当前位置:文档之家› 波纹管计算书DN200

波纹管计算书DN200

波纹管计算书DN200
波纹管计算书DN200

波纹管计算

普通U型膨胀节设计EJP符号说明

1 可调参数:

t -单层壁厚(mm);n-层数;

W—波高(mm);

q-波距(mm);

N-单节波数;

Lc—套箍长度(mm);

tc —套箍厚度(mm);

Lt—波紋管端口長度(mm);

ts —大拉杆膨胀节中间接管厚度(mm);

den —介质密度(mm) xl—轴向冷紧量(mm)

2 半可调参数和不可调参数:

Db—波纹管内径(mm);p -工作压力(MPa);

T—工作温度(攝氏度);

Et—波纹管工作温度下弹性模量(MP a); Eo—波纹管常温下弹性模量(MPa); Sat—波纹管工作温度下许用应力(MP a); Sao—波纹管常温下许用应力(MPa);

Sbt —波纹管工作温度下强度极限(MPa);

Syt—波纹管工作温度下屈服极限(MPa); Syo—波纹管常温下屈服极限(MPa); Ect—套箍工作温度下弹性模量(MPa); ECO—套箍常温下弹性模量(MPa); Set—套箍工作温度下许用应力(MP a); Seo-套箍常温下许用应力(MPa);

Syco-套箍常温下屈服极限(MPa); B—模具半角(DEG)

Cw-纵焊缝系数;

Cm—冷加工强化系数;

Xx—轴向总补偿量(mm);

Y—垂直横向总补偿量(mm);

—总角位移(DEG);

m —复合膨胀节节数;

Ln—拉杆型膨胀节总有效长度(mm);

3 工艺参数

L—总展开长(mm);

Lo—单波展开长(mm);

Q —胀形力(N);

rO —波谷圆弧半径(mm);

po -液压成形压力(MPa)

4 尺寸参数

De—管胚外径(mm);

Dm —波纹管平均直径(mm);

t p —实际单层壁厚(mm);

K1 —查表用系数;

K2-查表用系数;

Cp—应力系数;

Cf-刚度系数;

Cd—位移系数;

KH-大拉杆横向总补偿量的轴向折算系数;

Ex,Ey,B—在对应坐标上单波总补偿量(mm);

Ee—单波总当量补偿量(mm)

Ex—在对应坐标上单波冷紧量(mm);

5 特性参数

fw —温度下单波轴向刚度(N/mm);

—温度下波纹管轴向总刚度(N/mm); fv —温度下横向总刚度(N/mm);

f B—温度下角力距总刚度(N mm/DEG);

fn —温度下扭力距总刚度(N mm/DEG);

Lb—波纹管有效长度(mm);

G—波纹管净重(Kg);

A—波纹管有效面积(mm2);

Ao —波纹管环面积(mm2);

FA—盲端力(N);

FAo—通径管轴向力(N);

Fx,Fy—波纹管坐标上作用力(N);

wo —常温下单波轴向刚度(N/mm);

f vo —常温下横向总刚度(N/mm);

f to —常温下角力距总刚度(N mm/DEG);

f no -常温下扭力距总刚度(N mm/DEG); M 0—波纹管对应坐标上力距(N mm);

My -波纹管对应坐标上力距(N mm); Fxl—波纹管冷紧力(N);

6 强度计算结果

Kr---拉伸对s2 的影响系数

S1 —内压下波纹管直管段周向应力(MP a);

m1 —S1的许用值应用系数;

S2—内压下波纹管周向应力(MPa);

m2—S2的许用值应用系数;

S11 —内压下套箍周向应力(MPa);

m11— S11的许用值应用系数;

S3—内压下波纹管径向薄膜应力(MPa );

S4—内压下波纹管径向弯曲应力(MP a );

m34—S3加S4的许用值应用系数;

Sd —位移引起的径向表面总应力(MP a );

St —综合应力(MPa )。

7 寿命及失稳计算结果

Nc —计算寿命;

Nc/ 1 0 —可靠寿命;

Ac —波纹管单波截面积(mm2);

Pt —试验压力(MPa );

Psc —柱失稳压力(MPa );

Psi —平面失稳压力(MPa );

Mp --试验压力许用值利用系数

Msc --柱失稳压力许用值利用系数

Msi --平面失稳压力许用值利用系数

8 固有频率计算结果 f i1,2,3,4,5 —波纹数为1时前五阶轴向固有频率(Hz);f 11,2,3,4,5 —任一波 纹数下梁式横向前五阶固有频率(Hz); fdz —大小拉杆膨胀节轴

S5—位移引起的波紋管径向薄膜应力 (MPa); S6—位移引起的波纹管径向弯曲应力 (MPa); Sp --压力引起的径向表面总应力 (MPa);

敞口矩形水池设计计算书

敞口矩形水池设计(4m×5m×2.5m) 执行规: 《混凝土结构设计规》(GB 50010-2002), 本文简称《混凝土规》 《建筑地基基础设计规》(GB 50007-2002), 本文简称《地基规》 《给水排水工程构筑物结构设计规》(GB50069-2002), 本文简称《给排水结构规》《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002), 本文简称《水池结构规程》 ----------------------------------------------------------------------- 1 基本资料 1.1 几何信息 水池类型: 无顶盖半地上 长度L=5.400m, 宽度B=4.400m, 高度H=2.800m, 底板底标高=-2.800m 池底厚h3=300mm, 池壁厚t1=200mm,底板外挑长度t2=200mm 注:地面标高为±0.000。 (平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土摩擦角30度 地基承载力特征值fak=100.0kPa, 宽度修正系数ηb=0.00, 埋深修正系数ηd=1.00 地下水位标高-5.000m,池水深1.500m, 池水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 地面30.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.30 活荷载分项系数: 地下水压1.27, 其它1.40 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 考虑温湿度作用: 池外温差10.0度, 弯矩折减系数0.65, 砼线膨胀系数1.00(10-5/°C) 1.4 钢筋砼信息 混凝土: 等级C30, 重度25.00kN/m3, 泊松比0.20 保护层厚度(mm): 池壁(35,外35), 底板(上35,下35) 钢筋级别: HRB400, 裂缝宽度限值: 0.20mm, 配筋调整系数: 1.00 2 计算容 (1) 地基承载力验算

