当前位置:文档之家› 波纹管设计计算书

波纹管设计计算书

波纹管设计计算书

波纹管设计计算书

设计者(单位):上海速连登集团有限公司 日期: 项目名称: 投标编号: 膨胀节类类型 压力引起的应力 直边段周向薄膜应力 S1

MPa 波纹管类型 加强套环周向薄膜应力 S1’ MPa

设计压力 波纹管周向薄膜应力 S2

MPa 设计温度 加强件周向薄膜应力 S2’ MPa

设计位 移 轴向 mm 紧固件周向薄膜应力 S2" MPa 横向 mm 波纹管经向薄膜应力 S3 MPa 角向 ° 波纹管经向弯曲应力 S4

MPa 单波当量轴向位移 mm 位移 应力 波纹管经向薄膜应力 S5

MPa 波纹管 直径 mm 波纹管经向弯曲应力 S6

MPa 波高 mm 疲劳寿命安全系数

波距

mm 波纹管许用疲劳寿命 [N c ] 次 波数 刚度 单波轴向刚度 f i

N/mm 壁厚 mm 整体轴向刚度 k x N/mm 层数 整体横向刚度 k y N/mm 材料 整体弯曲刚度 k o

N.m/° 弹性模量 MPa 极限压力 柱失稳极限压力 P sc

MPa 屈服强度

MPa 平面失稳极限压力 P si MPa 许用应力

MPa 自振频率 阶数 轴向(Hz ) 横向(Hz ) 成型工艺 一阶 材料形态 二阶

加强套环 材料 三阶

弹性模量 MPa 四阶 许用应力 MPa 五阶 长度 mm 压力推力 F p

KN 厚度 mm 波纹管展开长度 Lz

mm 加强环 材料 波纹管有效面积 Ae

㎡ 弹性模量 MPa 波纹管重量 W Kg 许用应力 MPa 反力(矩) 轴向弹性反力 Fx

KN 截面直径 mm 横向弹性反力 Fy

KN 紧固件 材料 角向位移反力矩 M o

N.m 弹性模量 MPa 横向位移反力矩 My N.m 许用应力 MPa 扭转 扭转角 φ

° 截面直径 mm 扭转刚度 Kt

N.m/° 扭转反力矩 Mt

N.m

敞口矩形水池设计计算书

敞口矩形水池设计(4m×5m×2.5m) 执行规: 《混凝土结构设计规》(GB 50010-2002), 本文简称《混凝土规》 《建筑地基基础设计规》(GB 50007-2002), 本文简称《地基规》 《给水排水工程构筑物结构设计规》(GB50069-2002), 本文简称《给排水结构规》《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002), 本文简称《水池结构规程》 ----------------------------------------------------------------------- 1 基本资料 1.1 几何信息 水池类型: 无顶盖半地上 长度L=5.400m, 宽度B=4.400m, 高度H=2.800m, 底板底标高=-2.800m 池底厚h3=300mm, 池壁厚t1=200mm,底板外挑长度t2=200mm 注:地面标高为±0.000。 (平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土摩擦角30度 地基承载力特征值fak=100.0kPa, 宽度修正系数ηb=0.00, 埋深修正系数ηd=1.00 地下水位标高-5.000m,池水深1.500m, 池水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 地面30.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.30 活荷载分项系数: 地下水压1.27, 其它1.40 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 考虑温湿度作用: 池外温差10.0度, 弯矩折减系数0.65, 砼线膨胀系数1.00(10-5/°C) 1.4 钢筋砼信息 混凝土: 等级C30, 重度25.00kN/m3, 泊松比0.20 保护层厚度(mm): 池壁(35,外35), 底板(上35,下35) 钢筋级别: HRB400, 裂缝宽度限值: 0.20mm, 配筋调整系数: 1.00 2 计算容 (1) 地基承载力验算

混凝土搅拌站水泥罐基础设计

100t水泥罐基础设计计算书一、工程概况 某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径,顶面高度20m。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为×+×。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=㎡, 风荷载标准值: ωk=βzμsμz ω0 其中:βz=,μz=,μs=,则: ωk=βzμsμz ω0=×××= kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN

