =++∞

→ 证:.1,2

2=+=

a n

a n x n

?ε >0,

由于n

n

a n n a n a x n -+=-+=

-222

21||

)

(222

n a n n a ++=

.2n a ≤要使 | x n - a | <ε , ,2ε

即可即εa n > ,2??

?

???≥εa N 取正整数则当 n > N 时, 有:

ε<-+12

2n

a n .1lim

2

2=++∞

→n

a n n 故

数列极限性质:

定理1. 若数列收敛, 则其极限唯一. 证:

反设x n 收敛, 但极限不唯一, 即, x n →a , 且x n →b , (n →∞), a ≠b .

设b

b

a -=

ε

数列的有界性.

定义: 没有数列x n =f (n ), 若?M >0, 使得|x n |≤M , n =1, 2, …. 则称数列x n 有界,

几何意义:

由于 |x n |≤M -?M ≤x n ≤M ? x n ∈[-M , M ].

故, 所谓x n 有界, 就是x n 要全部落在某个对称区间[-M , M ]内. 如图

例1. x n =(-1)n

有界, 而x n =n 2

无界.

定理2. 若{x n }收敛, 则{x n }有界. 证:如图

定理2的逆命题不成立, 如x n =(-1)n

有界, 但由定义和几何意义知(-1)n 是发散的.如图

定理3. .,,,,lim ,lim n n n n n n y x N n N b a b y a x >>?>==+∞

→+∞

→有时当正整数则且设

证:如图

推论1. (保号性定理) 若a x n n =∞

→lim , 而a >0 (a <0). 则?正整数N , 当n >N 时, 有x n >0 (xn <0)

证:

推论2. .,,,,lim ,lim b a y x N n N b y a x n n n n n n ≥≥>?==+∞

→+∞

→则必有有时当正整数且若设

证明:反设 a N 1时, 有x n < y n .

取 N 2 = max{N , N 1},则

当 n > N 2 ( ≥ N )时,

有 x n < y n .

此与条件矛盾. 推论3: 设有数列{x n }, 若?正整数N , 当n >N 时, 有 x n ≥0 (x n ≤0). 且a x n n =∞

→lim ,则:a ≥0 (a ≤0).

)0lim (0lim ≤≥∞

→∞

→n n n n x x 即

注: 在推论3中, 即使x n >0, 也只能推出a ≥0,0lim ,≥∞

→n n x 即

比如, 01

lim ,01=>=∞→n n

x n n 但

定理4.

(夹逼定理). 设数列{x n }, {y n }, {z n }满足?正整数N , 当 n > N 时, 有x n ≤ y n ≤ z n (1)

.lim ,lim lim a y a z x n n n n n n ===+∞

→+∞

→+∞

→则且

证:,lim lim a z x n n n n ==+∞

→+∞

→由

?ε > 0 , ?N 1, 当n > N 1时, 有 |x n -a | <ε .

即 a - ε < x n < a + ε

(2)

?N 2, 当n > N 2时, 有 a - ε < z n < a + ε (3)

取 N * = max{N , N 1, N 2}, 则当n > N * 时, (1), (2), (3)同时成立.有:

a - ε < xn ≤ yn ≤ zn ≤ a + ε 即 | y n - a | < ε .

.lim a y n n =+∞

→故

特别, 若在夹逼定理中, xn 和 zn 中有一个为常数列, 并满足定理条件. 定理当然成立

夹逼定理的意义有: (1) 给出判断数列 y n 存在极限的方法; (2) 给出了求 y n 的极限的方法.

这一方法能解决很多较为困难的求极限问题.

练习:求.!lim n

n n n +∞→

解:

子列:所谓数列{xn } 子列,就是从数列 x 1, x 2, …, x n , … 中任取无穷多项,按原来的次序,从左到右排成一个新的数列,这个数列称为{xn }的子列.

比如,x 2, x 5, x 14, …, x 78, …就是{x n }的一个子列,

}{,,,,21k k n n n n x x k x x 子列记作项记作第第二项记作子列中第一项记作

上列中n 1=2, n 2=5, n 3=14等.

