当前位置:文档之家› 气体保护焊CO2焊接飞溅大的原因分析

气体保护焊CO2焊接飞溅大的原因分析

气体保护焊CO2焊接飞溅大的原因分析
气体保护焊CO2焊接飞溅大的原因分析

气体保护焊CO2焊接飞溅大的原因分析

在CO2焊中,大部分焊丝熔化金属可过渡到熔池,有一部分焊丝熔化金属飞向熔池之外,飞到熔池之外的金属称为飞溅。特别是粗焊丝CO2气体保护焊大参数焊接时,飞溅更为严重,飞溅率可达20%以上,这时就不可能进行正常焊接工作了。飞溅是有害的,它不但降低焊接生产率,影响焊接质量,而且使劳动条件变差。

由于焊接参数的不同,CO2焊具有不同的熔滴过渡形式,从而导致不同性质的飞溅。其中,可分为熔滴自由过渡时的飞溅和短路过渡时的飞溅。

(1)熔滴自由过渡时的飞溅熔滴自由过渡时的飞溅主要形式,在CO2气氛下,熔滴在斑点压力的作用下上挠,易形成大滴状飞溅。这种情况经常发生在较大电流焊接时,如用直径1.6mm焊丝、电流为300~350A,当电弧电压较高时就会产生。如果再增加电流,将产生细颗粒过渡,这时飞溅减小,主要产生在熔滴与焊丝之间的缩颈处,该处的电流密度较大使金属过热而爆断,形成颗粒细小的飞溅。在细颗粒过渡焊接过程中,可能由熔滴或熔池内抛出的小滴飞溅。这是由于焊丝或工件清理不当或焊丝含碳量较高,在熔化金属内部大量生成CO等气体,这些气体聚积到一定体积,压力增加而从液体金属中析出,造成小滴飞溅。大滴过渡时,如果熔滴在焊丝端头停留时间较长,加热温度很高,熔滴内部发生强烈的冶金反应或蒸发,同时猛烈地析出气体,使熔滴爆炸而生成飞溅。另外,在大滴状过渡时,偶尔还能出现飞溅,因为熔滴从焊丝脱落进入电弧中,在熔滴上出现串联电弧,在电弧力的作用下,熔滴有时落入熔池,也可能被抛出熔池而形成飞溅。(2)熔滴短路过渡时的飞溅短路过渡时的飞溅形式很多。飞溅总是发生在短路小桥破断的瞬时。飞溅的大小决定于焊接条件,它常常在很大范围内改变。产生飞溅的原因目前有两种看法,一种看法认为飞溅是由于短路小桥电爆炸的结果。当熔滴与熔池接触时,熔滴成为焊丝与熔池的连接桥梁,所以称为液体小桥,并通过该小桥使电路短路。短路之后电流逐渐增加,小桥处的液体金属在电磁收缩力的作用下急剧收缩,形成很细的缩颈。随着电流的增加和缩颈的减小,小桥处的电流密度很快增加,对小桥急剧加热,造成过剩能量的积聚,最后导致小桥发生气化爆炸,同时引起金属飞溅。另一种看法认为短路飞溅是因为小桥爆断后,重新引燃电弧时,由于CO2气体被加热引起气体分解和体积膨胀,而产生强烈的气动冲击作用,该力作用在熔池和焊丝端头的熔滴上,它们在气动冲击作用下被抛出而产生飞溅。试验表明,前一种看法比较正确。飞溅多少与电爆炸能量有关,此能量主要是在小桥完全破坏之前的100~150μs时间内积聚起来的,主要是由这时的短路电流(即短路峰值电流)和小桥直径所决定。

小电流时,飞溅率通常在5%以下。限制短路峰值电流为最佳值时,飞溅率可降低到1%左右。在电流较大时,缩颈的位置对飞溅影响极大。所谓缩颈的位置是指缩颈出现在焊丝与熔滴之间,还是出现在熔池与熔滴之间。如果是前者,小桥的爆炸力推动熔滴向熔池过渡,而后者正相反,小桥爆炸力排斥熔滴过渡,并形成大量飞溅,最高可达25%以上。冷态引弧时或在焊接参数不合适的情况下(如送丝速度过快而电弧电压过低,焊丝伸出长度过大或焊接回路电感过大等)常常发生固体短路。这时固体焊丝可以直接被抛出,同时熔池金属也被抛出。在大电流射滴过渡时,偶尔发生短路,由于短路电流很大。所以将引起十分强烈的飞溅。

根据不同熔滴过渡形式下飞溅的不同成因,应采用不同的降低飞溅的不同成因,应采用不同的降低飞溅的方法:

1)在熔滴自由过渡时,应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接材料,如选用含C量低、具有脱氧元素Mn和Si的焊丝H08Mn2SiA等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。

2)在短路过渡时,可以采用(Ar+CO2)混合气体代替CO2以减少飞溅。如加入φ(Ar)=20%~30%的Ar。这是由于随着含氩量的增加,电弧形态和熔滴过渡特点发生了改变。燃弧时电弧的弧根扩展,熔滴的轴向性增强。这一方面使得熔滴容易与熔池会合,短路小桥出现在焊丝和熔池之间。另一方面熔滴在轴向力的作用下,得到较均匀的短路过渡过程,短路峰值电流也不太高,有利于减少飞溅率。在纯CO2气氛下,通常通过焊接电流波形控制法,降低短路初期电流以及短路小桥破断瞬间的电流,减少小桥电爆炸能量,达到降低飞溅的目的。

通过改进送丝系统,采用脉冲送丝代替常规的等速送丝,使熔滴在脉动送进的情况下与熔池发生短路,使短路过渡频率与脉动送丝的频率基本一致,每个短路周期的电参数的重复性好,短路峰值电流也均匀一致,其数值也不高,从而降低了飞溅。