混凝土基础自重荷载:G ck=(××+××)×24=407kN 风荷载:风荷载作用点高度离地面,罐身高度15m,直径。 F wk=×15×= 风荷载对基底产生弯矩:M wk=×(+2)=·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 错误!+ 错误!=。 2、基础配筋验算 (1) 基础配筋验算 混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁验算。 混凝土基础承受弯矩:M max=×(1 8×207××=362kN 按照单筋梁验算: αs= M max f c bh02= 362×106 ×3200×8502= ξ=1-1-2αs=1-错误!=<ξb= A s=f c bξh0 f y= 错误!=1403mm 2 在基础顶部及底部均配筋13Φ16,A s 实=13×201=2613mm 2 > A s=1403mm2,基础配筋满足要求。 (2) 基础顶部承压验算 考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力:

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

RO简明设计手册

第三章反渗透装置 3.1 提升泵 (1)作用:输送原水至两级双介质过滤器,提供运行必要的压力。 (2)设备选型:卧式不锈钢离心泵 国内品牌:上海一泵熊猫 进口品牌:台塑水泵 流量:Q=设计进水量。 扬程:H=22~30m。(注意水头损失) 数量:1用1备或2用1备(根据需要) 3.2 一级双介质过滤器 ①过滤速度的确定 v=8~10m。(依据:砂、活性炭、砂池)。 ②过滤器规格的计算直径D=(进水流量Q÷滤速v÷圆周率∏)的开方×2。 ③滤层厚度的确定石英砂0.5m、无烟煤0.4m、承托层0.8~1.0m、膨胀系数50~60%。 ④过滤器高度的计算总高H=沙层+煤层+承托层+膨胀+支腿+排气管高度。 ⑤过滤介质的选择石英砂?0.5~1.0mm、无烟煤?1.0~2.0mm。无烟煤的粒径应小于石英砂粒径的2倍,反冲洗时才能分层回落。 ⑥过滤介质数量的计算所需过滤介质体积×堆密度。(石英砂1.75、活性炭0.45、无烟煤0.947、砾石1.8~1.85) ⑦配水“丰”型管的计算干管始端流速为 1.0~1.5m/s、支管始端流速为 1.5~ 2.0m/s、孔眼流速为5~6m/s;支管中心距0.25~0.3m,支管长度与其直径之比不应大于60倍;孔眼直径9~12mm。 ⑧配气“丰”型管的计算管中空气流速10m/s、空气从孔眼中的流出速度30~35m/s;孔眼直径为1.4~2.0mm,孔距:80~90mm。

3.3 二级双介质过滤器 过滤介质的选择 石英砂?0.35~0.5mm、无烟煤?0.6~0.9mm。 无烟煤的粒径应小于石英砂粒径的2倍,反冲洗时才能分层回落。 为什么用两级双介质过滤器? 1.提高过滤效果(不是简单重复); 2.错开反冲洗,保持至少有一级双介质过滤器是在压实的滤床上进行过滤; 3.可以提高过滤速度,减小过滤器直径; 4.成功经验。 3.4 双介质过滤器的反冲洗 反冲洗水源:RO浓水、RO产水、自来水或者双介质过滤器的滤出水。决不能用原水。 反冲洗水泵:设备选型:卧式不锈钢离心泵。 国内品牌:上海一泵熊猫 进口品牌:台塑水泵 流量:Q=4~6L/㎡s。(砂滤池反洗泵Q=12~17L/㎡s ) 扬程:H=22~30m。(注意水头损失) 反冲洗周期:自动控制按时间设定,连续过滤12h反冲洗。 手动控制看压力表,压力增加0.1MPa反冲洗。 反冲洗程序:①气洗2min;②气水混和反冲6min;③水冲5min。 空气压力:0.2~0.4MPa。(ASM的反复)。 气洗强度:18L/ ㎡s(4.1m3/min)。 膨胀高度:0.5m左右。 3.5 中间水箱 (1)作用:用于贮存预处理后的出水。 中间水箱内安装有液位控制器,利用液位高、低的变化来控制RO系统的自动运行。 (2)规格:以供RO连续运行15~30min所需进水量为宜。 大型RO系统应设计中间水箱和中间水泵,有利于RO系统的稳定运行。