注: .}{,}{)1(项中的第是原来的数列表示下标中子列k n n k n n x x n x k k

(3) 对任何两个正整数 h , k , 若 h ≥ k , 则有 n h ≥ n k .

反之,若 n h ≥ n k , 则 h ≥ k . 这是因子列次序与原数列次序相同.

在子列中位置靠后的项,在原数列中位置也靠后,反之也对.

定理5. .,}{lim 为极限且都以的任何子列都收敛的充要条件是a x a x n n n =+∞

证:充分性.

由于{x n }可看作它自已的一个子列.

由条件 {x n } 的任何子列

都以 a 为极限,故a x n n =+∞

→lim

注:由定理5,若{ x n } 的两个子列一个收敛于 a , 而另一个收敛于 b ,且 a ≠b , 则{x n }发散;

或者,{x n }中有一个子列发散,则{x n }发散.

,2

)1(1,n

n x -+=例0, 1, 0, 1, ……发散.

,2

sin

n x n =例1, 0, -1, 0, 1, 0, -1, 0, ……发散. 推论. ,}{lim a x a x n n n 子列都收敛于的奇数项子列和偶数项的充要条件是=+∞

).(,,122+∞→→→+k a x a x k k 即

收敛准则:若数列{x n }满足 x 1≤x 2≤…≤x n ≤…, 则称{x n }为单调递增数列. 若x 1≥x 2≥…≥x n ≥…, 则称{x n }为单调递减数列.

单调递增和单调递减数列统称为单调数列. 例4. x n =n 2是单调递增数列, 但x n 是发散的.

x n =(-1)n 是有界数列, 但x n =(-1)n 也是发散的.

定理6. 单调递增且有上界的数列必有极限; 单调递减且有下界的数列必有极限.

即: 单调有界数列必有极限.

例5.数列 n

n n

x )11(+=是单调递增且有上界的数列. 证: 首先注意到, 当a >b >0时,

定理: (柯西收敛准则) 数列{x n }收敛的充要条件是?ε >0, ?N > 0, 当n , m >N 时,有 | x n -x m | < ε . 证:略

例6. 利用柯西收敛原理证明 x n =1+q +q 2+……+q n ( | q |<1) 收敛. 证:?ε >0,设 m > n ,| x m -x n |m n n q q q

+++=++ 21

m n n q q q ||||||21+++≤++

||1||1|

|1

q q q n m n --?

=-+|

|1||1

q q n -≤+

作业:教学总结:

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

(完整版)《数列的极限》教学设计

《高等数学》——数列极限 教学设计

教学过程设计 A 、【课前准备】1、安排学生提前预习本节内容。 2、分组:4~6人为一个学习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。 B 、【组织教学】 检查学生出勤情况,填写教学日志,教材、用具准备等(2分钟) C 、【复习回顾】 数列的定义(2分钟) D 、【教学内容、方法和过程】接下表 教师活动 学 生 活 动 设计意图 (一) 结合实际,情景导入(时间4分钟) 导入1、战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一 尺之棰,日取其半,万世不竭” 也就是说一根长为一尺的木棒,每天 截去一半,这样的过程可以无限制地进行下去 导入2、三国时的刘徽提出的“割圆求周”的方法.他把圆周分成三等分、 六等分、十二等分、二十四等分、··· 这样继续分割下去,所得多边形的 周长就无限接近于圆的周长. 教师引入:不论是庄周还是刘徽,在他们的思想中都体现了一种数列极 限思想,今天我们来学习数列极限。 【学情预设】:有的学生可能没体会到情景导入的目的,教师最后要总结导入中蕴含的数学思想。 (二)归纳总结,形成概念: (时间9分钟) 1.提出问题:分析当无限增大时,下列数列的项的变化趋势及共同特征. (1)1,21,31,41…n 1 …递减 (2)递增 (3)摆动 学生参 与,思 考,感 受 学生参 与,思 考 问题,在 老师的引 导下对数 列极限知 识有一个 形象化的 了解。 通过讨 论,学生 了解以研 究函数值 的变化趋势的观点研究无穷数列,从而体会发现数列极限的过程 通过介绍我国古代哲学家庄周和刘徽,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。同时为学习新知识做准备,使学生更好的承上启下。 (一)概念探索阶段” 在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