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

雨水蓄水池容积计算书

按设计规范,雨水储存设施的有效容积不宜小于集水面重现期1—2年的日雨水设计径流总量扣除设计初期径流弃流量。 根据《绿色建筑评价标准》中规定,本设计的场地年径流总量控制率取70%,其对应的设计日降雨量为11.6mm,雨水设计径流总量按下式计算:W=10φc h y F 式中W ——雨水储水池容积,m3 ; φc——雨量径流系数;取0.4 h y——设计日降雨量,mm/d ;取11.6mm F ——汇水面积,hm2,为4.0hm2。 则: W=10×0.44×11.6×4.0=204.16m3 按设计规范,屋面雨水初期弃流可采用2-3mm径流厚度,地面雨水初期弃流可采用3-5 mm径流厚度,初期径流弃流量按下式计算:W i=10×δ×F W i——初期弃流量,m3 ; δ——初期径流厚度;取3mm; F ——汇水面积,h㎡。 则: W i=10×3×4=120m3 则本设计蓄水池的体积为:V=W-W i=84.16m3

根据甲方提供资料,本次项目占地面积69000㎡,绿化率35%,即绿化占地面积约24150㎡,道路及车库面积为31211㎡;雨水收集回用系统提供全部的绿化浇灌用水和30%的冲洗道路及车库用水,计算如下: 查《建筑给排水设计手册》,浇洒道路及绿化用水定额都取为2.5L/㎡.d,则依据下式计算: Q=q×s/1000 式中:Q——日用水量 q——用水定额 则绿化浇灌日用水量: Q1=2.5×24150/1000=60.38m3/d 道路浇洒日用水量: Q1=2.5×31211/1000=78.02m3/d 雨水收集系统存储可回用蓄水天数为3—7天,本设计取3天,则雨水收集模块容积为: W=3×(78.02×0.3+60.38)=251.34m3 清水池容积取日用水量的25%—30%,本设计取25%,则清水池容积为:w=0.25×(60.38+78.02×0.3)=20.85

RO简明设计手册

第三章反渗透装置 3.1 提升泵 (1)作用:输送原水至两级双介质过滤器,提供运行必要的压力。 (2)设备选型:卧式不锈钢离心泵 国内品牌:上海一泵熊猫 进口品牌:台塑水泵 流量:Q=设计进水量。 扬程:H=22~30m。(注意水头损失) 数量:1用1备或2用1备(根据需要) 3.2 一级双介质过滤器 ①过滤速度的确定 v=8~10m。(依据:砂、活性炭、砂池)。 ②过滤器规格的计算直径D=(进水流量Q÷滤速v÷圆周率∏)的开方×2。 ③滤层厚度的确定石英砂0.5m、无烟煤0.4m、承托层0.8~1.0m、膨胀系数50~60%。 ④过滤器高度的计算总高H=沙层+煤层+承托层+膨胀+支腿+排气管高度。 ⑤过滤介质的选择石英砂?0.5~1.0mm、无烟煤?1.0~2.0mm。无烟煤的粒径应小于石英砂粒径的2倍,反冲洗时才能分层回落。 ⑥过滤介质数量的计算所需过滤介质体积×堆密度。(石英砂1.75、活性炭0.45、无烟煤0.947、砾石1.8~1.85) ⑦配水“丰”型管的计算干管始端流速为 1.0~1.5m/s、支管始端流速为 1.5~ 2.0m/s、孔眼流速为5~6m/s;支管中心距0.25~0.3m,支管长度与其直径之比不应大于60倍;孔眼直径9~12mm。 ⑧配气“丰”型管的计算管中空气流速10m/s、空气从孔眼中的流出速度30~35m/s;孔眼直径为1.4~2.0mm,孔距:80~90mm。

3.3 二级双介质过滤器 过滤介质的选择 石英砂?0.35~0.5mm、无烟煤?0.6~0.9mm。 无烟煤的粒径应小于石英砂粒径的2倍,反冲洗时才能分层回落。 为什么用两级双介质过滤器? 1.提高过滤效果(不是简单重复); 2.错开反冲洗,保持至少有一级双介质过滤器是在压实的滤床上进行过滤; 3.可以提高过滤速度,减小过滤器直径; 4.成功经验。 3.4 双介质过滤器的反冲洗 反冲洗水源:RO浓水、RO产水、自来水或者双介质过滤器的滤出水。决不能用原水。 反冲洗水泵:设备选型:卧式不锈钢离心泵。 国内品牌:上海一泵熊猫 进口品牌:台塑水泵 流量:Q=4~6L/㎡s。(砂滤池反洗泵Q=12~17L/㎡s ) 扬程:H=22~30m。(注意水头损失) 反冲洗周期:自动控制按时间设定,连续过滤12h反冲洗。 手动控制看压力表,压力增加0.1MPa反冲洗。 反冲洗程序:①气洗2min;②气水混和反冲6min;③水冲5min。 空气压力:0.2~0.4MPa。(ASM的反复)。 气洗强度:18L/ ㎡s(4.1m3/min)。 膨胀高度:0.5m左右。 3.5 中间水箱 (1)作用:用于贮存预处理后的出水。 中间水箱内安装有液位控制器,利用液位高、低的变化来控制RO系统的自动运行。 (2)规格:以供RO连续运行15~30min所需进水量为宜。 大型RO系统应设计中间水箱和中间水泵,有利于RO系统的稳定运行。

水厂计算书

一、设计原始资料 1.源水水质资料: 2.石英砂筛分曲线: 3.厂区地形图(1:500) a=130m,b=170m,水厂所在地区为粘土地区,厂区地下水位深度4.41米,地面标高175.3m,主导风向西南风。城市自来水厂规模为8.8万m3/d。