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

给水厂清水池设计计算

9 清水池 清水池的平面尺寸 清水池有效容积为: 4321W W W W W +++= 式中,1W —调节容积,m 3,取最高用水量的10%,1W =Q 1.0; 2W —净水厂自用水量的5%-10%,取10%,2W =11.0Q ; 3W —消防贮水量,m 3; 4W —安全用水,m 3,取200m 3; 1W =Q 10.0=1728017280010.0=?m 3 2W =11.0Q =1280128001.0=?m 3 3W =65373672001000036004103=-+???-m 3 最高时供水量31000024/1600005.124/m Q K Q h g =?== 水厂设计水量7200 24/16000008.1=?==aQ Q c 4W =1000m 3 4321W W W W W +++==17280+1280+3736+1000=23296m 3 滤后水经过消毒后进入清水池,两组滤池的滤后水分别进入两个清水池,则每个清水池的容积是11648m 3,取清水池有效水深,则其面积为,平面尺寸为65×,清水池采用地下式钢筋混凝土立方体水池,水池顶部高出地面,清水池超高。 管道布置 ⑴清水池的进水管 进水管流量为s ,选用铸铁管,查水力计算表表的管径 mm DN 1100,流速s ,1000i=; ⑵清水池的出水管 由于用户的用水量时时变化,清水池的出水管应按照出水最大流量计: 24 1KQ Q =

式中 K —时变化系数,一般采用5.2~3.1,设计中取5.1 Q —设计水量d m 3 s m h m KQ Q 3315.1540024 2/1728005.124==?== 选用铸铁管,查水力计算表表的管径 mm DN 1200,流速s ,1000i= ⑶清水池的溢流管 溢流管的直径与进水管直径相同,取为mm DN 1100。在溢流管管端设置喇叭口,管上不设置阀门。出口设置网罩,防止虫类进入池内。 ⑷清水池的排水管 清水池内的水在检修时需要放空,因此应设排水管。排水管的管径按照2h 内将池水放空计算。排水管内的流速按照s m 2.1左右估计,则排水管的管径 m v t V D 31.12 .114.33600241164814.33600423=????=???= 设计中取为mm DN 1300。 清水池的附属设施 (1)集水坑 每个清水池设有一个集水坑,集水坑采用圆形,集水坑比池底低1m ,清水池的出水管和排水管都在此接出。 (2)导流墙 导流墙能促进新旧水量交替,清除死角,加强氯与水体混合,提高消毒效率及保证出水的必要措施。导流墙顶板砌筑到清水池最高水位,使顶部空间维持畅通,有助于空气流通,导流墙底部每隔设一个,共19个,在导流墙底部每隔m 0.2设置流水孔,尺寸120×120mm 。 (3)通风管 为便于清水使进出水管交替和适应水位高低的变化的需要,清水池顶应设置通风管,通风管直径为200mm ,每池设8个。 (4)人孔 人孔是人和池内设备等进出水池的通道,每个清水池设两个圆形人口,直径为1m ,设置在靠近溢流管和出水管处,以便于管道的安装和维修。

水池计算书(手写版本)

保管期限 密级 设计计算书 建设单位上海美梭羊绒纺织品有限公司 工程名称山东建得佳纺织有限公司 工程号-子项号M1117-06 子项名称消防泵房设计专业结构页数部门一所计算人年月日校核人年月日审核人年月日 上海纺织建筑设计研究院

目录 一、设计采用规范 二、荷载选用及计算 三、基础工程 四、上部结构设计 五、图形文件及程序计算书

一、设计采用规范 1.《建筑结构可靠度设计统一标准》【GB50068-2001】 2.《建筑结构荷载规范》【GB50009-2001】(2006年版) 3.《混凝土结构设计规范》【GB50010-2010】 4.《建筑抗震设计规范》【GB50011-2010】 5.《建筑地基基础设计规范》【GBJ50007-2002】 6.《砌体结构设计规范》【GB50003-2001】 二、工程概况: 本工程位于位于山东聊城东阿县东阿工业园区,胶光路以北鑫大地建材厂东邻。本工程泵房结构形式为砖混砌体结构。室内外高差为0.300米。 本工程抗震设防烈度为7度,建筑场地类别为Ⅲ类,框架抗震等级为三级。 三、荷载选用及计算 1.泵房屋面(结构找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2

100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷0.015x20=0.3 KN/m2 合计 4.23 KN/m2 取 4.50 KN/m2 2)屋面活载: 0.50 KN/m2 2.水池盖板(建筑找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2 100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷 0.015x20=0.3 KN/m2 建筑2%砂浆找坡 0.09x10=0.9 KN/m2 合计 5.13 KN/m2 取 5.50 KN/m2 2)屋面活载: 2.00 KN/m2 3.风荷载: 0.45 KN/m2 4.雪荷载: 0.35 KN/m2 5.地震作用: 抗震设防烈度为7度,设计地震分组为第二组,设计基本地震加速 度为0.10g,建筑场地类别为Ⅲ类。

