当前位置:文档之家› 关键质量属性和关键工艺设计参数

关键质量属性和关键工艺设计参数

关键质量属性和关键工艺设计参数
关键质量属性和关键工艺设计参数

关键质量属性关和键工艺参数(CQA&CPP)

1、要求:

生产工艺风险评估的重点将由生产工艺的关键质量属性(CQA)和关键工艺参数(CPP)决定。

生产工艺风险评估需要保证能够对生产工艺中所有的关键质量属性(CQA)和关键工艺参数(CPP)进行充分的控制。

2、定义:

CQA关键质量属性:物理、化学、生物学或微生物的性质或特征,其应在适当的限度、范围或分布内,以保证产品质量。

CPP关键工艺参数:此工艺参数的变化会影响关键质量属性,因此需要被监测及控制,确保产产品的质量。

3、谁来找CQA&CPP

3.1 Subject Matter Experts(SME)在某一特定领域或方面(例如,质量部门,工程学,自动化技术,研发,销售等等),个人拥有的资格和特殊技能。

3.2 SME小组成员:QRM负责/风险评估小组主导人、研发专家、技术转移人员(如适用)、生产操作人员、工程人员、项目人员、验证人员、QA、QC、供应商(如适用)等。

3.3 SME小组能力要求矩阵:

4、如何找CQA&CPP

4.1 在生产工艺中有很多影响产品关键质量属性的因素,每个因素都存在着不同的潜在的风险,必须对每个因素充分的进行识别分析、评估,从而来反映工艺的一些重要性质。

4.2 列出将要被评估的工序步骤。工艺流程图,SOP或批生产记录可以提供这些信息。评估小组应该确定上述信息的详细程度来支持风险评估。

例:

文件资源:保证在评估之前已经具备所有必要的文件。

良好培训:保证在开展任何工作之前所有必要的风险评估规程、模板和培训已经就位。

评估会议:管理并规划所有要求的风险评估会议。

例:资料需求单

ICH Q8(R2)‐ QbD‐系统化的方法、 ICHQ9‐质量风险管理流程图

CQA&CPP风险评估工具‐FMEA

6.1FMEA实施:

1. 成立一个评估小组

2. 识别已知和潜在的失效模式

3. 识别严重性、可能性和可检测性

4. 详细说明行为

5. 重新评级

6. 详细说明剩余的风险

7. 完成一个简短的摘要

6.2风险评估:

1、列出将要被评估的工序步骤:在生产工艺中有很多影响产品关键质量属性的因素,每个因素都存在着不同的潜在的风险,必须对每个因素充分的进行识别分析、评估,从而来反映工艺的一些重要性质。

2、列出将要被评估的工序步骤。工艺流程图,SOP或批生产记录可以提供这些信息。评估小组应该确定上述信息的详细程度来支持风险评估。

6.3风险识别:

1、目标产品质量概况(QTPP ):详细列举目标产品的适应症、给药途径、剂型、性状、包装形式、微生物限度等概况。

2、生产工艺:列举完整的工艺流程图及详细步骤。

3、操作单元的识别:一个在生产工艺中独立的步骤或操作,对工艺和操作进行定义以实现一个特殊的工艺目标。对生产工艺中各个操作单元进行识别。

4、关键质量属性的识别:对生产工艺中各个操作单元的关键质量属性进行识别。

5、关键工艺参数的识别:识别各个操作单元中影响关键质量属性的关键工艺参数。

7、找到CQA&CPP之后怎么办

7.1风险分析

1、风险分析是对所关联已经确认了的危害因素进行评估。

2、在确定了关键工艺参数之后,将针对每个已经确定的关键工艺参数进行分析,分析其失效时可能产生的危害。

3、明确描述确认的原因,可能是一个或多个。

7.2 风险评价

1、需要对生产工艺风险分析时确认的危害进行全面的审查以保证能够确定出所

有的潜在风险并对其进行评估。

2、全面审查依据当前控制方法进行

3、风险评价可以定性或定量描述

风险评价

将把严重性和可能性合在一起来评价风险级别。将采用如下方法来确定风险级别:

在此步将对风险优先性进行评价。在进行评价之后,将风险级别和可检测性合并到一起来确定整体的风险优先性,通过如下方式对风险优先性进行评价:

而后采用风险优先级别高低来决定适宜的控制方法并确定验证工作的范围。7.3风险控制

风险评估结果(风险优先结果为高或中)用于确定合理的控制措施。应具有选择范围来基于识别的风险提供所需的控制措施。

7.4风险降低

1、当风险超过了其可接受水平时,采用质量风险降低和避免程序。风险降低可包括降低危害的严重性和可能性时所采取的措施。提高危害和质量风险的可检测性的程序也被用作风险控制策略的一部分。在实施风险降低措施的过程中,新的风险可能也会被引入到系统中,或者提高了其它已有风险的显著性。因此,合适的做法应当是重新进行风险评估,以确认和评价可能的风险变更。

2、推荐的控制措施

1) 工艺设计或系统设计的更改;