二、设计规模与工艺流程 1.设计规模 城市自来水厂规模为8.7万m3/d,水厂的自用水量按日用水量的5%算,则 水厂设计水量为:Q 0=1.05Q d =1.05×87000=91350 m3/d 一级泵站、配水井、加药间、药库、加氯间、氯库、二级泵站、土建工程均一次建成。 2.水厂处理工艺流程框图(构筑物): ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

三、配水井设计计算 1.配水井设计规模为3806.25m3/h=1.06m3/s。配水井水停留时间采用2~3min, 取T=2.5min取,则配水井有效容积为W=QT=3806.25×2.5/60=168.6m3。2.进水管管径D1=1100mm,v=1.13m/s,在1.0m/s-1.2m/s范围内。进水从配水 井底中心进入,经等宽度堰流入2个水斗再由管道接入2座后续处理构筑物。 每个后续处理构筑物的分配水量为q=1.06/2=0.53m3/s。配水采用矩形薄壁溢流堰至配水管。 3.堰上水头H: 因单个出水溢流堰的流量为q=0.53m3/s=530L/s,一般大于100L/s采用矩形堰,小于100L/s采用三角堰,所以本设计采用矩形堰(堰高h取0.5m)。 矩形堰的流量公式为: 3/2 q 式中q——矩形堰的流量,m3/s; m——流量系数,初步设计时采用m=0.42; b——堰宽,m,取堰宽b=6.28m; H——堰上水头,m。 则有: H=0.1m 4.堰顶宽度B 根据有关试验资料,当B/H<0.67时,属于矩形薄壁堰。取B=0.05m,这时B/H=0.5(在0~0.67范围内),所以,该堰属于矩形薄壁堰。 5.配水管管径D2=900mm,v=0.84m/s,在0.8m/s-1.0m/s范围内。配水井外径 为6m,内径为4m,井内有效水深H =5.9m,考虑堰上水头和一定的保护高度, 取配水井总高度为6.2m。 四、混合工艺设计及计算 1.混合器设计: 混合采用管式混合,设水厂进水管投药口至絮凝池的距离为50m,设计流量

水池计算书(手写版本)

保管期限 密级 设计计算书 建设单位上海美梭羊绒纺织品有限公司 工程名称山东建得佳纺织有限公司 工程号-子项号M1117-06 子项名称消防泵房设计专业结构页数部门一所计算人年月日校核人年月日审核人年月日 上海纺织建筑设计研究院

目录 一、设计采用规范 二、荷载选用及计算 三、基础工程 四、上部结构设计 五、图形文件及程序计算书

一、设计采用规范 1.《建筑结构可靠度设计统一标准》【GB50068-2001】 2.《建筑结构荷载规范》【GB50009-2001】(2006年版) 3.《混凝土结构设计规范》【GB50010-2010】 4.《建筑抗震设计规范》【GB50011-2010】 5.《建筑地基基础设计规范》【GBJ50007-2002】 6.《砌体结构设计规范》【GB50003-2001】 二、工程概况: 本工程位于位于山东聊城东阿县东阿工业园区,胶光路以北鑫大地建材厂东邻。本工程泵房结构形式为砖混砌体结构。室内外高差为0.300米。 本工程抗震设防烈度为7度,建筑场地类别为Ⅲ类,框架抗震等级为三级。 三、荷载选用及计算 1.泵房屋面(结构找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2

100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷0.015x20=0.3 KN/m2 合计 4.23 KN/m2 取 4.50 KN/m2 2)屋面活载: 0.50 KN/m2 2.水池盖板(建筑找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2 100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷 0.015x20=0.3 KN/m2 建筑2%砂浆找坡 0.09x10=0.9 KN/m2 合计 5.13 KN/m2 取 5.50 KN/m2 2)屋面活载: 2.00 KN/m2 3.风荷载: 0.45 KN/m2 4.雪荷载: 0.35 KN/m2 5.地震作用: 抗震设防烈度为7度,设计地震分组为第二组,设计基本地震加速 度为0.10g,建筑场地类别为Ⅲ类。

送水泵站设计

目录 目录 ..................................................................................................................................................................I 第1章绪论 .. (1) 1.1设计要求 (1) 1.1.1设计题目:送水泵站(二级泵站)设计 (1) 1.2二级泵站设计资料 (2) 第2章计算说明书 (3) 2.1水泵和电机的初步选择 (3) 2.1.1二级泵站的组成及特点 (3) 2.1.2泵站设计参数的确定 (4) 2.1.3选择水泵 (4) 2.2水泵机组的基础设计 (7) 2.3水泵吸水管路和压水管路设计 (9) 2.3.1吸水管路 (9) 2.3.2压水管路 (10) 2.3.3管路附件选配 (10) 2.4布置机组和管道 (11) 2.5泵房形式的选择 (12) 2.5.1泵的布置形势 (12) 2.6吸水井的设计 (13) 2.7各工艺标高的设计 (13) 2.8复核水泵和电机 (14) 2.9消防校核 (15) 2.10设备的选择 (15) 2.10.1引水设备 (15) 2.10.2计量设备 (16) 2.10.3起重设备 (16) 2.10.4泵房的高度 (17) 2.10.5排水设备 (17) 2.10.6防水锤设备 (18) 2.11泵房建筑高度和平面尺寸的确定 (18) 2.12设计二级泵站平面图及剖面图 (19) 结束语 (20) 参考文献 (21)

圆形水池结构计算书

无梁板式现浇钢筋混凝土圆形水池结构计算书1、设计资料: 主要结构尺寸: 内径(d):32m 底板厚:0.3m 壁板高:4.15m 壁板厚:0.35m 顶板厚:150mm 底板外挑宽度:400mm 荷载和地质条件: 顶板活荷载:q k=1.5kN/m2 池内水深:4m 地下水深:1.2m(底板以上)底板覆土:0.3m 土内摩擦角:30* 修正后地基承载力特征值:f a=100kPa 水重力密度:10kN/m3 回填土重度取:18kN/m3 钢筋混凝土重度:25kN/m3 钢筋选用HRB235和HRB400 混凝土选用C25,f t=1.27N/mm2,f c=11.9N/mm2