送水泵站设计

目录 目录 ..................................................................................................................................................................I 第1章绪论 .. (1) 1.1设计要求 (1) 1.1.1设计题目:送水泵站(二级泵站)设计 (1) 1.2二级泵站设计资料 (2) 第2章计算说明书 (3) 2.1水泵和电机的初步选择 (3) 2.1.1二级泵站的组成及特点 (3) 2.1.2泵站设计参数的确定 (4) 2.1.3选择水泵 (4) 2.2水泵机组的基础设计 (7) 2.3水泵吸水管路和压水管路设计 (9) 2.3.1吸水管路 (9) 2.3.2压水管路 (10) 2.3.3管路附件选配 (10) 2.4布置机组和管道 (11) 2.5泵房形式的选择 (12) 2.5.1泵的布置形势 (12) 2.6吸水井的设计 (13) 2.7各工艺标高的设计 (13) 2.8复核水泵和电机 (14) 2.9消防校核 (15) 2.10设备的选择 (15) 2.10.1引水设备 (15) 2.10.2计量设备 (16) 2.10.3起重设备 (16) 2.10.4泵房的高度 (17) 2.10.5排水设备 (17) 2.10.6防水锤设备 (18) 2.11泵房建筑高度和平面尺寸的确定 (18) 2.12设计二级泵站平面图及剖面图 (19) 结束语 (20) 参考文献 (21)

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

圆形水池结构计算书

无梁板式现浇钢筋混凝土圆形水池结构计算书1、设计资料: 主要结构尺寸: 内径(d):32m 底板厚:0.3m 壁板高:4.15m 壁板厚:0.35m 顶板厚:150mm 底板外挑宽度:400mm 荷载和地质条件: 顶板活荷载:q k=1.5kN/m2 池内水深:4m 地下水深:1.2m(底板以上)底板覆土:0.3m 土内摩擦角:30* 修正后地基承载力特征值:f a=100kPa 水重力密度:10kN/m3 回填土重度取:18kN/m3 钢筋混凝土重度:25kN/m3 钢筋选用HRB235和HRB400 混凝土选用C25,f t=1.27N/mm2,f c=11.9N/mm2

2、抗浮稳定性验算: i )局部抗浮稳定性验算:取中间区格(4×4m 2)作为计算单元,抗力荷载标准值如下: 顶板自重:25×0.15×4×4=60kN 底板自重:25×0.3×4×4=120kN 支柱自重:25×0.3×0.3×3.45=7.76kN 柱帽重:25×[1.42×0.1+31(0.32+0.3×1+12)×0.35]=8.95kN 柱基重:25×[1.52×0.1+3 1 (0.42+0.4×1.1+1.12)×0.35]=10.9kN 池顶覆土重:18×4×4×0.3=86.4kN ΣG k =60+120+7.76+8.95+10.9+86.4=294.01kN 局部浮力:F 浮=11)(A h d w ?+γ=10×(1.2+0.3)×4×4=240kN K= 浮 F G k ∑=24001 .294=1.23>1.05满足局部抗浮要求 ii)整体抗浮验算: 顶板自重:π(16+0.35)2×0.15×25=3149.32kN 顶板覆土重:π(16+0.35)2×0.3×18=4535.02kN 壁板自重:2π(16+0.35/2)×0.35×4.17×25=3708.24kN 悬挑土重:π[(16+0.4+0.35)2-(16+0.35)2]×[(18-10)×1.2+18×3.5]=3019.77kN 池内支撑柱总重:45×(7.76+8.95+10.9)=1242.5kN 底板浮重:π(16+0.35+0.4)2 ×0.3×(25-10)=3966.35kN ΣG k =3149.32+4535.02+3708.24+3019.77+1242.5+3966.35=19621.2kN 总浮力:F 浮=A h d w ?+)(1 γ=10×(1.2+0.3)×π(16+0.4+0.35)2 =13221.2kN K= 浮F G k ∑=2 .132212 .19621=1.48>1.05满足整体抗浮要求