如果在脉动送丝的基础上,再配合电流波形控制,其效果更佳。采用不同控制方法时,焊接飞溅率与焊接电流之间的关系。

焊接飞溅产生的原因及克服途径

焊接飞溅产生的原因及克服途径 在CO2焊中,大部分焊丝熔化金属可过渡到熔池,有一部分焊丝熔化金属飞向熔池之外,飞到熔池之外的金属称为飞溅。特别是粗焊丝CO2气体保护焊大参数焊接时,飞溅更为严重,飞溅率可达20%以上,这时就不可能进行正常焊接工作了。飞溅是有害的,它不但降低焊接生产率,影响焊接质量,而且使劳动条件变差。 由于焊接参数的不同,CO2焊具有不同的熔滴过渡形式,从而导致不同性质的飞溅。其中,可分为熔滴自由过渡时的飞溅和短路过渡时的飞溅。 (1)熔滴自由过渡时的飞溅: 在CO2气氛下,熔滴在斑点压力的作用下上挠,易形成大滴状飞溅。这种情况经常发生在较大电流焊接时,如用直径1.6mm焊丝、电流为300~350A,当电弧电压较高时就会产生。如果再增加电流,将产生细颗粒过渡,这时飞溅减小,主要产生在熔滴与焊丝之间的缩颈处,该处的电流密度较大使金属过热而爆断,形成颗粒细小的飞溅。在细颗粒过渡焊接过程中,可能由熔滴或熔池内抛出的小滴飞溅。这是由于焊丝或工件清理不当或焊丝含碳量较高,在熔化金属内部大量生成CO等气体,这些气体聚积到一定体积,压力增加而从液体金属中析出,造成小滴飞溅。大滴过渡时,如果熔滴在焊丝端头停留时间较长,加热温度很高,熔滴内部发生强烈的冶金反应或蒸发,同时猛烈地析出气体,使熔滴爆炸而生成飞溅。另外,在大滴状过渡时,偶尔还能出现飞溅,因为熔滴从焊丝脱落进入电弧中,在熔滴上出现串联电弧,在电弧力的作用下,熔滴有时落入熔池,也可能被抛出熔池而形成飞溅。 (2)熔滴短路过渡时的飞溅: 熔滴短路过渡时的飞溅形式很多。飞溅总是发生在短路小桥破断的瞬时。飞溅的大小决定于焊接条件,它常常在很大范围内改变。产生飞溅的原因目前有两种看法,一种看法认为飞溅是由于短路小桥电爆炸的结果。当熔滴与熔池接触时,熔滴成为焊丝与熔池的连接桥梁,所以称为液体小桥,并通过该小桥使电路短路。短路之后电流逐渐增加,小桥处的液体金属在电磁收缩力的作用下急剧收缩,形成很细的缩颈。随着电流的增加和缩颈的减小,小桥处的电流密度很快增加,对小桥急剧加热造成过剩能量的积聚,最后导致小桥发生气化爆炸,同时引起金属飞溅。另一种看法认为短路飞溅是因为小桥爆断后,重新引燃电弧时,由于CO2气体被加热引起气体分解和体积膨胀而产生强烈的气动冲击作用,该力作用在熔池和焊丝端头的熔滴上,它们在气动冲击作用下被抛出而产生飞溅。试验表明,前一种看法比较正确。飞溅多少与电爆炸能量有关,此能量主要是在小桥完全破坏之前的100~150μs时间内积聚起来的,主要是由这时的短路电流(即短路峰值电流)和小桥直径所决定。 小电流时,飞溅率通常在5%以下。限制短路峰值电流为最佳值时,飞溅率可降低到1%左右。在电流较大时,缩颈的位置对飞溅影响极大。所谓缩颈的位置是指缩颈出现在焊丝与熔滴之间,还是出现在熔池与熔滴之间。如果是前者,小桥的爆炸力推动熔滴向熔池过渡,而后者正相反,小桥爆炸力排斥熔滴过渡,并形成大量飞溅,最高可达25%以上。冷态引弧时或在焊接参数不合适的情况下(如送丝速度过快而电弧电压过低,焊丝伸出长度过大或焊接回路电感过大等)常常

二氧化碳焊接时减少飞溅的办法

CO2焊焊接中气孔及飞溅原因及预防 一、焊缝金属产生气孔 是熔池金属中的气体在冷凝过程中来不及逸出。由于CO2气体保护焊的时,熔池表面没有熔渣覆盖,且CO2气流对焊缝能起一定的冷却作用,故熔池金属冷凝较快,增加了产生气孔的可能性。 CO2电弧焊时,溶池表面没有溶渣覆盖,CO2气流又有冷却作用,因而溶池凝固比较快,容易在焊缝中产生气孔。 可能产生的气孔主要有三种:一氧化碳气孔、氢气孔、氮气孔。 (一)一氧化碳气孔 焊丝中脱氧元素含量不足:当焊丝金属中脱氧元素不足,焊接过程中就会较多的熔于熔池金属中。随后在熔池冷凝时溶池中的FeO和C会进行发生如下的化学反应: (1) 当熔池金属冷凝过快时,生成的气体来不完全熔池逸出从而成为气孔。通常这类气孔长出现焊缝根部与表面,且呈针尖状。 (二)氮气孔 气体保作用不良:在CO2气体保护过程中如果因工艺参数选择不当等原因而保护作用变坏,或者CO2气体纯度不高,在电弧高温下空气中的氮会熔到熔池金属中。当熔冷凝时,随着温度的降低,氮在液态金属中溶解度降低,尤其是在结晶过程的时,溶解度将急剧下降。这时从金属中析出的氮若来不及外逸,常会在焊缝表面出现蜂窝状气孔,或者以弥散形式的微气孔分布于焊缝金属中。这些气孔往往在抛光后检验或水压试验时才能发现。 (三)氢气孔 焊缝金属溶解了过量的氮:CO2气体保护焊时,如果焊丝及焊件表面有铁锈油污与水分,或者CO2气体中含有水分CO2,则在电弧高温作用下这些物质会分解并产生氢,氢在高温下也易熔于熔池金属中,随后,当熔池冷凝结晶时,氢在金属中的溶解度急剧下降。 若析出的氢来不及从熔池中逸出,就引起焊缝金属产生氢气孔。不过,由于CO2气体具有氧化性,氢和氧会化合,故出现氢气孔的可能性较小,所以CO2气体保护焊是一种公认的低氢焊接方法。 减少气孔的措施 1.一氧化碳气孔如果焊丝中含有足够的脱氧元素Si和Mn避免焊接过程中被大量氧化,以及限制焊丝中的焊碳量,就可以拟制前面提到的氧化反应,有效防止CO气孔。 2.氮气孔要避免产生氮气孔最主要的是应增强气体的保护效果,防止空气入侵,焊接过程中保证保护气层稳定、可靠,是防止焊缝中气孔的关键,且选用的气体纯度要高。另外,

焊接飞溅的减少方法及应用

CO2气体保护焊时容易产生飞溅,这是由CO2气体性质决定的,问题在于应把CO2焊的飞溅减少到最低的程度。通常颗粒状过渡过程的飞溅程度,要比短路过渡过程严重的多。当使用颗粒状过渡形式焊接,飞溅损失应控制在10%以下,短路过渡形式的飞溅量在2~4%。 CO2焊时的大量飞溅。不仅增加了焊丝的损耗,并使焊件表面被金属熔滴溅污,影响外观及增加辅助工作量。更主要的是容易造成喷嘴堵塞,使气体保护效果变差,导致焊缝容易形成气孔。如果金属熔滴沾在导电嘴上,还会破坏焊丝的正常给送,引起焊接过程不稳定,使焊缝成形变差或产生焊接缺陷。为此,CO2焊必须重视飞溅问题,应该尽量降低飞溅的不利影响,才能确保CO2焊的生产率和焊缝质量。 CO2焊产生飞溅的原因及减少飞溅的措施主要有以下几方面 1、由冶金反应产生的飞溅 这种飞溅主要由CO气体造成。CO在电弧高温作用下,体积急速膨胀,压力迅速增大,使熔滴和熔池金属产生爆破,从而产生大量飞溅。应采用含有锰硅脱氧元素的焊丝,并降低焊丝中的含碳量,这种飞溅可大为减少。 2、由极点压力产生的飞溅 这种飞溅主要取决于电弧的极性,当使用正极性焊接时(焊件接正极、焊丝接负极),正离子飞向焊丝端部的熔滴,机械冲击力大,形成大颗粒飞溅。而反极性焊接时,飞向焊丝端部的电子撞击力小,致使极点压力大为减小,因而飞溅较少。所以CO2焊应选用直流反接。 3、熔滴短路时引起的飞溅 这种飞溅发生在短路过渡过程中,当焊接电源的动特性不好时,则更显严重。短路电流增长速度过快,或者短路最大电流值过大时,当熔滴刚与熔池接触,由于短路电流强烈加热及电磁收缩力的作用,结果使缩颈处的液态金属发生爆破,产生较多的细颗粒飞溅,如果短路电流增长速度过慢,则短路电流不能及时增大到要求的电流值,此时,缩颈处就不能迅速断裂,使伸出导电嘴的焊丝在电阻热的的长时间加热下,成段软化和断落,并伴随着较多的大颗粒飞溅。减少飞溅的办法是调节焊接回路电感值,若串入焊接回路的电感值合适,则爆声小,过渡过程较稳定。 4、非轴向颗粒状过渡造成的飞溅 这种飞溅是发生在颗粒状过渡过程中的,由于电弧的斥力作用而产生的。当熔滴在极点压力和弧柱中气流的压力共同作用下,熔滴被推到焊丝端部的一边,并抛到熔池外边去,产生大颗粒飞溅。 5、焊接工艺参数选择不当引起的飞溅 这种飞溅是焊接电流、电弧电压和回路电感等焊接工艺参数选择不当引起的,只有正确的选择CO2的焊接工艺参数,才会减少产生这种飞溅的可能性。