2、抗浮稳定性验算: i )局部抗浮稳定性验算:取中间区格(4×4m 2)作为计算单元,抗力荷载标准值如下: 顶板自重:25×0.15×4×4=60kN 底板自重:25×0.3×4×4=120kN 支柱自重:25×0.3×0.3×3.45=7.76kN 柱帽重:25×[1.42×0.1+31(0.32+0.3×1+12)×0.35]=8.95kN 柱基重:25×[1.52×0.1+3 1 (0.42+0.4×1.1+1.12)×0.35]=10.9kN 池顶覆土重:18×4×4×0.3=86.4kN ΣG k =60+120+7.76+8.95+10.9+86.4=294.01kN 局部浮力:F 浮=11)(A h d w ?+γ=10×(1.2+0.3)×4×4=240kN K= 浮 F G k ∑=24001 .294=1.23>1.05满足局部抗浮要求 ii)整体抗浮验算: 顶板自重:π(16+0.35)2×0.15×25=3149.32kN 顶板覆土重:π(16+0.35)2×0.3×18=4535.02kN 壁板自重:2π(16+0.35/2)×0.35×4.17×25=3708.24kN 悬挑土重:π[(16+0.4+0.35)2-(16+0.35)2]×[(18-10)×1.2+18×3.5]=3019.77kN 池内支撑柱总重:45×(7.76+8.95+10.9)=1242.5kN 底板浮重:π(16+0.35+0.4)2 ×0.3×(25-10)=3966.35kN ΣG k =3149.32+4535.02+3708.24+3019.77+1242.5+3966.35=19621.2kN 总浮力:F 浮=A h d w ?+)(1 γ=10×(1.2+0.3)×π(16+0.4+0.35)2 =13221.2kN K= 浮F G k ∑=2 .132212 .19621=1.48>1.05满足整体抗浮要求

真空引水罐设备操作流程

设备操作流程 1一般规定 1.1 水泵的操作人员必须了解所使用水泵的构造、性能、用途,熟悉安全操作和技术保养规程。 1.2水泵必须有专人操作,并且对水泵的安全使用和正确保养负有全面责任。 1.3 操作人员必须按保养规程要求,定期做好水泵的清洁、润滑和调整工作(拧紧连接螺栓),使水泵经常保持良好的工作条件。 1.4应经常对电气设备进行检查和定期保养,保证绝缘良好安全可靠。 2起动前准备 2.1用手拔转风扇,叶轮应无卡摩现象,转动灵活。 2.2引水罐水量检查,完全开启引水罐注水孔及排气孔阀门,完全打开水泵 机组进水口阀门,完全关闭水泵机组出水口阀门,启动补水泵对引水罐进行注水,水位上升至充满引水罐,此时关闭补水泵,检查完毕。 2.3打开进口阀门,打开排气阀使水充满整个泵腔,然后关闭排气嘴。 2.4起动前应对水泵和抽水装置管路阀门作全面仔细的检查,不得有漏水、漏气现象。 2.5应先用手盘动泵几圈以使润滑水进入机械密封端面。 2.6点动电机,确定转向是否正确,这样方可起动。 3起动与运行 3.1全开进口阀门,关闭吐出管路上的阀门。 3.2接通电源,当泵达到正常转速后,再逐渐打开吐出管路上的阀门,并调节到所需要的工况。 3.3必须注意观察仪表读数、电机、轴承升温、滴漏和升温以及泵的振动和杂音等是否正常,正常时机械密封滴漏为3滴每分,温度小于75℃,如果发现异常情况应及时处理。 3.4打开回水管阀门,保证有充足的水持续回流至负压引水罐内,在停机保压过程中二次启动时有水可以充满泵体,有效避免水泵无水空转。 4 停机

4.1逐渐关闭吐出管路上的阀门,切断电源。 4.2关闭进口阀门。 4.3如环境温度低于0℃,应将泵内水放出,以免冻裂水泵。 4.4如长期停止使用,应将泵拆卸清洗上油(3#锂基脂黄油),包装保管。 5泵的维护与保养 5.1运行中的维护与保养 5.1.1进水管路必须高度密封,不能漏水、漏气。 5.1.2禁止泵在汽蚀状态下长期运行,泵在运行过程中最高温度不超过90摄氏度。 5.1.3禁止泵在大流量工况运行时,电机超电流长期运行。 5.1.4定时检查运行中的电机电流值,尽量使泵在设计工况范围运行内运行,以保证泵在最高效率点运转,获得最大的节能效果。 5.1.5泵在运行中应有专人看管,以免发生意外。 5.1.6泵每运行500小时,应对轴承进行加油,加注3#锂基脂黄油。 5.1.7泵长期运行后,由于机械磨损,使机组噪声及振动增大时,应停车检查,必要时可更换易损零件及轴承,机组大修期一般为一年。 5.1.8泵在冬季运行使用时,应做好保温措施,防止冻裂。 5.2机械密封的维护与保养 5.2.1机械密封润滑液应清洁无固体颗粒。 5.2.2严禁机械密封在干磨情况下工作。 5.2.3起动前应盘动泵(电机)几圈,以免突然起动造成机械密封断裂损坏。