真空引水罐设备操作流程

设备操作流程 1一般规定 1.1 水泵的操作人员必须了解所使用水泵的构造、性能、用途,熟悉安全操作和技术保养规程。 1.2水泵必须有专人操作,并且对水泵的安全使用和正确保养负有全面责任。 1.3 操作人员必须按保养规程要求,定期做好水泵的清洁、润滑和调整工作(拧紧连接螺栓),使水泵经常保持良好的工作条件。 1.4应经常对电气设备进行检查和定期保养,保证绝缘良好安全可靠。 2起动前准备 2.1用手拔转风扇,叶轮应无卡摩现象,转动灵活。 2.2引水罐水量检查,完全开启引水罐注水孔及排气孔阀门,完全打开水泵 机组进水口阀门,完全关闭水泵机组出水口阀门,启动补水泵对引水罐进行注水,水位上升至充满引水罐,此时关闭补水泵,检查完毕。 2.3打开进口阀门,打开排气阀使水充满整个泵腔,然后关闭排气嘴。 2.4起动前应对水泵和抽水装置管路阀门作全面仔细的检查,不得有漏水、漏气现象。 2.5应先用手盘动泵几圈以使润滑水进入机械密封端面。 2.6点动电机,确定转向是否正确,这样方可起动。 3起动与运行 3.1全开进口阀门,关闭吐出管路上的阀门。 3.2接通电源,当泵达到正常转速后,再逐渐打开吐出管路上的阀门,并调节到所需要的工况。 3.3必须注意观察仪表读数、电机、轴承升温、滴漏和升温以及泵的振动和杂音等是否正常,正常时机械密封滴漏为3滴每分,温度小于75℃,如果发现异常情况应及时处理。 3.4打开回水管阀门,保证有充足的水持续回流至负压引水罐内,在停机保压过程中二次启动时有水可以充满泵体,有效避免水泵无水空转。 4 停机

4.1逐渐关闭吐出管路上的阀门,切断电源。 4.2关闭进口阀门。 4.3如环境温度低于0℃,应将泵内水放出,以免冻裂水泵。 4.4如长期停止使用,应将泵拆卸清洗上油(3#锂基脂黄油),包装保管。 5泵的维护与保养 5.1运行中的维护与保养 5.1.1进水管路必须高度密封,不能漏水、漏气。 5.1.2禁止泵在汽蚀状态下长期运行,泵在运行过程中最高温度不超过90摄氏度。 5.1.3禁止泵在大流量工况运行时,电机超电流长期运行。 5.1.4定时检查运行中的电机电流值,尽量使泵在设计工况范围运行内运行,以保证泵在最高效率点运转,获得最大的节能效果。 5.1.5泵在运行中应有专人看管,以免发生意外。 5.1.6泵每运行500小时,应对轴承进行加油,加注3#锂基脂黄油。 5.1.7泵长期运行后,由于机械磨损,使机组噪声及振动增大时,应停车检查,必要时可更换易损零件及轴承,机组大修期一般为一年。 5.1.8泵在冬季运行使用时,应做好保温措施,防止冻裂。 5.2机械密封的维护与保养 5.2.1机械密封润滑液应清洁无固体颗粒。 5.2.2严禁机械密封在干磨情况下工作。 5.2.3起动前应盘动泵(电机)几圈,以免突然起动造成机械密封断裂损坏。

150吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 水泥罐平面位置示意图

二、水泥罐基础计算书 1、计算基本参数 水泥罐自重约20t,水泥满装150t,共重170t。 水泥罐支腿高3m,罐身高18m,共高21m。 单支基础4m×4m×0.8m钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm×200mm,通过受力计算,其地基承载力为: δ2= 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 风荷载(500N/m2) 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: ?M 水泥罐空罐自重20t,则基础及水泥罐总重为:

抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

泵站设计说明书

泵站设计说明书-CAL-FENGHAI.-(YICAI)-Company One1

《泵与泵站》课程设计 说明书 题目:万人城镇给水泵站(二级泵站)规划设计 学院:环境科学与工程学院 专业:给水排水工程 班级:给排水1202 学号:26、27、28 学生姓名:沈喻龙、李思聪、邵志春 指导教师:李强标 二○一四年十二月