2) 外部规程的应用;

3) 增加技术规格的详细信息或格式;

4) 增加检查确认工作的程度或力度;

5) 其他。

3、采取行动

如适用的话,则简要描述实际采取的控制行动。

4、风险再评估

针对计划应用的风险控制措施,以再次确认严重性、可能性和可检测性,并确认实施措施后的风险优先性。

5、责任人及指定日期

根据计划采取的控制行动指定责任人和完成日期。

7.5风险接受

1、是接受风险的决定。风险接受可以是接受残余风险的正式决议,也可以是一个被动决议,其中并没有指定残余风险。对于某些类型的危险,即使最好的质量

风险管理也不能完全消除风险。在这些情况下,可以认为已经应用了最佳质量风险管理策略且质量风险也降低到了一个可接受水平。

2、风险接受的类型如下:

1) 当风险优先性为低时为风险可控;

2) 当风险优先性为中时为风险降低但仍存在剩余风险,需要接受剩余风险;

3) 当风险优先性为高时需重新进行风险评估,检查是否正确的识别、分析和评价了风险,并采取了相应的风险控制措施;

风险控制矩阵

例:

定期进行审核以确保建议的措施能有效降低风险,并且不会给工艺带来新风险。审核和更新的执行应基于变更控制事件和响应,或发现的重要新信息或数据的,例如:失败、偏差、调查及其他纠正预防措施。

7.7风险沟通

将对确定风险,建议,措施的执行和剩余风险形成一份报告来供审核和批准。风险评估文件将被维护并遵循变更控制。

总结:

1、C QA&CPP是工艺验证的关注内容

2、F MEA工具是ICH Q9 推荐风险管理工具

3、C QA&CPP评估需要不同的SME参与

4、. CQA&CPP评估应关注工艺先前知识

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

关键质量属性和关键工艺参数

关键质量属性关和键工艺参数(CQA&CPP) 1、要求: 生产工艺风险评估的重点将由生产工艺的关键质量属性(CQA)和关键工艺参数(CPP)决定。 生产工艺风险评估需要保证能够对生产工艺中所有的关键质量属性(CQA)和关键工艺参数(CPP)进行充分的控制。 2、定义: CQA关键质量属性:物理、化学、生物学或微生物的性质或特征,其应在适当的限度、范围或分布内,以保证产品质量。 CPP关键工艺参数:此工艺参数的变化会影响关键质量属性,因此需要被监测及控制,确保产产品的质量。 3、谁来找CQA&CPP 3.1 Subject Matter Experts(SME)在某一特定领域或方面(例如,质量部门,工程学,自动化技术,研发,销售等等),个人拥有的资格和特殊技能。 3.2 SME小组成员:QRM负责/风险评估小组主导人、研发专家、技术转移人员(如适用)、生产操作人员、工程人员、项目人员、验证人员、QA、QC、供应商(如适用)等。 3.3 SME小组能力要求矩阵: 4、如何找CQA&CPP 4.1 在生产工艺中有很多影响产品关键质量属性的因素,每个因素都存在着不同的潜在的风险,必须对每个因素充分的进行识别分析、评估,从而来反映工艺的一些重要性质。

4.2 列出将要被评估的工序步骤。工艺流程图,SOP或批生产记录可以提供这些信息。评估小组应该确定上述信息的详细程度来支持风险评估。 例:

文件资源:保证在评估之前已经具备所有必要的文件。 良好培训:保证在开展任何工作之前所有必要的风险评估规程、模板和培训已经就位。 评估会议:管理并规划所有要求的风险评估会议。 例:资料需求单 ICH Q8(R2)‐ QbD‐系统化的方法、 ICHQ9‐质量风险管理流程图 CQA&CPP风险评估工具‐FMEA

气焊和气割主要工艺设计参数

在多层焊时,第一、二层应选用较细的焊丝,以后各层可采用较粗的焊丝。一般平焊应比其它焊接位置选用粗一号的焊丝,右焊法比左焊法选用的焊丝要适当粗一些。 2.火焰性质的选择 一般来说,需要尽量减少元素的烧损时,应选用中性焰;对需要增碳及还原气氛时,应选用碳化焰;当母材含有低沸点元素[如锡(Sn)、锌(Zn)等]时,需要生成覆盖在熔池表面的氧化物薄膜,以阻止低熔点元素蒸发,应选用氧化焰。总之,火焰性质选择应根据焊接材料的种类和性能。 由于气焊焊接质量和焊缝金属的强度与火焰种类有很大的关系,因而在整个焊接过程中应不断地调节火焰成分,保持火焰的性质,从而获得质量好的焊接接头。 不同金属材料的气焊所采用焊接火焰的性质参照表2—1。 3.火焰能率的选择 火焰能率指单位时间内可燃气体(乙炔)的消耗量,单位为L/h。火焰能率的物理意义是单位时间内可燃气体所提供的能量。 火焰能率的大小是由焊炬型号和焊嘴号码大小来决定的。焊嘴号越大火焰能率也越大。所以火焰能率的选择实际上是确定焊炬的型号和焊嘴的号码。火焰能率的大小主要取决于氧、乙炔混合气体中,