如何防止焊接飞溅【管道焊接防飞溅总结】

如何防止焊接飞溅【管道焊接防飞溅总结】管道焊接防飞溅 一、管道焊接中常用的焊接方法及特点 表1常用焊接方法基本特点与应用 二、管道焊接中常用的防飞溅措施: 1、 2、 3、 4、根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,即选用合适的焊接参数;选用合适的气体配比选用合适的焊材在坡口表面喷涂防溅剂。 三、手工电弧焊飞溅控制

1、焊条电弧焊是用手工操纵焊条进行焊接的电弧焊方法。焊条电弧焊时,在焊条末端和工件之间燃烧的电弧所产生的高温使焊条药皮与焊芯及工件熔化,熔化的焊芯端部迅速地形成细小的金属熔滴,通过弧柱过渡到局部熔化的工件表面,融合一起形成熔池。药皮熔化过程中产生的气体和熔渣,不仅使熔池和电弧周围的空气隔绝,而且和熔化了的焊芯、母材发生一系列冶金反应,保证所形成焊缝的性能。随着电弧以适当的弧长和速度在工件上不断地前移,熔池液态金属逐步冷却结晶,形成焊缝。在焊条熔化金属冲击下,部分熔滴飞离熔池形成了飞溅。由于焊接飞溅的不可避免,对构件外观带来不良影响。 2、手工电弧焊控制飞溅的方法: 1)、应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接,如选用含C 量低、具有脱氧元素Mn 和Si 的焊材等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。 2)、选用合适的焊接极性和电源。如尽量采用直流反接,下降外特性或是平外特性的焊机。 3)、在焊前坡口两边喷涂防飞溅剂。

四、CO2气体保护焊飞溅控制 1、 CO2气体保护焊飞溅的危害 焊接过程中,大部分焊丝熔化金属过渡到熔池中,有一部分焊丝 熔化金属飞向熔池之外的金属形成飞溅。气体保护焊最显著的缺点是飞溅大,飞溅率一般为3%~20%,当飞溅率达到20% 以上时,就不能 进行正常焊接了。 CO2气体保护焊飞溅的危害还体现在:降低焊接熔敷效率,降低 焊接生产率;飞溅物易粘附在焊件上,影响焊接质量,使焊接劳动条件变差;焊接熔池不稳定,使焊缝外形较为粗糙等。 2、CO2 气体保护焊飞溅产生的机理 CO2气体在电弧温度区间热导率较高,加上分解吸热,消耗电弧 大量热能,从而引起弧柱及电弧斑点强烈收缩,即使增大电流,弧柱和斑点直径也很难扩展,这是CO2气体保护焊产生飞溅的最主要原因,是由CO2气体本身物理性质决定的。 下面我们就从CO2气体保护焊熔滴过渡的几种形式,分别阐述飞 溅产生的原因。

白车身点焊飞溅解决方法探讨

本文通过分析点焊飞溅产生的原因,提出白车身焊接过程中产生飞溅的影响因素,结合生产实例, 对降低点焊飞溅提出相应的解决方法,从而提高了车身表面质量. 本文通过分析点焊飞溅产生的原因,提出白车身焊接过程中产生飞溅的影响因素,结合生产实例,对降低点焊飞溅提出相应的解决方法,从而提高了车身表面质量。 随着我国汽车工业的快速发展,电阻焊技术因其熔核形成时始终被塑性环包围,熔化金属与空气隔绝,具备以下优点:冶金过程简单,热影响区小,变形与应力小;无需焊丝、焊条等填充金属,以及氧、乙炔和氩等焊接耗材,焊接成本低;操作简单;生产率高,噪声小且无有害气体。电阻焊方法分点焊、缝焊、凸焊和对焊四种,其中点焊应用最多,但点焊过程中所产生的飞溅对白车身外表面质量影响很大,需投入大量的人力进行打磨,增加了劳动强度;飞溅还有碍于环境保护与安全,还会使核心液态金属量减少,降低了机械性能。所以在生产过程中,要尽量避免飞溅的产生。本文结合生产实际,对点焊飞溅的整治方法进行了探讨。 点焊飞溅产生的原因 点焊是焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。在点焊过程中,由焊件贴合面或电极与焊件表面间喷出微细熔化金属颗粒的现象被称为“点焊飞溅”或“点焊喷溅”。在点焊加热过程中,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强烈再结晶而形成塑性环。在通电加热阶段,它始终处于“产生、扩展,部分转化为液态熔核”这一动态变化过程,即先于熔核形成且始终伴随熔核一起变大(见图1),它的存在可防止周围气体侵入和保证熔核液体金属不至于沿板缝被挤出形成飞溅。如果加热过急,而周围塑性还未形成,被急剧加热的接触点由于温度上升极快,使内部金属气化,便以飞溅形式向板间缝隙喷射,成为前期飞溅。形成最小尺寸熔核后,继续加热,熔核和塑性环不断向外扩展,当熔核沿径向的扩展速度大于塑性环扩展速度时,则产生后期飞溅。如果熔化核心轴向增长过高,在电极压力作用下也可能冲破塑性环向表面

金属焊接防飞溅剂使用常见问题

金属焊接防飞溅剂使用常见问题 ?1、什么样的企业会用到焊接防飞溅剂(包括高效焊接防飞溅剂)? ?2、焊接防飞溅剂的用量如何? ?3、焊接防飞溅剂从包装来看有何差异? ?4、焊接防飞溅剂如何应用在钢结构企业? ?5、焊接防飞溅剂如何应用在造船厂? ?6、焊接防飞溅剂如何应用在汽车行业? ?7、用了焊接防飞溅剂会不会影响焊后涂装等作业? ?8、焊接防飞溅剂的应用领域? ?9、焊接时产生的焊渣对工作造成的不利影响? ?10、金属焊接防飞溅剂安全数据报告 ?11、使用焊接防飞溅剂是否会对焊接质量产出负面影响? ?12、使用焊接防飞溅剂是否会产出气孔?