钢筋混凝土圆形水池课程设计讲解

钢筋混凝土圆形水池设计 1 设计资料 某钢筋混凝土圆形清水池主要尺寸:水池净直径n d =9.0m ,水池净高度n H =4.0m 及水池壁厚 h =250mm 。采用整体式钢筋混凝土结构,试设计此水池结构。 荷载及材料如下: 1、水池构造 水池内壁、顶板底及支柱表面均用25mm 厚1:2水泥砂浆抹面;水池外壁及顶面均涂刷冷底子油一道、热沥青一道。池底板下设置100mm 厚C10混凝土垫层。 2、荷载取值 水池顶盖可变荷载标准值k q =1.52 /KN m ; 基本雪压:0s =0.352 /KN m ; 材料重度:钢筋混凝土325/r KN m =钢筋混凝土、素混凝土323/r KN m =混凝土、覆土3 18/r KN m =s 、土的有效重度'3 10/r KN m =s 、水泥砂浆320/r KN m =砂浆、水310/r KN m =w ; 3、地质资料 由勘测报告提供的资料表明,地下水位于地面(0.000±标高)以下2.6m 处,地面1.5m 以下为粉质黏土层,土颗粒重度为273/KN m ,孔隙率 1.0e =,内摩檫角0 30?=,地基承载力特征值 2 100/a f KN m =。 4、材料 柱混凝土强度等级:20~30c c 、水池混凝土强度等级:不应低于25c ,统一取水池混凝土强度等级25c 。 柱中受力钢筋采用HRB335级、箍筋采用HPB235级;水池中受力钢筋均采用HPB235级。

土建工程基础课程设计 姓名:*** 学号:310040**** 班级:给水排水*** 指导老师:索** 完成日期:2013.12.22

钢筋混凝土圆形水池设计 原始资料:某钢筋混凝土圆形清水池的主要尺寸: 水池直径d n=9.0m 水池净高度:H n=4.0m 水池壁厚:h=250mm 水池顶盖可变荷载标准值: 当地:

泵站设计说明书

泵站设计说明书-CAL-FENGHAI.-(YICAI)-Company One1

《泵与泵站》课程设计 说明书 题目:万人城镇给水泵站(二级泵站)规划设计 学院:环境科学与工程学院 专业:给水排水工程 班级:给排水1202 学号:26、27、28 学生姓名:沈喻龙、李思聪、邵志春 指导教师:李强标 二○一四年十二月

一、送水泵站(二级泵站)设计 、设计目的 根据给定的资料,综合运用所学的专业知识,进行H 城镇二级给水泵站设计。、设计原始资料 1、H 城镇位于浙江省内,海拔为900 米;土质为砂纸粘土,无地下水,不考虑冰冻。 2、H 城镇远期规划人口约万人,最高日用水量为万立方米/日。 3、泵站地坪标高为906 米。二级泵站的工作制度,分两级: ①第一级,从22 时到5 时,每小时占全天用水量的(%)。 ②第二级,从5 时到22 时,每小时占全天用水量的(%)。 4、H 城镇设计最不利点的地面标高为921 米,该处有一座12 层建筑,要求二级泵站供水至第7 层。 5、二级泵站至最不利点的输水管和配水管网的总水头损失为26 米。 6、清水池所在地的地面标高与泵站地坪标高相同,清水池边墙距二级泵站外墙约米;二级泵站直接由清水池吸水。 7、清水池最低水位在地面以下米。清水池的最高水温为℃、最低水 温为0℃。 8、未预见用水量及管网漏水量取值范围10~15%。 9、泵站变配电设施按一级负荷设置。 10、H 城镇给水系统采用低压消防制。设计着火点定为最不利点处,消防水头为10 米;消防时输水管和配水管网的总水头损失为27 米。 、设计要求 、说明书要求: ⑴泵站的设计流量、扬程,水泵的选择。 ⑵给水泵站高程布置及水力计算,校核水泵安装高度。 ⑶清水池的容积计算。 ⑷给水泵站平面布置。 ⑸高效工况点、消防校核。 ⑹材料一览表(含编号、名称、规格、单位、数量),工程投资估算。 3 、图纸要求: ⑴ ACAD 制图,A3。 ⑵泵站平面图和剖面图,应绘出主要设备、管路、配件及辅助设备的位置、

沉淀池设计与计算

第六节、普通沉淀池 沉淀池可分为普通沉淀池和浅层沉淀池两大类。按照水在池内的总体流向,普通沉淀池又有平流式、竖流式和辐流式三种型式。 普通沉淀池可分为入流区、沉降区、出流区、污泥区和缓冲区5个功能区。入流区和出流区的作用是进行配水和集水,使水流均匀地分布在各个过流断面上,为提高容积利用、系数和固体颗粒的沉降提供尽可能稳定的水力条件。沉降区是可沉颗粒与水分离的区域。污泥区是泥渣贮存、浓缩和排放的区域。缓冲层是分隔沉降区和污泥区的水层,防止泥渣受水流冲刷而重新浮起。以上各部分相互联系,构成一个有机整体,以达到设计要求的处理能力和沉降效率。 一、平流沉淀池 在平流沉淀池内,水是按水平方向流过沉降区并完成沉降过程的。图3-16是没有链带式刮泥机的平流沉淀池。废水由进水槽经淹没孔口进入池内。在孔口后面设有挡板或穿孔整流墙,用来消能稳流,使进水沿过流断面均匀分布。在沉淀池末端没有溢流堰(或淹没孔口)和集水槽,澄清水溢过堰口,经集水槽排出。在溢流堰前也设有挡板,用以阻隔浮渣,浮渣通过可转动的排演管收集和排除。池体下部靠进水端有泥斗,斗壁倾角为50°~60°,池底以0.01~0.02的坡度坡向泥斗。当刮泥机的链带由电机驱动缓慢转动时,嵌在链带上的刮泥板就将池底的沉泥向前推入泥斗,而位于水面的刮板则将浮渣推向池尾的排渣管。泥斗内设有排泥管,开启排泥阀时,泥渣便在静水压力作用下由排泥管排出池外。[显示图片] 链带式刮泥机的缺点是链带的支承和驱动件都浸没于水中,易锈蚀,难保养。为此,可改用桥式行车刮泥机,这种刮泥机不但运行灵活,而且保养维修都比较方便。对于较小的平流沉淀池,也可以不设刮泥设备,而在沿池的长度方向设置多个泥斗,每个泥斗各自单独排泥,既不相互干扰,也有利于保证污泥浓度。 沉淀池的设计包括功能构造设计和结构尺寸设计。前者是指确定各功能分区构件的结构形式,以满足各自功能的实现;后者是指确定沉淀池的整体尺寸和各构件的相对位置。设计良好的沉淀池应满足以下三个基本要求;有足够的沉降分离面积:有结构合理的人流相出流放置能均匀布水和集水;有尺寸适宝、性能良好的污泥和浮渣的收集和排放设备。 进行沉淀池设计的基本依据是废水流量、水中悬浮固体浓度和性质以及处理后的水质要求。因此,必须确定有关设计参数,其中包括沉降效率、沉降速度(或表面负荷)、沉降时间、水在池内的平均流速以及泥渣容重和含水率等。这些参数一般需要通过试验取得;若无条件,也可根据相似的运行资料,因地制宜地选用经验数据。以-萨按功能分区介绍设计和计算方法。 1.入流区和出流区的设计 入流和出流区设计的基本要求,是使废水尽可能均匀地分布在沉降区的各个过流断面,既有利于沉降,也使出水中不挟带过多的悬浮物。