氧气的压力和流量(消耗量)及乙炔的压力和流量(消耗量)。流量的粗调通过更换焊炬型号和焊嘴号码实现;流量的细调通过调节焊炬上的氧气调节阀和乙炔调节阀来实现。 火焰能率应根据焊件的厚度、母材的熔点和导热性及焊缝的空间位置来选择。如焊接较厚的焊件、熔点较高的金属、导热性较好的铜、铝及其合金时,就要选用较大的火焰能率,才能保证焊件焊透;反之,在焊接薄板时,为防止焊件被烧穿,火焰能率应适当减小。平焊缝可比其它位置焊缝选用稍大的火焰能率。在实际生产中,在保证焊接质量的前提下,应尽量选择较大的火焰能率。 4.焊嘴倾斜角的选择 焊嘴的倾斜角是指焊嘴中心线与焊件平面之间的夹角。详见图2—4。焊嘴的倾斜角度的大小主要是根据焊嘴的大小、焊件的厚度、母材的熔点和导热性及焊缝空间位置等因素综合决定的。当焊嘴倾斜角大时,因热量散失少,焊件得到的热量多,升温就快;反之,热量散失多,焊件受热少,升温就慢。 一般低碳钢气焊时,焊嘴的倾斜角度与工件厚度的关系详见图2—4。一般说来,在焊接工件的厚度大、母材熔点较高或导热性较好的金属材料时,焊嘴的倾斜角要选得大一些;反之,焊嘴倾斜角可选得小一些。 图2-4焊嘴倾斜角与焊件厚度的关系

关键质量特性

关键质量特性(简称CTQ, Critical to Quality) 关键质量特性(CTQ)定义:产品或零部件可能对最终产品的主要功能,安全性,可靠性或成本造成显著影响的特性。 关键工序(CTP)定义:对关键特性的形成起决定性作用的工序。 关键质量特性(简称CTQ)可视化管理 绿色区域表示完全满足; 对于过程能力来讲,过程能力完全满足要求,CPK(PPK)>1.5; 对于测量系统来讲, 测量能力完全满足要求, R﹠R<10%. 黄色区域表示部分满足; 对于过程能力来讲,过程能力部分满足要求,130%. 过程(工序)能力分析(简称CP Capability Process Analysis)1、过程能力(简称CP) 在制造业中,过程能力称为工序能力,是指工序中人、机、料、法、测、环(5M1E)诸因素均处于规定的条件下,操作呈稳定状态下的实际加工能力。用6б表示。 根据统计学理论,若质量特征值服从正态分布,则质量特征值落入6倍的标准偏差s内,其概率为99.73%。 2、过程能力指数(简称CPK)

(1)过程(工序)能力指数(简称CPK Capability Process Key)过程(工序)能力指数是表示过程(工序)能力满足公差范围要求程度的量值。 过程能力指数是公差范围(T)和过程(工序)能力(6б)的比值。一般用符号CP表示。 (2)过程(工序)能力指数计算 1)当给定双侧公差,质量数据分布中心(X)与公差中心(M)相一致时,用符号CP表示。 CP=T/6σ≈(TU-TL)/6S 2)当给定双侧公差,质量数据分布中心(X)与公差中心(M)不一致时,用符号CPK表示,ε=|X-M| CPK=(T-2ε)/6σ≈(T-2ε)/6S=(1-K)CP 3)当给定单向公差的上限时: CPU≈(TU-X)/3S 4)当给定单向公差的下限时: CPL≈(X-TL)/3S (3)过程(工序)能力指数的评定 A.过程(工序)能力等级评定表,对有偏过程能力的判断(供参考)。