一、送水泵站(二级泵站)设计 、设计目的 根据给定的资料,综合运用所学的专业知识,进行H 城镇二级给水泵站设计。、设计原始资料 1、H 城镇位于浙江省内,海拔为900 米;土质为砂纸粘土,无地下水,不考虑冰冻。 2、H 城镇远期规划人口约万人,最高日用水量为万立方米/日。 3、泵站地坪标高为906 米。二级泵站的工作制度,分两级: ①第一级,从22 时到5 时,每小时占全天用水量的(%)。 ②第二级,从5 时到22 时,每小时占全天用水量的(%)。 4、H 城镇设计最不利点的地面标高为921 米,该处有一座12 层建筑,要求二级泵站供水至第7 层。 5、二级泵站至最不利点的输水管和配水管网的总水头损失为26 米。 6、清水池所在地的地面标高与泵站地坪标高相同,清水池边墙距二级泵站外墙约米;二级泵站直接由清水池吸水。 7、清水池最低水位在地面以下米。清水池的最高水温为℃、最低水 温为0℃。 8、未预见用水量及管网漏水量取值范围10~15%。 9、泵站变配电设施按一级负荷设置。 10、H 城镇给水系统采用低压消防制。设计着火点定为最不利点处,消防水头为10 米;消防时输水管和配水管网的总水头损失为27 米。 、设计要求 、说明书要求: ⑴泵站的设计流量、扬程,水泵的选择。 ⑵给水泵站高程布置及水力计算,校核水泵安装高度。 ⑶清水池的容积计算。 ⑷给水泵站平面布置。 ⑸高效工况点、消防校核。 ⑹材料一览表(含编号、名称、规格、单位、数量),工程投资估算。 3 、图纸要求: ⑴ ACAD 制图,A3。 ⑵泵站平面图和剖面图,应绘出主要设备、管路、配件及辅助设备的位置、

清水池计算

清水池 经过处理后的水进入清水池,清水池可以调节用水量的变化,并储存消防用水。此外,在清水池内有利于消毒剂与水充分接触反应,提高消毒效果。 (1)清水池的有效容积: 根据《室外给水设计规范》(GB 50013-2006)可知,清水池的有效容积应根据产水曲线、送水曲线、自用水量及消防储备水量等确定,并满足消毒接触时间的要求。当管网无调节构筑物时,在缺乏资料情况下,可按水厂最高日设计水量的10%~20%确定。 1234W W W W W =+++ 式中,W ――清水池的有效容积 W 1――清水池的调节容积,本设计中调节系数取10%; W 2――清水池的消防贮水量; W 3――水厂的自用水量,本设计中取设计水量的5%; W 4――清水池的安全储量,按设计水量的0.5%计。 ①3441101.110%1011m W ?=??= ②本设计中,总设计流量为11万m 3/d ,查《城市给水工程规划规范》(GB50282-98),得小城市单位人口综合用水量指标为0.4~0.8万m 3/(万人·d),取0.5万m 3/(万人·d),计划该城市服务人口为22万,查规范可知其同一时间内的火灾次数为2,一次灭火用水量为55L/s 。则: 327921000 36005522m W =???= ③343550010%511m W =??= ④取34200m W = 则3432117492200550079211000m W W W W W =+++=+++= (2)清水池尺寸确定 滤后水经过消毒后进入清水池。两组滤池的滤后水分别进入2个清水池。则每个清水池的有效容积为8746m 3。取清水池有效水深为 5.0m ,则其面积为1749.2m 2,平面尺寸为B ×L=40m×44.1m 。清水池采用地下式钢筋混凝土立方体水池,水池顶部高出地面0.5m ,则清水池顶部高程为6.0m 。清水池超高0.5m ,则清水池最高液面高程为5.5m 。清水池总高度H=0.5+5.0=5.5m 。则清水池几何尺寸为25m ×35.4m ×5.5m 。 (3)管道系统设计计算 1)清水池的进水管

水池设计

矩形水池计算 设计资料: 池顶活荷P1=2.0(KN/m^2) 覆土厚度ht=500(mm) 池内水位Hw=4000(mm) 容许承载力R=150(KN/m^2) 水池长度H=5000(mm) 水池宽度B=4000(mm) 池壁高度h0=4000(mm) 底板外伸C1=200(mm) 底板厚度h1=300(mm) 顶板厚度h2=150(mm) 垫层厚度h3= 100 (mm) 池壁厚度h4=200(mm) 地基承载力设计值R=150(KPa) 地下水位高于底板Hd=2000(mm) 抗浮安全系数Kf = 1.10 一.地基承载力验算 ( 1 )底板面积AR1 = (H + 2 * h4 + 2 * C1) * (B + 2 * h4 + 2 * C1) = (5 + 2 * 0.2+2 * 0.2 ) * ( 4 + 2 * 0.2 + 2 * 0.2 ) =27.84(m^2) ( 2 )顶板面积AR2 = (H + 2 * h4) * (B + 2 * h4) = ( 5 + 2 * 0.2 ) * ( 4 + 2 * 0.2 ) =23.76(m^2) ( 3 )池顶荷载Pg = P1 + ht * 18 = 2.0 + 0.5 * 18