水厂计算书

水厂计算书 Prepared on 22 November 2020

一、设计原始资料 1.源水水质资料: 2.石英砂筛分曲线: 3.厂区地形图(1:500) a=130m,b=170m,水厂所在地区为粘土地区,厂区地下水位深度米,地面标高,主导风向西南风。城市自来水厂规模为万m3/d。 二、设计规模与工艺流程 1.设计规模 城市自来水厂规模为万m3/d,水厂的自用水量按日用水量的5%算,则水厂设计水量为:Q0==×87000=91350m3/d 一级泵站、配水井、加药间、药库、加氯间、氯库、二级泵站、土建工程均一次建成。

2.水厂处理工艺流程框图(构筑物): ↓ ↓ ↓ ↓ ↓ ↓ ↓ 三、配水井设计计算 1.配水井设计规模为h=s。配水井水停留时间采用2~3min,取T=取,则配水 井有效容积为W=QT=×60=。

2.进水管管径D1=1100mm,v=s,在s范围内。进水从配水井底中心进入,经 等宽度堰流入2个水斗再由管道接入2座后续处理构筑物。每个后续处理构筑物的分配水量为q=2=s。配水采用矩形薄壁溢流堰至配水管。 3.堰上水头H: 因单个出水溢流堰的流量为q=s=530L/s,一般大于100L/s采用矩形堰,小于100L/s采用三角堰,所以本设计采用矩形堰(堰高h取)。矩形堰的流量公式为: 式中q——矩形堰的流量,m3/s; m——流量系数,初步设计时采用m=; b——堰宽,m,取堰宽b=; H——堰上水头,m。 则有:H= 4.堰顶宽度B 根据有关试验资料,当B/H<时,属于矩形薄壁堰。取B=,这时B/H=(在0~范围内),所以,该堰属于矩形薄壁堰。 5.配水管管径D2=900mm,v=s,在s范围内。配水井外径为6m,内径为4m, 井内有效水深H0=,考虑堰上水头和一定的保护高度,取配水井总高度为。 四、混合工艺设计及计算 1.混合器设计: 混合采用管式混合,设水厂进水管投药口至絮凝池的距离为50m,设计流量为Q0==91350m3/d=s,进水管采用两条钢管,每条钢管流量为1903m3/h,直径DN900,设计流速为s,1000i=,混合管段水头损失h=iL=50×1000=,小于管道

水池设计

矩形水池计算 设计资料: 池顶活荷P1=2.0(KN/m^2) 覆土厚度ht=500(mm) 池内水位Hw=4000(mm) 容许承载力R=150(KN/m^2) 水池长度H=5000(mm) 水池宽度B=4000(mm) 池壁高度h0=4000(mm) 底板外伸C1=200(mm) 底板厚度h1=300(mm) 顶板厚度h2=150(mm) 垫层厚度h3= 100 (mm) 池壁厚度h4=200(mm) 地基承载力设计值R=150(KPa) 地下水位高于底板Hd=2000(mm) 抗浮安全系数Kf = 1.10 一.地基承载力验算 ( 1 )底板面积AR1 = (H + 2 * h4 + 2 * C1) * (B + 2 * h4 + 2 * C1) = (5 + 2 * 0.2+2 * 0.2 ) * ( 4 + 2 * 0.2 + 2 * 0.2 ) =27.84(m^2) ( 2 )顶板面积AR2 = (H + 2 * h4) * (B + 2 * h4) = ( 5 + 2 * 0.2 ) * ( 4 + 2 * 0.2 ) =23.76(m^2) ( 3 )池顶荷载Pg = P1 + ht * 18 = 2.0 + 0.5 * 18

=11 (KN/m^2) ( 4 )池壁重量CB = 25 * (H + 2 * h4 + B) * 2 * H0 * h4 = 25 * ( 5 + 2 * 0.2 + 4 )* 2 * 4 * 0.2 =376 (KN) ( 5 )底板重量DB1 = 25 * AR1 * h1 = 25 * 27.84 * 0.3 =208.8(KN) ( 6 )顶板重量DB2 = 25 * AR2 * h2 = 25 *23.76 * 0.15 =89.1 (KN) ( 7 )水池全重G = CB + DB1 + DB2 + Fk1 =376 +208.8+89.1 +0 =673.9 (KN) ( 8 )单位面积水重Pwg = (H * B * Hw * 10) / AR1 = ( 5 * 4 * 4 * 10) / 27.84 =28.73(KN/m^2) ( 9 )单位面积垫层重Pd = 23 * h3 = 23 * 0.1 =8.26(KN/m^2) ( 10 )地基反力R0 = Pg + G / AR1 + Pwg + Pd =11 + 673.9 / 27.84 + 28.73 + 8.26 = 72 (KN/m^2)

水厂计算书.