简述关键质量属性(CQA)以及属性分析

个人经验较浅,试着对关键质量属性进行一个小总结。 是否关键质量属性,每一个剂型、品种、规格,都不一样,应该经过适当的评估(从安全性、有效性上)。以下答案可能具有偏颇性 详细请查看原文,原文不定期更新关键属性 欢迎大家讨论补充 先说定义: 关键质量属性(Critical Quality Attributes, CQA):(备注1) 指物质(药品或活性成分)具备的直接或间接影响物质安全、鉴别、强度、纯度的物理,化学,微生物方面特性。关键质量属性确定的标准是基于药品在不符合该质量属性时对患者所造成危害(安全性和有效性)的严重程度。 关键工艺参数:(备注2) 简单来说:影响药品关键质量属性的工艺参数 复杂来说:Critical Process Parameter (CPP): A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. ICH Q8 Pharmaceutical Development。 我们来看看常见质量属性以及为什么这些属性是或者不是关键质量属性(重点考虑安全性和有效性) 一、外观:(非CQA) 属性目标:让患者容易接受的颜色和形状,无目视观察到的片剂缺陷。 理由:颜色,形状和外观与安全性和有效性无直接关系。因此,它们不是关键。做为质量属性的原因是因为长得好看的东西更容易让人接受...例如小孩吃糖喜欢卡通状的。这是一个看脸的世界。 二、气味:(非CQA) 属性目标:不要那么难闻。 理由:一般来说,可觉察的气味与安全性和有效性无直接关系,但气味可影响患者可接受性并导致投诉。如果药品中使用的药物和辅料都有难闻气味或者在药品生产工艺中使用有机溶剂,则应该在药品研发阶段设定好适量的矫味剂。 三、尺寸大小(CQA) 属性目标:便于吞咽、使用(仿制药考虑与参比制剂一致) 理由:药品(片剂、胶囊、栓剂等)的尺寸大小与吞咽性、可使用性有关;因此,它是关键。为比较容易吞咽、使用和患者接受及遵守治疗方案。仿制药关注药品大小和体积与参比制剂类似。 四、刻痕和分割性(CQA) 属性目标:便于使用(片剂可分割一半计量) 理由:部分理由同上,在药品设计阶段依据临床使用要求制定,涉及剂量问题,影响患者使用的有效性与安全性。 五、脆碎度(非CQA) 属性目标:避免破碎带来的外观影响投诉,仿制药关注符合参比制剂的质量标准以及药典或者已上市药品标准。理由:除了按照药典或者已上市药品标准以为,该属性尽量减少上市后有关片剂外观的投诉。该目标脆碎度将不影响患者的安全性或有效性。 六、鉴别(制剂非CQA 原料药CQA) 属性目标:确定是否是这货- - 理由: 对于制剂来说,虽然鉴别是安全性和有效性的关键,但该CQA可通过质量管理体系得到有效控制(物料放行),

关键质量属性(CQA)以及指标分析--个人经验较浅

关键质量属性(Critical Quality Attributes, CQA):指物质(药品或活性成分)具备的直接或间接影响物质安全、鉴别、强度、纯度的物理,化学,微生物方面特性。关键质量属性确定的标准是基于药品在不符合该质量属性时对患者所造成危害(安全性和有效性)的严重程度。关键工艺参数: 简单来说:影响药品关键质量属性的工艺参数 复杂来说: Critical Process Parameter (CPP): A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. ICH Q8 Pharmaceutical Development。 我们来看看常见质量属性以及为什么这些属性是或者不是关键质量属性(重点考虑安全性和有效性) 一、外观:(非CQA) 属性目标:让患者容易接受的颜色和形状,无目视观察到的片剂缺陷。 理由:颜色,形状和外观与安全性和有效性无直接关系。因此,它们不是关键。做为质量属性的原因是因为长得好看的东西更容易让人接受 例如小孩吃糖喜欢卡通状的。这是一个看脸的世界。 二、气味:(非CQA) 属性目标:不要那么难闻。 理由:一般来说,可觉察的气味与安全性和有效性无直接关系,但气味可影响患者可接受性并导致投诉。如果药品中使用的药物和辅料都有难闻气味或者在药品生产工艺中使用有机溶剂,则应该在药品研发阶段设定好适量的矫味剂。 三、尺寸大小(CQA) 属性目标:便于吞咽、使用(仿制药考虑与参比制剂一致) 理由:药品(片剂、胶囊、栓剂等)的尺寸大小与吞咽性、可使用性有关;因此,它是关键。为比较容易吞咽、使用和患者接受及遵守治疗方案。仿制药关注药品大小和体积与参比制剂类似。 四、刻痕和分割性(CQA) 属性目标:便于使用(片剂可分割一半计量) 理由:部分理由同上,在药品设计阶段依据临床使用要求制定,涉及剂量问题,影响患者使用的有效性与安全性。 五、脆碎度(非CQA) 属性目标:避免破碎带来的外观影响投诉,仿制药关注符合参比制剂的质量标准以及药典或者已上市药品标准。 理由:除了按照药典或者已上市药品标准以为,该属性尽量减少上市后有关片剂外观的投诉。该目标脆碎度将不影响患者的安全性或有效性。 六、鉴别(制剂非CQA原料药CQA) 属性目标:确定是否是这货 理由:对于制剂来说,虽然鉴别是安全性和有效性的关键,但该CQA可通过质量管理体系得到有效控制(物料放行),并在药品放行时进行监测。制剂的处方和工艺参数不影响特性。对于原料药来说,鉴别是CQA,影响安全性和有效性,原料药的处方和工艺参数影响该属性。 七、含量(CQA) 属性目标:具有治疗效果(剂量范围内),或符合药典或者已上市药品质量标准。 理由:含量差异将影响安全性和有效性;因此,含量是关键。 八、含量均匀度、片重差异、装量差异(CQA)