?1焊接防飞溅剂有几种类型及其区别? 从形态上分,焊接防飞溅剂可分为:水基型和涂料式。从包装上分,分为喷雾剂和桶装式。 水性的焊接防飞溅剂凭借其良好的除渣效果,极有竞争力的市场价格,以及对焊后喷漆等后序工作无不良影响,并且使用方便用量节省焊后工件也较以前美观等诸多优势,目前在市场占据着主导地位。 涂料式的防飞溅剂铺展性比水性的效果更好,并可以重复多次焊接,但价格要高很高,同时对后序工艺也有影响。 从性价比的角度来考虑,除了少数的汽车工业和造船工业等有部分在使用,在市场上占有份额较少。 ?2什么样的企业会用到焊接防飞溅剂? 各种建筑筑路机械、汽车、造船、钢结构、机械加工、工程机械、压力容器、军事装备工业等有焊接作业的企业。 ? 3 焊接防飞溅剂的用量如何? 以我公司HY-177为例,每公斤可以喷55平方米左右的面积,用于钢结构,每公斤能喷120-150米的焊缝。一般中型企业,每月150KG足够,小型企业200KG能用一年,当然这也要根据焊接作业的多少而定。使用焊接防飞溅剂,能提高工作效率,减少工人的劳动强度,省时省力省工省心。当然对于有的企业在劳动力剩余的条件下,可能从目

防飞溅措施

减少飞溅的措施 (一)正确选择工艺参数 1.焊接电流和电压在CO2电弧中,对于每种直径的焊丝,其飞溅率和焊接电流之间都存在一定的规律。在小电流区域(短路过度区域)飞溅率较小,进入大电流区域后(细颗粒过度区域)飞溅率也较小,而中间区的飞溅率最大,电流小于150A或大于300A飞溅率都较小,介于两者之间的飞溅率较大。 在选择焊接电流时,应尽可能避开飞溅率高的电流区域。电流确定后在匹配适当的电压,以确保飞溅率最小, 2.焊枪角度焊枪垂直时飞溅量最小,倾斜角度最大,飞溅越多。焊枪前倾或后倾最好不要超过20度。 3.焊丝伸出长度焊丝伸出长度对飞溅也有影响。焊丝长度尽可能缩短。(二)选用合适的焊丝材料,保护气成分。例如: 1. 尽可能选用焊碳量低的钢焊丝,以减小焊接过程中生成的CO气体。实践表明,当焊丝中焊碳量降低到0.04%时,可大大减小飞溅; 2. 采用管状焊丝进行焊接。由于管状焊丝的药芯中含有脱氧剂稳弧剂等造成气-渣联合保护,使焊接过程中非常稳定,飞溅可明显减小; (三)在长弧焊时采用CO2 的混合气作保护气。 虽然通过合理选择规范参数以及采用潜弧方法等可降低飞溅率,但飞溅量仍然较大。在CO2气体中加入一定数量的Ar气,是减少颗粒过度焊金属飞溅最有效的方法。 在CO2气体中加入Ar气后,改变了纯二氧化碳气体的上述物理性质和化学性质。随着Ar气比例增大,飞溅逐渐减少。CO2+Ar混合气体除可克服飞溅外,也改善了焊缝成型,对焊缝溶深、焊缝高度及余高都有影响。 当含60%时可明显的使过渡熔滴的尺寸变细,甚至得到喷射过渡,改善了熔滴过渡特性,减小金属飞溅。 (四)短路过度焊接时限制金属液桥爆断能量 短路过度焊接时,会引起金属飞溅,在短路过度的最后阶段,由于短路电流的急剧增大,使桥液金属迅速地加热,造成了热量的凝聚,最后导致桥爆裂而产生飞溅。 减少此种飞溅的方法:在短路过渡焊接时,合理选择焊接电源特性并匹配合适的可调电流,以便当采用不同直径的焊丝焊接时均可调得合适的短路电流增长速度 (五)采用低飞溅率焊丝 1.对于实芯焊丝,在保证机械性能的前提下,应尽可能降低其中含碳量,并添加适量的钛、铝等合金元素。无论颗粒过度焊接或短路过度焊接都可显著减少由CO等气体引起的飞溅。 2.采用以Cs2CO3,K2CO3等物质活化处理过的焊丝,进行正极性焊接。 3.采用药芯焊丝。采用药芯焊丝的金属飞溅率为实心焊丝的1/3。 (六)焊条烘干后再使用 (七)经常清理焊枪喷嘴,焊接之前在工件上喷防溅液.

浅析CO2焊飞溅产生的原因防止措施

浅析CO2气体保护电弧焊飞溅产生的原因及 控制措施 岳阳工业技术学院曾利艳 摘要:本文对二氧化碳气体保护电弧焊产生飞溅的原因和控制措施作出了浅显分析研究。 关键词:二氧化碳焊飞溅 前言 二氧化碳气体保护电弧焊(以下简称CO2焊)是20世纪50年代初期发展起来的一种焊接技术,目前已经发展成为一种重要的焊接方法。CO2焊主要用于焊接低碳钢及低合金钢等黑色金属。此外,CO2焊还可以用于零件的堆焊、铸件的焊补等方面。目前CO2焊已在汽车制造、机车和车辆制造、化工机械、农业机械、矿山机械等部门得到广泛应用。 CO2焊是利用CO2作为焊接保护气体的一种熔化极、气体保护的电弧焊方法。该方法具有如下优点:(1)生产效率高和节省能量。由于该方法焊接电流密度大、电弧能量集中、焊丝熔化效率高、母材的熔深大、焊接速度快,焊后不需要清理焊渣,是一种高效节能的方法。生产率是焊条电弧焊的1~4倍。(2)焊接成本低。由于CO2气体价格低廉,对焊前的生产要求不高,焊后清理和校正工时少;同时还避免了焊条电弧焊中频繁更换焊条的缺点。(3)焊接变形小。由于CO2 焊时,电弧热量集中、热输入较低和CO2气体具有较强的冷却作用,使焊接工件受热面积小,变形小。特别是在焊接薄板时,CO2 焊的变形比其他焊接方法变形要小。(4)由于保护气体的氧化性,焊缝中含氢量少,提高了焊接低合金高强度结构钢时抗冷裂纹的能力。 正是由于CO2 焊有诸多的优点所以在大型金属结构制造中广泛应用。如:中联重科、三一重工、中集集团等企业。CO2 焊完成的焊接

金属结构已占其企业焊接总量的98%以上。在大型结构制造企业中CO2 焊已发挥着不可替代的作用。 但在CO2焊焊接过程中会产生较大的飞溅,金属飞溅是CO2焊中较为突出的问题。也是CO2焊的主要缺点。严重时甚至影响焊接过程的正常进行。因此如何减少飞溅在CO2焊中就显得尤为重要。下面将主要产生飞溅原因及防止措施作几个方面分析: 一气体爆炸引起的飞溅。 熔滴过渡时,由于熔滴中的FeO与C反应产生的CO气体,在电弧高温下急剧膨胀,使熔滴爆破而引起的飞溅。 防止措施:熔出液态金属的中的FeO是引起飞溅的主要原因,如何使FeO脱氧呢?通常的措施是在焊丝(或药芯焊丝的药粉中)加入足量的对氧亲和力比Fe大的合金元素(即脱氧剂)利用这些元素使FeO中的Fe还原,即使FeO脱氧。实践证明,用Si、Mn联合脱氧效果是最好的。目前,应用最广泛的H08Mn2SiA(即型号ER49-1)焊丝和H11Mn2SiA(即型号ER50-6)焊丝,就是采用Si、Mn联合脱氧的。 二由电弧斑点压力而引起的飞溅。 因CO2气体高温分解吸收大量电弧热量,对电弧的冷却作用较强,使电弧电场强度提高,电弧收缩,弧根面积减小,增大了电弧的斑点压力,熔滴在斑点压力下十分不稳定,形成飞溅。 防止措施:在CO2气体中加入Ar气后,改变了纯CO2气体的物理性质。随着Ar气比例增大,飞溅减少。飞溅变化最显著的是细滴直径>0.8mm的飞溅,对于<0.8mm的细滴飞溅影响不大。混合气体的成本虽然比纯CO2气体高,但可以从材料损失降低和节省清理飞溅的辅助时间上得到补偿。所以采用CO2+Ar混合气体的总成本还有降低的趋势。混合气的混和比主要以氩气为主﹐加入适量的二氧化碳(15~30%)或氧(0.5~5%)。 三由极点压力引起的飞溅 这种飞溅主要取决于电弧的极性。当采用正极性焊接时,正离子