数列极限教案

课题 数列的极限 一、教育目标 (一)知识教学点:(1)理解数列极限的定义,即“ε—N 定义”;能说出ε、N 的涵义;懂得n 与N 的区别;会把数列中的某些项画在数轴上,并能从图上看出这个数列的变化趋势。 (二)能力培养点:培养学生由具体到抽象、从有限到无限的思维能力,训练类比思维方法,会依据“ε—N 定义”及求数列的极限及证明. (三)学科渗透点:通过数列极限概念的教学,使学生懂得无限问题可以转化为有限问题来解决,通过对变量有限过程的研究,来认识变量无限变化过程的辩证思想观点. 二、教学分析 1.重点:数列极限“ε—N 定义”.解决方法:画图、列表,进行直观的“定性描述”;运用类比方法,引进ε、N ,用不等式来进行定量描述. 2.难点:ε与N 的涵义,n 与N 的区别.解决方法:分析、思考、问答的形式解决. 3.疑点:ε的任意性与确定性.解决方法:分析、举例说明. 三、活动设计 1.活动方式:画图、列表、分析、思考、问答、练习. 2.教具:投影仪(或小挂图.) 四、教学过程 1.数列变化趋势的定性描述: 考察两个实例:即两个无穷数列;0.9,0.99,0.999, (1) n 101 ,…,(1) 1, 21, 41, …, n 2 1 , …, (2) 容易看出:当项数n 无限增大时,数列(1)中的项无限趋近于1,数列(2)中的项无限趋近于0..

数列(1)中各项与1的差的绝对值如下表:出示投影仪(或小挂图) 2.数列(1)变化趋势的定量描述:投影1.引进ε、N ,即怎样定量描述“数列(1)中的项无限趋近与1,请看:对数列{1- n 10 1}(1),无论预先给定的ε多么小,总能在数列(1)中找到这样的一项,使得这一项后面的所有项与1的差的绝对值都小于ε. 如给定ε=0.001,数列(1)中存在一项,从投影表中可以看出,即为第三项,对这一项后面的所有项,不等式: ︱(1- 4101)-1︱=4101< 0.001, ︱(1-5101)-1︱=510 1< 0.001… 皆成立,换句话说,对于任意给定的ε=0.001,存在自然数N=3,当n >N 时,不等式 ︱(1- n 101)-1︱=n 101 < 0.001 恒成立。 再给定ε=0.000001,情形怎样呢? 学生回答:此时,存在自然数N =6,当n >N 时,不等式︱(1-n 101)-1︱=n 101 < 0.000001恒成立。 类比分析,从具体到抽象,得出:“无论预先给多么小的正数ε,总存在着这样的自然数N ,当n >N 时,不等式︱(1- n 101)-1︱=n 101 <ε恒成立.”事实上,无论预先给定多么小的正数ε,确实存在着这样的自然数N .这时,可以说数列(1)的极限是1. 3.数列极限的定义:

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

第11讲 数列的极限与数学归纳法 教案

第十一讲 数列的极限与数学归纳法 教案 【考点简介】 1.数列极限与数学归纳法在自主招生中的考点主要有:数列极限的各种求解方法;无穷等比数列各项和;数列的应用题;常用级数;数学归纳法证明等式与不等式。 【知识拓展】 1.特殊数列的极限 (1)1 lim 0(0,a n a a n →∞=>是常数) (2) lim 0(0)!n n a a n →∞=> (3)lim 0k n n n a →∞=(1a >,k 为常数) (4) 111 lim 1,lim 1n n n n e n n e →∞→∞ ????+=-= ? ????? 公式(4)证明:令11n M n ?? =+ ??? ,取自然对数得到1ln ln 1M n n ??=+ ???, 令1x n = ,得ln(1) ln x M x +=, 由洛比达法则得00ln(1)1 lim lim()11x x x x x →→+==+,即0limln 1x M →=, 所以,limln 1n M →∞=,则lim n M e →∞=,即1lim 1n n e n →∞ ?? += ??? 。 另外,数列11n n ???? ??+?? ?????? ?是单调递增的,理由如下:由11n n G A ++≤(1n +个正实数的几何平均数≤ 它们的算术平均数)有111 11111111n n n n n n n ?? ++ ?++??=+?<==+? ? +++? ?? , 所以1 11111n n n n +??? ?+<+ ? ? +???? 。 2.洛比达法则 若lim ()0x f x →∞ =(或∞),lim ()0x g x →∞ =(或∞),则()'() lim lim ()'() x x f x f x g x g x →∞ →∞=。 3.夹逼定理 如果数列{}n x 、{}n y 以及{}n z 满足下列条件: (1)从某项起,即当0n n >(其中0n N ∈),有n n n x y z ≤≤(123n =,,); (2)lim n n x a →∞ =且lim n n z a →∞ =;