AO工艺设计参数

污水处理A/O工艺设计参数 1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝 化脱氮,故两池的容积大小对总氮的去除率极为重要。A/O的容积比主要与该废 水的曝气分数有关。缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。 而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m (NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。后将A/O容积比按1:6改造,缺氧池运行平稳。 1.1、A/O除磷工艺的基本原理 A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。在厌氧、好氧交替条 件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过 量去除系统中的磷。其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚 合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。 厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用 水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。研究发现,厌 氧状态时间越长,对磷的释放越彻底。 好氧条件下,聚磷菌利用体内的PHB及快速降解COD产生的能量,将污水中的磷 酸盐吸收到细胞内并转变成聚磷贮存能量。好氧状态时间越长,对磷的吸收越充分。由于好氧状态下微生物吸收的磷远大于厌氧状态下微生物释放出的磷,随着厌氧—好氧过程的交替进行,微生物可以在污泥中形成稳定的种类并占据一定的优势,磷就可以通过系统中剩余污泥的排放而去除(见图1)。

驱动架构设计的关键质量属性场景描述

一学生选课管理系统体系结构描述: (一)学生选课管理系统体系结构图: (二)学生选课管理系统体系结构描述: 学生选课管理系统采取多层架构。具体到学生选课管理系统的实现,采用了JavaEE的实现方案。 二采取这样风格的理由: 三层架构就是针对分布式的企业应用提出来的,本身可以具有很多优点: 1 开发效率:每个层可以独立开发,各种商业架构如JavaEE,.NET为支持这种模式的开发提供了大量的可重用的过程,组件。大大缩短开发时间。 2 可扩展性:由于系统模块化,使得系统很容易在纵向和水平两个方向拓展:一方面可以将系统升级为更大、更有力的平台,同时也可以适当增加规模来增强系统的网络应用。由于摆脱了系统同构性的限制,使得分布的数据处理成为可能。 3 降低开发和维护成本:三层结构将表示部分和业务逻辑部分按照客户层和应用服务器相分离,客户端和应用服务器、应用服务器和数据库服务器之间的通讯、异构平台之间的数据交换等都可以通过中间件或者相关程序来实现。当数据库或者应用服务器的业务逻辑改变时,客户端并不需要改变,反之亦然,大大提高了系统模块的复用性,缩短开发周期,降低维护费用。 4 能有效提高系统安全性:多层体系结构将数据与程序.数据控制与应用逻辑分层独立管理,能更严格地控制信息访问;信息传递中采用数据加密技术,可进一步减低信息失密的风险.应用服务器内建安全控制数据库,实现应用服务器与数据服务器的双重权限控制,对权限的划分更准确.灵活.严格.新系统在信息访问.传递与存储三个环节上均有严格的安全措施。 5能有效提高系统并发处理能力:传统的一体化集中式系统或客户服务器架构,在处理大信息量业务时,都可能形成瓶颈.而多层体系架构的组件式系统将界面.界面发布.业务应用逻辑及数据存储分为多个层次分散管理,逻辑或物理地将它们分开,可减轻系统压力,提高整体性能.并且中间层可以采取多机并行的方式,相互备份的方式,保证系统的高可用性。一般情况下进行数据分析时,每次查询可能涉及到大量的数据,往往需要较长的响应时间,特别在分布式数据环境下,响应时间有时长得令人难以忍受.三层(多)层结构提供了客户端与服务器之间的异步通信,使得客户不必等待提交的分析处理结果而可以继续执行其他处理任务。 6访问异构数据库:多层结构的中间层即应用服务器能够提供广泛的异构数据库访问与复制能力.传统的客户机/服务器结构则需要在客户端安装许多访问异构数据库的驱动程序,而三层/多层结构只要在中间层有相应的驱动程序就可以访问异构数据源。 学生选课管理系统本身就是企业应用,采用多层架构显得很自然。具体分析: 1 开发效率无论在何时都是越快越好。采用多层架构可以让学校的信息化管理得以更快的开展。 2 随着学校管理制度的加强,对学生及课程信息的管理也将相应地作出加强。采用多层架构可以得到很好的灵活性,及时对系统的功能作出调整。 3 兰州交通大学是一个国家重点级高校,必须为每个学生高效的管理。它对成本是敏感的。系统的成本降低一点点,所有选课系统的部署降低的成本都是非常可观的。采用多层架构可以尽可能地降低开发,维护的成本。