金属焊接防飞溅剂使用常见问题解答

金属焊接防飞溅剂使用常见问题解答 1焊接防飞溅剂有几种类型及其区别? 从形态上分,焊接防飞溅剂可分为:水基型和式。从包装上分,分为喷雾剂和桶装式。 水性的焊接防飞溅剂凭借其良好的除渣效果,极有竞争力的市场价格,以及对焊后喷漆等后序工作无不良影响,并且使用方便用量节省焊后工件也较以前美观等诸多优势,目前在市场占据着主导地位。 涂料式的防飞溅剂铺展性比水性的效果更好,并可以重复多次焊接,但价格要高很高,同时对后序工艺也有影响。从性价比的角度来考虑,除了少数的汽车工业和造船工业等有部分在使用,在市场上占有份额较少。 2什么样的企业会用到焊接防飞溅剂? 各种建筑筑路机械、汽车、造船、钢结构、机械加工、工程机械、压力容器、军事装备工业等有焊接作业的企业。 3 焊接防飞溅剂的用量如何? 以我公司HY-177为例,每公斤可以喷55平方米左右的面积,用于钢结构,每公斤能喷120-150米的焊缝。一般中型企业,每月150KG足够,小型企业200KG能用一年,当然这也要根据焊接作业的多少而定。使用焊接防飞溅剂,能提高工作效率,减少工人的劳动强度,省时省力省工省心。当然对于有的企业在劳动力剩余的条件下,可能从目前考虑,要增加成本,通过很多企业的实践证明,选择焊接防飞溅剂从综合角度长远考虑是对的。 4焊接防飞溅剂从包装来看有何差异? 喷雾罐的包装,成本高,价格(每公斤)也要高出桶装的3-4倍。效果比,前者由于内部压力,喷得比较细,如果不是很精密的焊接作用,效果差不多。桶装的我公司一般都给用户免费配上喷壶,使用时,先装入喷壶,在焊接。用起来喷雾罐方便,但考虑到其过高的价格,很多企业都喜欢用桶装的。 5如何应用在钢结构企业? HY-177金属焊接防飞溅剂在某大型钢结构公司的应用中,可适用于其生产的各类钢结构工件,尤其是各类建筑钢构件。焊前在焊缝两侧用小喷壶均匀地喷上防飞溅剂,焊接作用后,用人工持小铲子轻轻铲一下,即可扫落焊渣。如果要求不苛刻,可直接喷油漆。1kg 的HY-177金属焊接防飞溅剂可以喷40?左右的面积,在钢结构的应用中,1kg能喷120~150m的焊缝。一般中型企业,每月150kg足够,小型企业200kg能用一年,当然这也需根据焊接作业的多少适时变化。 6如何应用在造船厂?

防止焊接飞溅方法大全

防止焊接飞溅方法大全 (1)采用活化处理过的焊丝可以细化金属熔滴减少飞溅,改善焊缝的成形。所谓活化处理就是在焊丝表面涂一层薄的碱土金属或稀土金属的化合物来提高焊丝发射电子的能力,最常用的活化剂是铯(Cs)的盐类如CsCO3,如稍加一些K2CO3,Na2CO3,则效果更显著。(2)限制焊丝中的含碳量在0.08~0.11%范围内,为此可选用超低碳焊丝,如HO4Mn2SiTiA。(3)必要时选用药芯焊丝,使熔滴表面有熔渣覆盖,可减少飞溅,使焊缝盛开美观。(4)在CO2气体中加入少量的Ar气,改善电弧的热特性和氧化性,减少飞溅。 (5)采用直流反接,使焊丝端部的极点压力较小。 (6)选择最佳的焊接规范,焊接电流、焊接电压不要过大或过小。 (7)选择最佳的电感值,CO2气体保护焊时电流的增长速度与电感有关,即:di/dt=(U0-iR)/L 式中:U0——电源的空载电压;I——瞬间电流;R——焊接回路中的电阻;L——焊接回路中的电感。金属加工微信,真不错,马上关注吧! 由此可知电感越大,短路电流的增大速度di/dt越小。当焊接回路中的电感值在0~0.2毫亨范围内变化时,对短路电流上升速度的影响特别显著。 一般在用细丝CO2气体保护焊时,由于细焊丝的熔化速度比较快,熔滴过渡的周期短,因此需要较快的电流增长速度,电感应该选小些。相反,粗焊丝的熔化速度较慢,熔滴过渡的周期长,则要求电流增长速度慢些,所以应该选较大的电感值。 (8)在喷咀上涂一层硅油或防堵剂,可以有效的防止喷咀堵塞。使用焊接飞溅清除剂,喷涂在工件上,可以阻止飞溅物与母材直接接触,飞溅物用钢丝刷轻轻一刷就能把飞溅物清除。根据不同熔滴过渡形式下飞溅的不同成因,应采用不同的降低飞溅方法 (1)在熔滴自由过渡时,应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接材料,如选用含C量低、具有脱氧元素Mn和Si的焊丝H08Mn2SiA 等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。 (2)在短路过渡时,可以采用(Ar+CO2)混合气体代替CO2以减少飞溅。如加入φ(Ar)=20%~30%的Ar。这是由于随着含氩量的增加,电弧形态和熔滴过渡特点发生了改变。燃弧时电弧的弧根扩展,熔滴的轴向性增强。这一方面使得熔滴容易与熔池会合,短路小桥出现在焊丝和熔池之间。另一方面熔滴在轴向力的作用下,得到较均匀的短路过渡过程,短路峰值电流也不太高,有利于减少飞溅率。 在纯CO2气氛下,通常通过焊接电流波形控制法,降低短路初期电流以及短路小桥破断瞬间的电流,减少小桥电爆炸能量,达到降低飞溅的目的。 关于焊接防飞溅剂 从形态上分,焊接防飞溅剂分为:油基型、水基型和涂料式。从包装上分,分为喷雾剂和桶装式。从形态上看,油基的防飞溅剂由于其焊后不易清洗,价格也没有太大优势,已被市场所淘汰。水性的焊接防飞溅剂凭借其良好的除渣效果,极有竞争力的市场价格,以及对焊后喷漆等后序工作无不良影响,并且使用方便、用量节省、焊后工件也较以前美观等诸多优势,目前在市场占据着主导地位。涂料式的防飞溅剂铺展性比水性的效果更好,并可以重复多次焊接,但价格要高很多。从性价比的角度来考虑,除了少数的汽车工业和造船工业等有部分在使用,在市场上占有份额较少。 来源:焊接与切割联盟 金属加工微信由创刊于1950年的《金属加工》杂志(包括冷加工和热加工两个半月刊)和金属加工在线(https://www.doczj.com/doc/2d3978970.html,)共同运营。汇聚了新闻、技术、产品、市场等内容。金属加工通过杂志、数字媒体、活动与服务四位一体的全媒体服务平台,为行业提供一流的信息服务和推广服务。