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

高中数学新课 极限 教案

课 题:2.2数列的极限 教学目的: 1. 理解数列极限的概念; 教学重点:会判断一些简单数列和函数的极限 教学难点:数列极限的理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 这节课一开始就把学生引入数列是否“趋向于”一个常数的讨论中,虽然学生对“趋向于”并没有精确的认识,但是凭借他们的自身的感受,运用“观察”“分析”“归纳”“概括”也能得到一些数列的“极限”的肤浅认识,这是感性认识 数列的极限是一个十分重要的概念,它的通俗定义是:随着项数n 的无限增大,数列的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),它有两个方面的意义. 教学过程: 一、复习引入: 1.战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”也就是说一根长为一尺的木棒,每天截去一半,这样的 过程可以无限制地进行下去(1)可以求出第n 天剩余的木棒长度n a = 1 2n (尺);(2)前n 天截下的木棒的总长度n b =1- 1 2 n (尺) 分析变化趋势. 2. 观察下列数列,随n 变化时,n a 是否趋向于某一个常数: (1)n n a n 12+= ; (2)n n a )3 1(3-=; (3)a n =4·(-1)n -1 ; (4)a n =2n ; (5)a n =3; (6)a n =n n 2)1(1--; (7)a n =(2 1 )n ; (8)a n =6+n 101 二、讲解新课: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是

高等数学极限总结

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。 【关键词】高等数学极限技巧 《高等数学》极限运算技巧 《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。 一,极限的概念 从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限! 从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。 二,极限的运算技巧 我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助! 我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

1,连续函数的极限 这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。 2,不定型 我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。 第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个: 需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。 此外等价无穷小代换的使用,可以变通一些其他形式,比如: 等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。 当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。 在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

高数 数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。[2] 单侧极限:①.左极限:或 ②.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0)()()()()(0000lim x f x f x f x f x f x x ==?=+ -→)(x f 0x x →)()()(lim 0 00x f x f x f x x →+ -==0,,,x x x x x →-∞→+∞→∞→0x x →

数列的极限、函数的极限与连续性教案

看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3 →∞??+-+===??-??所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞?)上的函数()f x 满足()f x =3(2)f x +, 当[0,2)x ∈时,()f x =22x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且 {}n a 的前n 项和为S n ,则lim n n S →∞=( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2) f x f x =+可推得 1()(2)3 f x f x =-,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