自来水厂计算书

目录 1、取水泵房 (3) 1.1 设计参数 (3) 1.2 设计要求 (3) 1.3 设计流量的确定和设计扬程估算 (3) 1.4 泵的选择 (4) 1.5 泵房布置 (4) 1.6附属设备选择 (4) 1.7泵房整体设计 (4) 2、加药间设计计算 (5) 2.1 设计参数 (5) 2.2 设计计算 (5) 3 混合设备计算 (7) 3.1设计参数 (7) 3.2 设计计算 (8) 4 水力澄清池设计计算 (8) 4.1 设计参数 (8) 4.2设计计算 (9) 5 重力式无阀滤池计算 (14) 5.1 设计水量 (14) 5.2 设计数据 (15) 5.3 计算 (15) 6 消毒设计计算 (18) 6.1设计参数 (18) 6.2加氯机及漏氯处理 (18) 6.3加氯间及氯库设计计算 (19) 7、清水池 (19) 7.1 设计数据 (19) 7.2 计算 (19) 7.3 清水池布置 (21) 8 吸水井 (21) 8.1 设计要点 (21) 8.2 吸水井的设计 (21) 9、二级泵房的确定 (22) 9.1 流量设计 (22) 9.2 扬程 (22) 9.3 选泵 (22) 9.4 泵房布置 (23) 9.5泵房附属设备 (24)

1、取水泵房 1.1 设计参数 (1)进水管采用自流管设计,管内流速应考虑不产生淤积,一般不宜小于0.6m/s。必要时,应有清淤措施。 (2)自流管一般不得少于两根,当事故停用一根时,其余管仍能满足事故设计流量要求(一般为70%-75%的最大设计流量)。 (3)自流管一般埋设在河底以下,其管顶最小埋深一般应在河底以下0.5m。 (4)当河流水位变化幅度不大时,岸边式集水井可采用单层进水孔口。当河流水位变化幅度超过6m时,可采用两层或三层的分层进水孔口。 (5)为确保取水头部在最低水位下能取到所需水量,淹没进水孔上缘在设计最低水位下的深度应符合规定:顶部进水时,不得小于0.5m;侧面进水时,不得小于0.3m。 1.2 设计要求 (1)设置两根DN325钢管(做好防腐处理)作为自流管,埋设在枯水位以下0.75m,采用侧面进水。 (2)在自流管前端5m处设置拦污网(渔网或竹筏),拦截河水中漂浮物。避免其进入管道,堵塞自流管。 1.3 设计流量的确定和设计扬程估算 1、设计流量Q 考虑到输水干管漏损和厂区本身用水,采用自用水系数α=1.05,则Q=10000×1.1=11000m3/d=458m3/h 取460 m3/h =0.128 m3/s 2、设计扬程 (1)泵所需静扬程HST: 在最不利情况下(即一条自流管检修,另一条自流管通过75%的设计流量时),自流管道的水头损失为0.31m。此时吸水井中最低水位标高115.00-0.31=114.69m。泵所需静扬程HST为: 枯水位:HST=140.45-114.69=25.76m (2) 原水输水干管的水头损失Σh: 设计采用两根DN325钢管并联作为原水输水管,当一条输水管检修时,另一条输水管应通过75%的设计流量,即Q=0.75×0.064=0.048m3/s ,查水力计算表得管内流速v=0.56m/s,1000i=1.58,所以Σh=1.1×1.58×10-3×1000=1.74m (式中1.1为局部损失而加大的系数)。 (3)泵站内管路中的水头损失hp: 粗估为2.00m 安全水头为2.00m

二级泵站设计计算说明书

二级泵站设计计算说明说书 学院:土木建筑工程学院 专业:给水排水专业 班级:081 指导教师:张鑫 姓名:徐琦 学号:080504009

水泵站课程设计任务书 一、设计题目:送水泵站(二级泵站)设计 二、原始资料: 1、泵站的设计水量为(4)万m3/d。 2、给水管网设计的部分成果: ①根据用水曲线确定二泵站工作制度,分两级工作。 第一级,每小时占全天用水量的(2.9%)。 第二级,每小时占全天用水量的(5.07%)。 ②城市设计最不利点的地面标高为20m,建筑层数7层,自由水压为 20m。 ③给水管网平差得出的二泵站至最不利点的输水管和配水管网的总 水头损失为32m。 ④清水池所在地地面标高为15m,清水池最低水位在地面以下3.0m。 3 、城市冰冻线为(1.5)米,城市的最高温度为(30.0℃)最低温度为(-25℃) 4 、站所在地土壤良好,地下水位为(25m)米。 5 、电源满足用电要求,电价0.45元/Kwh。 三、设计任务 城市送水泵站的技术设计的工艺部分 四、计算说明书内容 1. 绪论 2.初选水泵和电机 根据水量、水压变化情况选泵,工作泵和备用泵型号和台数。 3泵房形式的选择 4.机组基础设计、平面尺寸及高度 5.计算水泵吸水管和压力管直径 选用各种配件的型号、规格种类及安装尺寸(说明特点)。吸水井设计(尺寸和水位)

6.布置管道和机组 7.泵房中个标高的确定 室内地面、基础顶面、水泵安装高度、泵房建筑高度。 8. 复合水泵电机 计算吸水管机泵站内压水管损失、求出总扬程、校核所选水泵。如不合适,则重选水泵和电机。重新确定泵站的各级供水量。 9.进行消防和传输校核 10.计算和选择附属设备 ①设备的选择和布置 ②计量设备 ③起重设备 ④排水泵及水锤消除器等 11.确定泵站平面尺寸、初步规划泵房总面积 泵房的长度和宽度,总平面布置包括:配电室、机器间、值班室、修理间等。 五、图纸要求 泵站平面及剖面图(机器间),应绘出主要设备、管路、配件及辅助设备的位置、尺寸、标高,列出主要设备表和材料表(比例尺1:100) 发放设计任务书日期: 2011 年 6 月 27 日 交设计日期: 2011 年 7 月 8 日 设计指导教师(签字): 目录