【CN209830679U】一种能够有效防止火光飞溅的工件加工用焊接装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920444883.3 (22)申请日 2019.04.03 (73)专利权人 深圳市新铭升激光设备有限公司 地址 518116 广东省深圳市龙岗区坪地街 道宝地工业区512号厂房三楼 (72)发明人 龚华兵  (74)专利代理机构 广东荣海知识产权代理事务 所(普通合伙) 44630 代理人 黎理 (51)Int.Cl. B23K 37/00(2006.01) (54)实用新型名称 一种能够有效防止火光飞溅的工件加工用 焊接装置 (57)摘要 本实用新型公开了一种能够有效防止火光 飞溅的工件加工用焊接装置,包括基座和电机, 所述基座的下表面焊接有支撑腿,所述基座的前 后两侧均焊接固定有固定块,所述限位槽的内部 卡合滑动安装挡板,所述电机固定于固定块的外 侧,所述挡板的中部表面开设有安装孔,且安装 孔的内部安装有呈弹性结构的遮挡带,所述遮挡 带的内部等间距包裹有支撑杆,所述安装块的内 部贯穿安装有连接筒,且连接筒靠近基座的一端 固定有长筒手套。该能够有效防止火光飞溅的工 件加工用焊接装置,能够有效的防止火花飞溅对 工作人员造成的伤害,保证了焊接作业的安全 性,同时能够对一些不方便固定的工件,通过手 持的方式进行焊接, 使用方便。权利要求书1页 说明书3页 附图3页CN 209830679 U 2019.12.24 C N 209830679 U

权 利 要 求 书1/1页CN 209830679 U 1.一种能够有效防止火光飞溅的工件加工用焊接装置,包括基座(1)和电机(8),其特征在于:所述基座(1)的下表面焊接有支撑腿(2),且基座(1)的上表面右侧安装有夹具装置(3),并且基座(1)的上表面左侧安装有焊接机械人(4),所述基座(1)的前后两侧均焊接固定有固定块(5),且固定块(5)的内部预留有限位槽(6),所述限位槽(6)的内部卡合滑动安装挡板(7),且挡板(7)的左右两端均设置有固定块(5),并且挡板(7)为透明结构,所述电机(8)固定于固定块(5)的外侧,且电机(8)的输出端安装有齿轮(9),所述挡板(7)的中部表面开设有安装孔(10),且安装孔(10)的内部安装有呈弹性结构的遮挡带(11),所述遮挡带(11)的内部等间距包裹有支撑杆(12),且遮挡带(11)的中部贯穿安装有安装块(13),并且安装块(13)与挡板(7)卡合连接,所述安装块(13)的内部贯穿安装有连接筒(14),且连接筒(14)靠近基座(1)的一端固定有长筒手套(16),并且连接筒(14)与安装块(13)贴近的一侧表面均镶嵌安装有磁铁(15)。 2.根据权利要求1所述的一种能够有效防止火光飞溅的工件加工用焊接装置,其特征在于:所述挡板(7)的左右两侧面均呈锯齿状结构,且挡板(7)关于基座(1)前后对称设置,并且挡板(7)的高度尺寸不大于支撑腿(2)的高度尺寸。 3.根据权利要求1所述的一种能够有效防止火光飞溅的工件加工用焊接装置,其特征在于:所述齿轮(9)位于限位槽(6)的内部,且齿轮(9)关于挡板(7)对称设置,并且齿轮(9)与挡板(7)的连接方式为啮合连接。 4.根据权利要求1所述的一种能够有效防止火光飞溅的工件加工用焊接装置,其特征在于:所述支撑杆(12)的上下两端均凸出于遮挡带(11)的上下两端,且支撑杆(12)凸出于遮挡带(11)的部分竖直截面呈“U”型结构,并且该“U”型结构与挡板(7)卡合连接。 5.根据权利要求1所述的一种能够有效防止火光飞溅的工件加工用焊接装置,其特征在于:所述连接筒(14)与安装块(13)的连接方式为卡合连接,且连接筒(14)与安装块(13)上的磁铁(15)对应设置,并且安装块(13)在安装孔(10)内部为滑动结构。 2

CO2焊产生飞溅的原因及解决方法

CO2焊产生飞溅的原因及解决方法 【字体:大中小】时间:2014-08-06 09:29:00 点击次数:8次 在CO2焊中,大部分焊丝熔化金属可过渡到熔池,有一部分焊丝熔化金属飞向熔池之外,飞到熔池之外的金属称为飞溅。特别是粗焊丝CO2气体保护焊大参数焊接时,飞溅更为严重,飞溅率可达20%以上,这时就不可能进行正常焊接工作了。飞溅是有害的,它不但降低焊接生产率,影响焊接质量,而且使劳动条件变差。 由于焊接参数的不同,CO2焊具有不同的熔滴过渡形式,从而导致不同性质的飞溅。其中,可分为熔滴自由过渡时的飞溅和短路过渡时的飞溅。 (1)熔滴自由过渡时的飞溅熔滴自由过渡时的飞溅主要形式,在CO2气氛下,熔滴在斑点压力的作用下上挠,易形成大滴状飞溅。这种情况经常发生在较大电流焊接时,如用直径1.6mm焊丝、电流为300~350A,当电弧电压较高时就会产生。如果再增加电流,将产生细颗粒过渡,这时飞溅减小,主要产生在熔滴与焊丝之间的缩颈处,该处的电流密度较大使金属过热而爆断,形成颗粒细小的飞溅。在细颗粒过渡焊接过程中,可能由熔滴或熔池内抛出的小滴飞溅。这是由于焊丝或工件清理不当或焊丝含碳量较高,在熔化金属内部大量生成CO等气体,这些气体聚积到一定体积,压力增加而从液体金属中析出,造成小滴飞溅。大滴过渡时,如果熔滴在焊丝端头停留时间较长,加热温度很高,熔滴内部发生强烈的冶金反应或蒸发,同时猛烈地析出气体,使熔滴爆炸而生成飞溅。另外,在大滴状过渡时,偶尔还能出现飞溅,因为熔滴从焊丝脱落进入电弧中,在熔滴上出现串联电弧,在电弧力的作用下,熔滴有时落入熔池,也可能被抛出熔池而形成飞溅。 (2)熔滴短路过渡时的飞溅短路过渡时的飞溅形式很多。飞溅总是发生在短路小桥破断的瞬时。飞溅的大小决定于焊接条件,它常常在很大范围内改变。产生飞溅的原因目前有两种看法,一种看法认为飞溅是由于短路小桥电爆炸的结果。当熔滴与熔池接触时,熔滴成为焊丝与熔池的连接桥梁,所以称为液体小桥,并通过该小桥使电路短路。短路之后电流逐渐增加,小桥处的液体金属在电磁收缩力的作用下急剧收缩,形成很细的缩颈。随着电流的增加和缩颈的减小,小桥处的电流密度很快增加,对小桥急剧加热,造成过剩能量的积聚,最后导致小桥发生气化爆炸,同时引起金属飞溅。另一种看法认为短路飞溅是因为小桥爆断后,重新引燃电弧时,由于CO2气体被加热引起气体分解和体积膨胀,而产生强烈的气动冲击作用,该力作用在熔池和焊丝端头的熔滴上,它们在气动冲击作用下被抛出而产生飞溅。试验表明,前一种看法比较正确。飞溅多少与电爆炸能量有关,此能量主要是在小桥完全破坏之前的100~150μs时间内积聚起来的,主要是由这时的短路电流(即短路峰值电流)和小桥直径所决定。 小电流时,飞溅率通常在5%以下。限制短路峰值电流为最佳值时,飞溅率可降低到1%左右。在电流较大时,缩颈的位置对飞溅影响极大。所谓缩颈的位置是指缩颈出现在焊丝与熔滴之间,还是出现在熔池与熔滴之间。如果是前者,小桥的爆炸力推动熔滴向熔池过渡,而后者正相反,小桥爆炸力排斥熔滴过渡,并形成大量飞溅,最高可达25%以上。冷态引弧时或在焊接参数不合适的情况下(如送丝速度过快而电弧电压过低,焊丝伸出长度过大或焊接回路电感过大等)常常发生固体短路。这时固体焊丝可以直接被抛出,同时熔池金属也被抛出。在大电流射滴过渡时,偶尔发生短路,由于短路电流很大。所以将引起十分强烈的飞溅。