药品关键质量属性分析

药品关键质量属性(CQA)分析 关键质量属性(Critical Quality Attributes, CQA): 指物质(药品或活性成分)具备的直接或间接影响物质安全、鉴别、强度、纯度的物理,化学,微生物方面特性。关键质量属性确定的标准是基于药品在不符合该质量属性时对患者所造成危害(安全性和有效性)的严重程度。 关键工艺参数: 简单来说:影响药品关键质量属性的工艺参数 复杂来说:Critical Process Parameter (CPP): A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. ICH Q8 Pharmaceutical Development。 我们来看看常见质量属性以及为什么这些属性是或者不是关键质量属性(重点考虑安全性和有效性) 物理质量属性: 1.外观:(非CQA) 属性目标:让患者容易接受的颜色和形状,无目视观察到的缺陷。 理由:颜色,形状和外观与安全性和有效性无直接关系。因此,它们不是关键。做为质量属性的原因是因为长得好看的东西更容易让人接受...例如小孩吃糖喜欢卡通状的。这是一个看脸的世界。 2.气味:(非CQA) 属性目标:不要那么难闻。 理由:一般来说,可觉察的气味与安全性和有效性无直接关系,但气味可影响患者可接受性并导致投诉。如果药品中使用的药物和辅料都有难闻气味或者在药品生产工艺中使用有机溶剂,则应该在药品研发阶段设定好适量的矫味剂。 3.鉴别(制剂非CQA 原料药 CQA) 属性目标:确定是否是这货- - 理由: 对于制剂来说,虽然鉴别是安全性和有效性的关键,但该CQA可通过质量管理体系得到有效控制(物料放行),并在药品放行时进行监测。制剂的处方和工艺参数不影响特性。 对于原料药来说,鉴别是CQA,影响安全性和有效性,原料药的处方和工艺参数影响该属性。 4.尺寸大小(CQA) 属性目标:便于吞咽、使用(仿制药考虑与参比制剂一致) 理由:药品(片剂、胶囊、栓剂等)的尺寸大小与吞咽性、可使用性有关;因此,它是关键。为比较容易吞咽、使用和患者接受及遵守治疗方案。仿制药关注药品大小和体积与参比制剂类似。 5.刻痕和分割性(CQA)

污水处理中AO工艺的设计参数

A/O生物除磷工艺是由厌氧和好氧两部分反应组成的污水生物处理系统。污水进入厌氧池后,与回流污泥混合。活性污泥中的聚磷菌在这一过程中大量吸收污水中的BOD,并将污泥中的磷以正磷酸盐的形式释放到混合液中。混合液进入好氧池后,有机物被氧化分解,同时聚磷菌大量吸收混合液中的正磷酸盐到污泥中。由于聚磷菌在好氧条件下吸收的磷多于厌氧条件下释放的磷,因此污水经过“厌氧-好氧”的交替作用和二沉池的污泥分离达到除磷的目的。一般情况下,TP的去除率可达到85%以上。 A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶

污水处理AO工艺主要设计参数

污水处理中A/O工艺主要设计参数经验总结加简单计算 ①HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:30~100%,具体根据污泥生长所处阶段确定,保证污泥浓度在设计浓度左右 ③混合液回流比:300~400%,混合液回流主要目的是将硝化作用下产生的氨氮送到A段进行反硝化,生成氮气,从而降低总排水氨氮浓度。所以回流比除要调节平衡污泥浓度外,还有促进反硝化反应顺利进行的目的。 ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS)普通生活废水取高值,部分生化性能较差工业废水,MLSS取值3000以下 ⑧溶解氧(重点项目):A段DO<0.2~0.5mg/L ???? O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 ?????O段pH =7.0~8.0 ⑩水温:硝化20~30℃ ????????????????? 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。???????????????? 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)

⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 ??????????????????????? Ro=a’QSr+b’VX+4.6Nr ?????????????????????????? a’─平均转化1Kg的BOD的需氧量KgO2/KgBOD ????????????????????????? b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。 ??????? 上式也可变换为: ???????????????????? Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QS r ???????????????????? Sr─所去除BOD的量(Kg) ???????????????????? Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·d ??????????????????? Ro/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d???????? 4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法 浙江旺能环保股份有限公司作者:周玉彩 摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。 关键词:参数、垃圾、焚烧、炉排、汽轮机组。 前言: 生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。 一、生活垃圾焚烧炉排炉工艺设计参数的计算 1、待处理生活垃圾的性质 1.1待处理生活垃圾主要组成成分 表1:待处理生活垃圾的性质 表2:待处理生活垃圾可燃物的元素分析(应用基)% 表3:要求设计主要参数 1.2 根据垃圾元素成分计算垃圾低位热值: LHV=81C+246H+26S-26O-6W (Kcal/Kg) =81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。 1.3根据垃圾元素成分计算垃圾高位热值: HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。 2、处理垃圾的规模及能力 焚烧炉3台: 每台炉日处理垃圾350t;

处理垃圾量: 1000t/24h=41.67(t/h); 炉系数:(8760-8000)/8000=0.095; 实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h); 全年处理量: 45.6*8000=36.5*104t; 故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。 3、设计参数计算: 3.1垃圾仓的设计和布置 已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3 求:垃圾的容积工程公式:V=a*T 式中: V----垃圾仓容积m3; a--- 容量系数,一般为 1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻 仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积; T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化; V=a*T=1.2*5*1000/0.35=17142.86(m3 )。 故:垃圾仓的容积设计取18000(m3)。 垃圾仓的深度为Hm Hm=L*D/V=18000/75.5*18.5=12.88(m)。 故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。 3.2焚烧炉的选择与计算 (1)焚烧炉的加料漏斗 焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。 垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。 料斗的容积V D V D=G/24*Kx/ρL 式中: V D---料斗的容积(m3); G--- 每台炉日处理垃圾的量,(t/h);

fda发布咀嚼片关键质量属性指导原则(1)