=11 (KN/m^2) ( 4 )池壁重量CB = 25 * (H + 2 * h4 + B) * 2 * H0 * h4 = 25 * ( 5 + 2 * 0.2 + 4 )* 2 * 4 * 0.2 =376 (KN) ( 5 )底板重量DB1 = 25 * AR1 * h1 = 25 * 27.84 * 0.3 =208.8(KN) ( 6 )顶板重量DB2 = 25 * AR2 * h2 = 25 *23.76 * 0.15 =89.1 (KN) ( 7 )水池全重G = CB + DB1 + DB2 + Fk1 =376 +208.8+89.1 +0 =673.9 (KN) ( 8 )单位面积水重Pwg = (H * B * Hw * 10) / AR1 = ( 5 * 4 * 4 * 10) / 27.84 =28.73(KN/m^2) ( 9 )单位面积垫层重Pd = 23 * h3 = 23 * 0.1 =8.26(KN/m^2) ( 10 )地基反力R0 = Pg + G / AR1 + Pwg + Pd =11 + 673.9 / 27.84 + 28.73 + 8.26 = 72 (KN/m^2)

清水池设计

试析清水池设计问题 【摘要】本文从结构专业的角度谈谈对清水池设计中所涉及的地下水位的确定、伸缩缝的设置、后浇带的作法等问题。 【关键词】清水池;地下水位;伸缩缝;后浇带 随着我国综合国力的增强,城市的不断发展扩大,人们生活、工业生产和环境保护的需要,清水池类构筑物工程的建设逐年增多。下面从结构专业的角度对清水池设计所涉及的一些问题,谈谈本人的看法。 1 设计地下水位的合理确定 清水池的设计与地下水位的标高密切相关。由于地下水位未掌握好而引起结构选型错误及抗浮不够等工程事故时有发生。根据现行国家设计规范,地下水位应根据地方水文资料,考虑可能出现的最高地下水位。一般设计均取用水文资料的最高地下水位。在50年设计基准期内,一般水工构筑物地下水可变荷载作用的取值按“工程结构可靠度设计统一标准”原则确定,不考虑罕遇洪水的偶然荷载作用。值得注意的是,有些工程地质勘察报告所提供的地下水位未能从地方水文资料分析得出,而仅仅反映勘测期间的地下水分布情况。如果详勘是在当地枯水期进行,所提供的地下水位标高一旦被设计人员取用,将会导致结构计算出现较大的误差。所以设计人员应对未满足设计要求的地质勘察报告,要求予以补充。并应考虑当地有无暴雨、台风的影响,是否会出现由于地表水不能及时排除

而引起地下水位提高。结构设计人员应结合对地下水位和地质情况的了解,与工艺设计人员共同研究确定清水池的基底标高。综合考虑工艺流程的要求、土建造价、运营成本、投产年限等诸多因素,制定出切实可行的设计方案。例如当地下水位较高或地质剖面有流沙层时,设计人员应考虑是否可适当抬高基底标高,减少水浮力对结构的影响及避开流沙层等。 2 伸缩缝和后浇带的设置 2.1 伸缩缝的设置 根据设计规范,混凝土构筑物伸缩缝的最大间距一般为20~30m。近年来,一方面工艺所要求的清水池长度已远远超过了规范间距;另一方面随着建筑材料、施工方法的改进,又为超长清水池不设缝、少设缝提供了可能。设计人员在具体设计时应根据地基、气温等实际情况,经计算确定是否设缝并提供相应的施工措施方案。 在清水池设计中,通常对结构构件强度、裂缝宽度、结构整体抗浮等进行计算,一般均能按规范要求考虑得较好,但是由于温度、变形以及不均匀沉降所引起的开裂,在工程中却常常遇到。大多数出现裂缝的工程实例表明,设计对温度、混凝土收缩变形等影响因素的考虑欠缺是问题的主要原因。 笔者认为以下两点需重视: 2.1.1 清水池类构筑物并非必须保证不开裂,对设计人员来讲重要的是做好裂缝的控制。一方面设计人员要事先对可能的不利因素