防止焊接飞溅方法

防止焊接飞溅方法 1 CO2焊接飞溅的预防措施 (1)采用活化处理过的焊丝可以细化金属熔滴减少飞溅,改善焊缝的成形。所谓活化处理就是在焊丝表面涂一层薄的碱土金属或稀土金属的化合物来提高焊 丝发射电子的能力,最常用的活化剂是铯(Cs)的盐类如CsCO3,如稍加一些K2CO3,Na2CO3,则效果更显著。 (2)限制焊丝中的含碳量在0.08~0.11%范围内,为此可选用超低碳焊丝,如 HO4Mn2SiTiA。 (3)必要时选用药芯焊丝,使熔滴表面有熔渣覆盖,可减少飞溅,使焊缝盛开美观。 (4)在CO2气体中加入少量的Ar气,改善电弧的热特性和氧化性,减少飞溅。(5)采用直流反接,使焊丝端部的极点压力较小。 (6)选择最佳的焊接规范,焊接电流、焊接电压不要过大或过小。 (7)选择最佳的电感值,CO2气体保护焊时电流的增长速度与电感有关,即: di/dt=(U0-iR)/L 式中:U0——电源的空载电压;I——瞬间电流;R——焊接回路中的电阻;L——焊接回路中的电感。 由此可知电感越大,短路电流的增大速度di/dt越小。当焊接回路中的电感值在 0~0.2毫亨范围内变化时,对短路电流上升速度的影响特别显著。 一般在用细丝CO2气体保护焊时,由于细焊丝的熔化速度比较快,熔滴过渡的周

期短,因此需要较快的电流增长速度,电感应该选小些。相反,粗焊丝的熔化速度较慢,熔滴过渡的周期长,则要求电流增长速度慢些,所以应该选较大的电感值。 (8)在喷咀上涂一层硅油或防堵剂,可以有效的防止喷咀堵塞。使用焊接飞溅清除剂,喷涂在工件上,可以阻止飞溅物与母材直接接触,飞溅物用钢丝刷轻轻一刷就能把飞溅物清除。 2根据不同熔滴过渡形式下飞溅的不同成因,应采用不同的降低飞溅方法 (1)在熔滴自由过渡时,应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接材料,如选用含C量低、具有脱氧元素Mn和Si的焊丝H08Mn2SiA等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。 (2)在短路过渡时,可以采用(Ar+CO2)混合气体代替CO2以减少飞溅。如加入φ(Ar)=20%~30%的Ar。这是由于随着含氩量的增加,电弧形态和熔滴过渡特点发生了改变。燃弧时电弧的弧根扩展,熔滴的轴向性增强。这一方面使得熔滴容易与熔池会合,短路小桥出现在焊丝和熔池之间。另一方面熔滴在轴向力的作用下,得到较均匀的短路过渡过程,短路峰值电流也不太高,有利于减少飞溅率。 在纯CO2气氛下,通常通过焊接电流波形控制法,降低短路初期电流以及短路小桥破断瞬间的电流,减少小桥电爆炸能量,达到降低飞溅的目的。 3关于焊接防飞溅剂

CO2电弧焊的飞溅原因及防止方法

一、飞溅产生的原因 飞溅是CO2电弧焊最主要的缺点,严重时甚至要影响焊接过程的正常进行。产生飞溅的主要原因如下: 1、气体爆炸引起的飞溅熔滴过渡时,由于熔滴中的FeO与C反应产生的CO气体,在电弧高温下急剧膨胀,使熔滴爆破而引起金属飞溅。 2、由电弧的斑点压力而引起的飞溅因CO2气体高温分解吸收大量电弧热量,对电弧的冷却作用较强,使电弧电场强度提高,电弧收缩,弧根面积减小,增大了电弧的斑点压力,熔滴在斑点压力的作用下十分不稳定,形成飞溅。用直流正接法时,熔滴受斑点压力大,飞溅也大。 3、短路过渡时由于液态小桥爆断引起的飞溅当熔滴与熔池接触时,由熔滴把焊丝与熔池连接起来,形成液体小桥。随着短路电流的增加,使液体小桥金属迅速的加热,最后导致小桥金属发生汽化爆炸,引起飞溅。 4、当焊接参数选择不当时,也会引起飞溅。 二、减少金属飞溅的措施 减少飞溅的措施主要有以下几方面: 1、正确选择工艺参数 (1)焊接电流与电弧电压CO2焊时,在短路过渡时飞溅率较小,细滴过渡时飞溅率也较小,而混合过渡时飞溅率最大。以直径 1.2 mm焊丝为例,电流小于150A或大于300A飞溅率都较小,介于两者之间则飞溅率较大。在选择焊接电流时应尽可能避开飞溅率高的混合过渡区。电弧电压则应与焊接电流匹配。 (2)焊丝伸出长度一般焊丝伸出长度越长,飞溅率越高。例如直径1.2mm焊丝,焊丝伸出长度从20mm增至30mm,飞溅率约增加 5%。所以在保证不堵塞喷嘴的情况下,应尽可能缩短焊丝伸出长度。 (3)焊枪角度焊枪垂直时飞溅量最少,倾斜角度越大,飞溅越多。焊枪前倾或后倾最好不超过20°。 2、细滴过渡时在CO2中加入Ar气 CO2气体的物理性质决定了电弧的斑点压力较大,这是CO2电弧焊产生飞溅的最主要原因。在CO2气体中加入Ar气后,改变了纯CO2气体的物理性质。随着Ar气比例增大,飞溅逐渐减少。 混合气体的成本虽然比纯CO2气体高,但可从材料损失降低和节省清理飞溅的辅助时间上得到补偿。所以采用 CO2+Ar混合气体,总成本还有减低的趋势。另外,CO2+Ar混合气体的

管道焊接防飞溅总结

管道焊接防飞溅总结 一、管道焊接中常用的焊接方法及特点 表1常用焊接方法基本特点与应用 二、管道焊接中常用的防飞溅措施: 1、根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调 节好回路电感量,即选用合适的焊接参数; 2、选用合适的气体配比 3、选用合适的焊材 4、在坡口表面喷涂防溅剂。

三、手工电弧焊飞溅控制 1、焊条电弧焊是用手工操纵焊条进行焊接的电弧焊方法。焊条电弧焊时,在焊条末端和工件之间燃烧的电弧所产生的高温使焊条药皮与焊芯及工件熔化,熔化的焊芯端部迅速地形成细小的金属熔滴,通过弧柱过渡到局部熔化的工件表面,融合一起形成熔池。药皮熔化过程中产生的气体和熔渣,不仅使熔池和电弧周围的空气隔绝,而且和熔化了的焊芯、母材发生一系列冶金反应,保证所形成焊缝的性能。随着电弧以适当的弧长和速度在工件上不断地前移,熔池液态金属逐步冷却结晶,形成焊缝。在焊条熔化金属冲击下,部分熔滴飞离熔池形成了飞溅。由于焊接飞溅的不可避免,对构件外观带来不良影响。 2、手工电弧焊控制飞溅的方法: 1)、应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接材料,如选用含C量低、具有脱氧元素Mn和Si的焊材等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。 2)、选用合适的焊接极性和电源。如尽量采用直流反接,下降外特性或是平外特性的焊机。 3)、在焊前坡口两边喷涂防飞溅剂。