FDA发布咀嚼片关键质量属性指导原则(中英文对照) I. INTRODUCTION I.引言 This guidance provides manufacturers of chewable tablets for human use with the Center for Drug Evaluation and Research’s (CDER) current thinking on the critical quality attributes that should be assessed during the development of these drug This guidance also provides recommendations about submitting developmental, manufacturing, and labeling information for chewable tablets that must be approved by CDER before they can be distributed. The recommendations in this guidance apply mainly to new drug applications(NDAs), abbreviated new drug applications (ANDAs),3 and certain chemistry, manufacturing, and controls (CMC) supplements to these some of there commendations about the submission of developmental information may also apply to investigational new drug applications (INDs). The recommendations about assessing critical quality attributes apply to all chewable tablets for human use, including non-application products. 本指南向生产者提供了药品审评研究中心(CDER)对人用咀嚼片在研发过程中应评估的关键质量属性的当前想法2。该指南也提供了必须向CDER提交并被其批准的咀嚼片的研发、生产及说明书信息的建议。该指南的这些建议主要针对新药申请(NDAs)、仿制药申请(ANDAs)3和一些化学、生产和质控(CMC)补充申请4。某些建议同样适合于研究性新药申请(即新药临床申请,INDs)。关于评估关键质量属性的建议适用于所有人用咀嚼片,包括非申请产品。 Ingeneral, FDA’s guidance documents do not establish legally enforceableresponsibi lities. Instead, guidances describe the Agency’s current thinking ona topic and should be viewed only as recommendations, unless specificregulatory or statutory requirements are cited. The use of the word should inAgency guidances means that something is suggested or recommended, but notrequired. 通常,FDA的指导文件不具有法律强制性,指南中描述的主题仅代表FDA机构目前的看法,只作为建议,除非是引用具体的法规或条例要求。建议或推荐使用该指导原则,但不是必须的。 II. BACKGROUND II.背景 Chewabletablets are an immediate release (IR) oral dosage form intended to be chewedand then swallowed by the patient rather than swallowed whole. They should be designed to have a pleasanttaste and be easily chewed and swallowed. Chewable tablets should be safe and easy

年产5万吨木薯酒精工艺设计主要参数

年产5万吨木薯酒精工艺设计主要参数 一、物料、热能衡算 1 鲜木薯1085吨/日(淀粉含量按29%) 2 干木薯450吨/日(淀粉含量按68%) 3 硫酸2000公斤/日(浓度为98%) 4 淀粉酶250公斤/日(酶活力为2万单位) 5 糖化酶500公斤/日(酶活力为10万单位) 6 烧碱250公斤/日(固体) 7 水20000M3/日回收利用按50%计算10000M3/日 8 蒸汽670吨/日 9电33200千瓦/日 二、主要设备 1 干式粉碎机25~30吨/小时110千瓦电动机(二台) 2 风机90千瓦电动机(一台) 3螺旋输送机Ф1.2米一个 4旋风分离器Ф1.4米一个 5洗涤塔 4.5M3 Ф1500×2500 一个 6预煮锅35M3/个二个Ф3000×5000 7搅拌器3档Ф1米轴功率11千瓦2套 8料泵流量100M3/小时不锈钢(2台) (型号100IND-30 )

9 蒸煮锅40M3/个4个Ф1300×10000 10 液化喷射器(智能型) 1台45M3/小时 11汽液分离器30M3/个1个Ф2000×10000 12 真空罐1个Ф3500×4500 13 膜冷 1个Ф1400×4500 14 水力喷射器 1台 3000升/小时 13糖化锅40M3/个Ф3200×48002个 14搅拌器3档Ф1米轴功11千瓦 15料泵流量100M3/小时2台(型号:100IND-30 )16螺旋板冷却器150㎡ 1台 17酒母罐 50M3/个 1个 18 蛇管冷却 30㎡/组 19 发酵罐 500M3/个 14个 20螺旋板冷却器 100㎡/个 2台 80㎡/个 4台 60㎡/个 2台 21发酵料泵流量 50M3/小时 24台(型号:80IND-30) 22 成熟醪泵流量 100M3/小时 2台(型号:100IND-40) 23 硫酸贮罐 20M3/个 2个 24硫酸计量罐 2M3/个 1个 25 耐酸泵功率 2~3千瓦 2台(型号:25FB-25 ) 26粗馏塔Ф2.8米 24~26层塔板板距 450~500㎜