二级泵站设计计算说明书

二级泵站设计计算说明说书 学院:土木建筑工程学院 专业:给水排水专业 班级:081 指导教师:张鑫 姓名:徐琦 学号:080504009

水泵站课程设计任务书 一、设计题目:送水泵站(二级泵站)设计 二、原始资料: 1、泵站的设计水量为(4)万m3/d。 2、给水管网设计的部分成果: ①根据用水曲线确定二泵站工作制度,分两级工作。 第一级,每小时占全天用水量的(2.9%)。 第二级,每小时占全天用水量的(5.07%)。 ②城市设计最不利点的地面标高为20m,建筑层数7层,自由水压为 20m。 ③给水管网平差得出的二泵站至最不利点的输水管和配水管网的总 水头损失为32m。 ④清水池所在地地面标高为15m,清水池最低水位在地面以下3.0m。 3 、城市冰冻线为(1.5)米,城市的最高温度为(30.0℃)最低温度为(-25℃) 4 、站所在地土壤良好,地下水位为(25m)米。 5 、电源满足用电要求,电价0.45元/Kwh。 三、设计任务 城市送水泵站的技术设计的工艺部分 四、计算说明书内容 1. 绪论 2.初选水泵和电机 根据水量、水压变化情况选泵,工作泵和备用泵型号和台数。 3泵房形式的选择 4.机组基础设计、平面尺寸及高度 5.计算水泵吸水管和压力管直径 选用各种配件的型号、规格种类及安装尺寸(说明特点)。吸水井设计(尺寸和水位)

6.布置管道和机组 7.泵房中个标高的确定 室内地面、基础顶面、水泵安装高度、泵房建筑高度。 8. 复合水泵电机 计算吸水管机泵站内压水管损失、求出总扬程、校核所选水泵。如不合适,则重选水泵和电机。重新确定泵站的各级供水量。 9.进行消防和传输校核 10.计算和选择附属设备 ①设备的选择和布置 ②计量设备 ③起重设备 ④排水泵及水锤消除器等 11.确定泵站平面尺寸、初步规划泵房总面积 泵房的长度和宽度,总平面布置包括:配电室、机器间、值班室、修理间等。 五、图纸要求 泵站平面及剖面图(机器间),应绘出主要设备、管路、配件及辅助设备的位置、尺寸、标高,列出主要设备表和材料表(比例尺1:100) 发放设计任务书日期: 2011 年 6 月 27 日 交设计日期: 2011 年 7 月 8 日 设计指导教师(签字): 目录

吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 1 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超 20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: 水泥罐平面位置示意图

δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

简单矩形水池计算书

结构专业计算书建设单位名称: 项目名称: 项目阶段: 项目代号(子项号): 计算书总册数: 计算软件名称: 计算软件版本:

蒸发器、污水池计算书 执行规范:《建筑结构荷载规范》(GB 50009-2012) 《给水排水工程构筑物结构设计规范》(GB50069-2002)钢筋:d-HPB235;D-HRB335; 1、基本资料 几何信息 水池类型:有顶盖,半地上 长度L=,宽度B=,高度H=,底板底标高= 盖板厚h 1=150mm,池底厚h 2 =300mm,池壁厚t 1 =200mm,底板外挑长度t 2 =200mm 平面图剖面图 水土信息 土天然重度18kN/m3,土内摩擦角30° 地基承载力特征值f ak =130kPa,宽度修正系数η b =,埋深修正系数η d = 地下水位低于底板底标高,池内水深,池内水重度 kN/m3 托浮力折减系数,抗浮安全系数K f = 荷载信息

活荷载:地面 kN/m2,顶盖 kN/m2,组合值系数 恒载分项系数:水池自重,其他 活载分项系数: 活载准永久值系数:顶板,地面,温湿度 考虑温湿度作用:池内外温差°,弯矩折减系数,砼线膨胀系数(10-5/℃) 钢筋砼信息 混凝土:等级C30,重度 kN/m2,泊松比 纵筋保护层厚度(mm):池壁(内40,外35),顶盖(上35,下35),底板(上40,下40)钢筋:HRB335,裂缝宽度限值:,配筋调整系数 按裂缝控制配筋计算 构造配筋采用《混凝土结构设计规范》GB50010-2010 2 计算内容 (1)地基承载力验算 (2)抗浮验算 (3)荷载计算 (4)内力计算

相关主题
文本预览
相关文档 最新文档