清水池计算

设计计算书初稿 Q=50m3/d=2.08m3/h 1.集水池 ①设计参数: 停留时间:0.5~1.0h,本设计采用 t=1.0h ②有效体积: V=Qt=2.08*1.0=2.08m3 ③尺寸 设计调节池有效水深h=1.0m 面积F=V/h=2.08m2 则长取2m,宽取1.1m 设调节池超高h‘=0.4m,则总高H=h+h’=1.4m 2. 调节池 ①设计参数: 设停留时间:t=8h ②有效体积: V=Qt=2.08*8=16.64m3,取17m3 ③尺寸 设计调节池有效水深h=2m 面积F=V/h=8.5m2,取9m2 则长取3m,宽取3m 设调节池超高h‘=0.4m,则总高H=h+h’=2.4m

布气管设置 1) 空气量 D=D 0Q=3.5*50=175m 3/d=2.03*10-3m 3/s 2) 空气干管直径 33-m 015.012 *14.310*03.2*4v 4d ===πD ,取15mm 校核管内气体流速m/s 49.11015 .0*14.310*03.2*4d 4v 23 -2===πD ‘, 在10-15m/s 范围内,符合要求 3) 支管直径d 1 空气干管连接2支管,通过每支管空气量q q=D/2=1.02*10-3m 3/s 则支管直径33-1 1m 015.06*14.310*.021*4v q 4d ===π,取15mm 校核支管流速m/s 77.5015.0*14.310*.021*4d q 4v 2 3-21===π‘ 在范围5-10m/s 内,符合要求。 4) 穿孔管直径d 2 沿支管方向每隔2m 设置两根对称的穿孔管,靠近穿孔管的两侧池各留1m ,则穿孔管的间距数为(L-2*1)/2=0.5 穿孔管个数n=(0.5+1)*2*2=6 每根支管上连3根穿孔管, 通过每根穿孔管的空气量q 1=1.02*10-3m 3/s 则穿孔管直径-32d 7.36*10m ===,取8mm

简单矩形水池计算书

结构专业计算书建设单位名称: 项目名称: 项目阶段: 项目代号(子项号): 计算书总册数: 计算软件名称: 计算软件版本:

蒸发器、污水池计算书 执行规范:《建筑结构荷载规范》(GB 50009-2012) 《给水排水工程构筑物结构设计规范》(GB50069-2002)钢筋:d-HPB235;D-HRB335; 1、基本资料 几何信息 水池类型:有顶盖,半地上 长度L=,宽度B=,高度H=,底板底标高= 盖板厚h 1=150mm,池底厚h 2 =300mm,池壁厚t 1 =200mm,底板外挑长度t 2 =200mm 平面图剖面图 水土信息 土天然重度18kN/m3,土内摩擦角30° 地基承载力特征值f ak =130kPa,宽度修正系数η b =,埋深修正系数η d = 地下水位低于底板底标高,池内水深,池内水重度 kN/m3 托浮力折减系数,抗浮安全系数K f = 荷载信息

活荷载:地面 kN/m2,顶盖 kN/m2,组合值系数 恒载分项系数:水池自重,其他 活载分项系数: 活载准永久值系数:顶板,地面,温湿度 考虑温湿度作用:池内外温差°,弯矩折减系数,砼线膨胀系数(10-5/℃) 钢筋砼信息 混凝土:等级C30,重度 kN/m2,泊松比 纵筋保护层厚度(mm):池壁(内40,外35),顶盖(上35,下35),底板(上40,下40)钢筋:HRB335,裂缝宽度限值:,配筋调整系数 按裂缝控制配筋计算 构造配筋采用《混凝土结构设计规范》GB50010-2010 2 计算内容 (1)地基承载力验算 (2)抗浮验算 (3)荷载计算 (4)内力计算

送水泵站设计

目录

第1章绪论 设计要求 设计题目:送水泵站(二级泵站)设计 泵站设计水量:万m3/d。 设计任务 城市送水泵站技术设计的工艺部分。 ⑴根据水量、水压变化情况选泵,工作泵和备用泵型号和台数。 ⑵泵房型式的选择 ⑶机组基础设计;平面尺寸及高度 ⑷计算水泵吸水管和压水管力直径:选用各种配件和阀件的型号、规格种及安 装尺寸(说明特点)。 ⑸吸水井设计:尺寸和水位 ⑹布置机组和管道 ⑺泵房中各标高的确定:室内地面、基础顶面、水泵安装高度、泵房建筑高度 等。 ⑻复核水泵及电机:计算吸水管及泵站内压水管损关、求出总扬程、校核所选 水泵,如不合适,则重选水泵及电机。重新确定泵站的各级供水量。 ⑼进行消防和转输校核. ⑽计算和选择附属设备 ①设备的选择和布置 ②计量设备 ③起重设备 ④排水泵及水锤消除器等 ⑾确定泵站平面尺寸、初步规划泵站总平面 泵房的长度和宽度,总平面布置包括:配电室、机器间、值班室、修理间等。图纸要求

泵站平面及剖面图(机器间),应绘出主要设备、管路、配件及辅助设备的位置、尺寸、标高,列出主要设备表和村料表(比例尺1:100)。 二级泵站设计资料 泵站设计水量为万 m3/d 管网设计的部分成果: ①根据用水曲线确定的二级泵站工作制度,分(2)级工作。 第一级,从(22)时到(5)时,每小时占全天用水量的()%; 第二级,从(5)时到(22)时,每小时占全天用水量的()%。 ②城市的设计最不利点的地面标高( 130)米,建筑层数( 7 )层,自由水压 (35)米。 ③管网平差得出的泵站至最不利点的输水管和管网的总水头损失为(21)米; ④消防流量为(200 )m3/h,消防扬程为( 15)米。 ⑤清水池所在地面标高为( 120 )米;清水地最低水位在地面以下( 5 )米。城市冰冻线为()米,最高温度为( 30 )℃,最低温度为( -25 )℃ 泵站所在地土壤良好,地下水位为( 25 )米。 泵站为双电源。

相关主题
文本预览
相关文档 最新文档