[教学设计]《数列的极限》精品教案

《数列的极限》教学设计 (一)教材分析 数列和极限是初等数学和高等数学衔接与联系最紧密的内容之一,是学习高等数学的基础,微积分中所有重要概念,如导数、定积分等,都是建立在极限概念的基础上,极限的概念是微积分的重要概念和重点,本节数列的极限是极限的一类,与函数极限形式不同,但它们的思想是完全相同的,通过数列极限(ε-N定义)概念的教学,使学生初步理解极限的思想方法,为学习高等数学打下基础。 (二)教学对象 学生在初中已知道:当圆的内接正多边形的边数不断的成倍增加时,多边形的周长P n不断增大,并越来越接近于圆的周长C。在高一立几推导球的表面积公式时也接触过极限的思想。这些都为学生理解数列极限的定义打下基础。但因为学生以前接触的代数运算都是有限运算,而极限概念中含有“无限”,比较抽象,又要将“无限”定量描述出来,即用ε-N的语言叙述出来更困难了,所以这一课是数列极限这一章中学生最难听得懂,教师也最难讲得好的一课。讲好的关键是结合数列的图象和表格讲清“无限”的几何意义,使学生对数列极限有较丰富的感性认识并讲清“无限趋近”和“无限增大”的意义和二者之间的联系。 (三)教学媒体:投影仪 (四)教学目标 ⑴掌握数列极限的定义。 ⑵应用定义求证简单数列的极限,或从数列的变化趋势找到简单数列的极限。 ⑶通过数列极限定义的教学对学生进行爱国主义和辩证唯物主义的教育。 (五)重点、难点 理解数列的概念及定义中一些字母和记号的特性。 (六)教学方法:启发分析,讲练结合。 (七)教学过程 一、定义的引进 1.复习提问

⑴ |a| 的几何意义:表示数a 的点与原点的距离。 ⑵ |x-A| 的几何意义:表示数x 的点及数A 的点之间的距离。 ⑶设ε>0,解不等式 |x-A|<ε,并且在数轴上表示出它的解集。 2. 满不等式 |x-A|<ε的点x 全部落在区间(A-ε,A+ε)内,要使点x 与点A 的距离即 |x-A| 无限制地小,ε要怎样变化?引导学生说出ε是一个任意小的正数。 3. 定义的引进 本节课的课题是“数列的极限”(板书),极限的思想在我国古代早有出现,公元前四世纪,我国古代重要的哲学家和思想家庄子就指出了“一尺之棰,日取某半,万世不竭”,我们把每天取去一半后所余的尺数用现代熟悉的表达方式可以得到一个数列: 把上述数列的前几项分别在数轴上表示出来: ① 0 从图形容易看出,不论项数n 怎样大, 永不为0,只是0 的近似值,但当n 无限增大时,数列 的项就无限趋近于0。即当n →∞时, →0。 再看无穷数列②:0.9,0.99,0.999,……, ,…… 0 0.9 0.99 1 当项数无限增大时②中的项无限趋近于1,即n →∞时, →1。 “无限增大”、“无限趋近”怎样利用数量来刻划呢? 如图由,||εεε+<<-?<-A x A A x )"(",......;21,......,81,41,21万世不竭这是一个无穷数列n 321161814121n 21{}n 21n 21 n 1011-n 1011-n 21

极限定义教案

§2.1 数列极限的概念 教学目标:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题. 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念.会应用数列极限 的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述. 教学重点:数列极限的概念. 教学难点:数列极限的N ε-定义及其应用. 教学方法:讲授为主. 教学过程: 一、组织教学 二、复习引入新课 三、新课讲授 数列极限 对于这个问题,先看两个个例子: 1.割圆术:求圆面积 “割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” -----------刘徽 2.古代哲学家庄周所著的《庄子. 天下篇》引用过一句话: “一尺之棰,日 A

取其半,万世不竭”.把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12 , 第2天截下2111 222 ?=, 第3天截下23111 222?=, 第n 天截下1111 222n n -?=, 得到一个数列: 231111 ,,,,,2222 n 不难看出,数列12n ?? ???? 的通项12n 随着n 的无限增大而无限地接近于零. 普通定义:一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限.不具有这种特性的数列就不是收敛的数列,或称为发散数列. 据此可以说,数列12n ?? ???? 是收敛数列,0是它的极限. 数列{}{}21,1(1)n n ++-都是发散的数列. 需要提出的是,上面关于“收敛数列”的说法,并不是严格的定义,而仅是一种“描述性”的说法,如何用数学语言把它精确地定义下来.还有待进一步分析. 以11n ?? +???? 为例,可观察出该数列具以下特性: 随着n 的无限增大,1 1n a n =+ 无限地接近于1→随着n 的无限增大,11n +与 1的距离无限减少→随着n 的无限增大,1|11|n +-无限减少→1 |11|n +-会任意小,只要n 充分大. 如:要使1 |11|0.1n + -<,只要10n >即可;

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

相关主题
文本预览
相关文档 最新文档