简述药品关键质量属性CQA以及指标分析

简述药品关键质量属性 C Q A以及指标分析 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

简述药品关键质量属性(CQA)以及指标分析 关键质量属性(Critical Quality Attributes, CQA): 指物质(药品或活性成分)具备的直接或间接影响物质安全、鉴别、强度、纯度的物理,化学,微生物方面特性。关键质量属性确定的标准是基于药品在不符合该质量属性时对患者所造成危害(安全性和有效性)的严重程度。 关键工艺参数: 简单来说:影响药品关键质量属性的工艺参数 复杂来说:Critical Process Parameter (CPP): A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. ICH Q8 Pharmaceutical Development。 我们来看看常见质量属性以及为什么这些属性是或者不是关键质量属性(重点考虑安全性和有效性) 物理质量属性: 一、外观:(非CQA) 属性目标:让患者容易接受的颜色和形状,无目视观察到的缺陷。 理由:颜色,形状和外观与安全性和有效性无直接关系。因此,它们不是关键。做为质量属性的原因是因为长得好看的东西更容易让人接受...例如小孩吃糖喜欢卡通状的。这是一个看脸的世界。 二、气味:(非CQA) 属性目标:不要那么难闻。 理由:一般来说,可觉察的气味与安全性和有效性无直接关系,但气味可影响患者可接受性并导致投诉。如果药品中使用的药物和辅料都有难闻气味或者在药品生产工艺中使用有机溶剂,则应该在药品研发阶段设定好适量的矫味剂。 三、尺寸大小(CQA) 属性目标:便于吞咽、使用(仿制药考虑与参比制剂一致) 理由:药品(片剂、胶囊、栓剂等)的尺寸大小与吞咽性、可使用性有关;因此,它是关键。为比较容易吞咽、使用和患者接受及遵守治疗方案。仿制药关注药品大小和体积与参比制剂类似。

污水处理中AO工艺的设计参数

工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:5>4,理论消耗量为1.72 ⑤硝化段的负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05·d ⑥硝化段污泥负荷率:<0.185·d ⑦混合液浓度3000~4000() ⑧溶解氧:A段<0.2~0.5 O段>2~4 ⑨值:A段=6.5~7.5 O段=7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化14需氧4.57g,消耗碱度7.1g(以3计)。 反硝化反应还原13将放出2.6g氧,生成3.75g碱度(以3计) ⑿需氧量——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(2)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以应包括这三部分。 ’’4.6 a’─平均转化1的的需氧量2 b’─微生物(以计)自身氧化(代谢)所需氧量2·d。 上式也可变换为: ’·’或’’·

─所去除的量() ─氧的比耗速度,即每公斤活性污泥()平均每天的耗氧量2·d ─比需氧量,即去除1的需氧量2 由此可用以上两方程运用图解法求得a’ b’ —被硝化的氨量 4.6—13-N转化成3-所需的氧量(2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 (θ)(20)×1.02420 θ─实际温度 2.分压力对的影响(ρ压力修正系数) ρ=所在地区实际压力()/101325()=实际值/标准大气压下值 3.水深对的影响 2·(0.101321) ─曝气池中氧的平均饱和浓度() ─曝气设备装设深度()处绝对气压() 9.81×10-3H ─当地大气压力() 21·(1)/[79+21·(1)]?? ─扩散器的转移效率 ─空气离开池子时含氧百分浓度 综上所述,污水中氧的转移速率方程总修正为: α(20)(βρθ×1.024θ-20 {理论推出氧的转移速率α(β)} 在需氧确定之后,取一定安全系数得到实际需氧量

简述药品关键质量属性 CQA 以及指标分析

简述药品关键质量属性(CQA)以及指标分析 关键质量属性(Critical Quality Attributes, CQA): 指物质(药品或活性成分)具备的直接或间接影响物质安全、鉴别、强度、纯度的物理,化学,微生物方面特性。关键质量属性确定的标准是基于药品在不符合该质量属性时对患者所造成危害(安全性和有效性)的严重程度。 关键工艺参数: 简单来说:影响药品关键质量属性的工艺参数 复杂来说:Critical Process Parameter (CPP): A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. ICH Q8 Pharmaceutical Development。 我们来看看常见质量属性以及为什么这些属性是或者不是关键质量属性(重点考虑安全性和有效性) 物理质量属性: 一、外观:(非CQA) 属性目标:让患者容易接受的颜色和形状,无目视观察到的缺陷。

理由:颜色,形状和外观与安全性和有效性无直接关系。因此,它们不是关键。做为质量属性的原因是因为长得好看的东西更容易让人接受...例如小孩吃糖喜欢卡通状的。这是一个看脸的世界。 二、气味:(非CQA) 属性目标:不要那么难闻。 理由:一般来说,可觉察的气味与安全性和有效性无直接关系,但气味可影响患者可接受性并导致投诉。如果药品中使用的药物和辅料都有难闻气味或者在药品生产工艺中使用有机溶剂,则应该在药品研发阶段设定好适量的矫味剂。 三、尺寸大小(CQA) 属性目标:便于吞咽、使用(仿制药考虑与参比制剂一致) 理由:药品(片剂、胶囊、栓剂等)的尺寸大小与吞咽性、可使用性有关;因此,它是关键。为比较容易吞咽、使用和患者接受及遵守治疗方案。仿制药关注药品大小和体积与参比制剂类似。 四、刻痕和分割性(CQA) 属性目标:便于使用(片剂可分割一半计量) 理由:部分理由同上,在药品设计阶段依据临床使用要求制定,涉及剂量问题,影响患者使用的有效性与安全性。

相关主题
文本预览
相关文档 最新文档