四、CO2气体保护焊飞溅控制 1、 CO2气体保护焊飞溅的危害 焊接过程中,大部分焊丝熔化金属过渡到熔池中,有一部分焊丝熔化金属飞向熔池之外的金属形成飞溅。气体保护焊最显著的缺点是飞溅大,飞溅率一般为3%~20%,当飞溅率达到20% 以上时,就不能进行正常焊接了。 CO2气体保护焊飞溅的危害还体现在:降低焊接熔敷效率,降低焊接生产率;飞溅物易粘附在焊件上,影响焊接质量,使焊接劳动条件变差;焊接熔池不稳定,使焊缝外形较为粗糙等。 2、CO2 气体保护焊飞溅产生的机理 CO2气体在电弧温度区间热导率较高,加上分解吸热,消耗电弧大量热能,从而引起弧柱及电弧斑点强烈收缩,即使增大电流,弧柱和斑点直径也很难扩展,这是CO2气体保护焊产生飞溅的最主要原因,是由CO2气体本身物理性质决定的。 下面我们就从CO2气体保护焊熔滴过渡的几种形式,分别阐述飞溅产生的原因。1)、熔滴过渡过程中产生的飞溅 熔滴过渡时产生的飞溅主要是由于气流流动而喷出的飞溅,受电弧压力作用并通过爆炸而形成的,以及熔滴和熔池接触时,由于短路电流在通电后的接触部放电加热,即受到保险丝作用被熔断而产生飞溅。 (a)短路过渡当焊接电流、电压较小时,熔滴过渡的形式一般为短路过渡,当熔滴与熔池接触时,由熔滴把焊丝与熔池连接起来,形成液体小桥,随着短路电流的增加,使缩颈小桥金属迅速的加热,最后导致小桥金属发生汽化爆炸,形成飞溅。同时由于引燃电弧对熔池产生一定的冲击力,也会引起飞溅。 (b)颗粒状过渡焊接电流较大(如Φ1.6焊丝,电流为300~350A )、电弧电压较高时,由于CO2气体的性质活泼,这时熔滴在斑点压力的作用下而上挠,易形成大滴状飞溅。如果再增加电流,熔滴过渡形式将变为细颗粒过渡,这时飞溅减少,主要产生在熔滴与焊丝之间的缩颈处,该处通过的电流密度较大使金属过热而爆断,形成颗粒细小的飞溅。大滴状过渡时,如果熔滴在焊丝端头停留时间较长,加热温度很高,熔滴内部发生强烈的冶金反应或蒸发,同时猛烈的析出气体,使熔滴爆炸而造成飞溅。 2)、焊接熔池中产生的飞溅 在焊接熔池中产生的飞溅,是由于熔滴进入熔池时或者是由熔池喷出气体气泡时产生的表面涨力而导致产生的飞溅,这时一般以微细颗粒居多。CO2气体保护焊时,焊接飞溅主要是由于 CO2气体在高温分解时所引起的膨胀,以及熔滴和熔池中的碳被氧化生成 CO所引起的。焊接直流回路电感值调节不当,致使电源的动特性不合适,或造成短路电流增长速度过快或过慢,导致产生飞溅。此外,焊接电流、电压和极性等规范参数选择不当,也会对飞溅有直接影响。 3、减少飞溅的有效措施 1)、正确选择焊接规范参数 (a)、CO2气体保护焊采用正极性时由于电弧受压力,飞溅剧增且颗粒大,因此一般采用直流反极性接法。 (b)、选择合适的焊接电流区域在CO2电弧中,对于每种直径焊丝,其飞溅率和焊接电流之间都存在图1所示的规律:即在小电流区(短路过渡区)飞溅率较小,进入大

CO2焊接飞溅产生原因与防止方法探究

CO2焊接飞溅产生原因与防止方法探究 摘要:对CO2焊的应用现状进行了介绍,分析了CO2焊的优点和存在的问题,列举出CO2焊接过程中飞溅产生的各种原因,并依次介绍了避免或减少飞溅产生的各种不同的方法。 关键词:CO2焊飞溅原因;减小或防止飞溅方法;颗粒过渡;STT电源 中图分类号:TG44 文献标识码:A 文章编号:1009-9492(2011)08-0154-03 1现状分析 在现代工业生产中,CO2焊以其焊接成本低、生产率高、抗锈能力强、焊接变形小、操作性好等一系列优点得以广泛应用[1]。但其存在的主要问题就是飞溅大,CO2 气体保护焊过程中金属飞溅损失约占焊丝熔金属的10%左右,严重的可达30%~40%。飞溅损失的增大,会降低焊丝的熔敷系数,从而增加焊丝及电能的消耗,降低焊接生产率,提高焊接成本。溅金属粘着到导电嘴端面和喷嘴内壁上,会使送丝不畅而影响电弧稳定性,降低保护气的保护作用,恶化焊缝成形质量。此外,飞溅金属粘着到导电嘴,喷嘴,焊缝及焊件表面上,尚需在焊后进行清理,这就增加了焊接的辅助工时。焊接过程中飞溅出的金属,还容易烧坏焊工的工作服,甚至烫伤皮肤,恶化劳动条件。因此如何减少飞溅在CO2焊中就显得尤为重要[2]。 2飞溅产生的原因及相应防止措施CO2气体保护焊金属飞溅问题之所以突出,是和这种焊接方法的冶金特性及工艺特性、电源设备性能有关[3]。 2.1焊接冶金反应引起的飞溅 2.1.1产生原因 焊接时,随着温度的升高,CO2受热分解:CO2→CO+O。CO气体在电弧高温作用下,

体积急速膨胀,压力迅速增大,若从熔滴或熔池中的外逸受到阻碍,就可能在局部 范围爆破,从而产生大量的细颗粒飞溅金属。 2.1.2防止方法(1)在保护气中加入Ar气在CO2气体中加入Ar气后,改变了纯二氧化碳气体的导热率高,分解吸热,消耗电弧热能高易导致弧柱及电弧斑点强烈收缩,阻碍熔滴过渡的物理化学性质。随着Ar气比例增大,飞溅逐渐减少。 CO2+Ar混合气体除可克服飞溅外,也改善了焊缝成型,对焊缝溶深、焊缝高度及余高都有影响。在送丝速度和电弧电压相同条件下,采用纯CO2气体保护焊接时飞溅较大(图1(a)),而采用75%Ar+25%CO2混合气体保护焊接时飞溅较小(图1(b))。实践证明80%Ar+20%CO2时飞溅率最低。 (2)采用低飞溅率焊丝 ①实芯焊丝。在保证机械性能的前提下,应尽可能降低其中含碳量, 并添加适量的钛、铝等合金元素。无论颗粒过度焊接或短路过度焊接都可显著减少由CO等气体引起的飞溅。 ②采用以Cs2CO3,K2CO3等物质活化处理过的焊丝,进行正极性焊接。 ③采用药芯焊丝。采用药芯焊丝的金属飞溅率约为实心焊丝的1/3 机电工程技术2011年第40卷第08期图2 不同熔滴过渡形式的规范范围 2.2由电弧斑点压力引起飞溅这种飞溅主要取决于焊接时的极性。当使用正极性焊接时(焊件接正极、焊丝接负极),正离子飞向焊丝端部的熔滴,机械冲击力大,形成大颗粒飞溅。而反极性焊接时,飞向焊丝端部的电子撞击力小,致使斑点压力大为减小,从而使飞溅减小。防止此种飞溅的方法:CO2焊应选用直流反接。 2.3熔滴过渡时产生的飞溅由于焊接参数的不同,CO2焊具有不同的熔滴过渡形式,从而导致不同性质的飞溅。其中,可分为熔滴自由过渡时的飞溅和短路过渡时的飞溅。两种过渡方式的规范(电压、电

相关主题
文本预览
相关文档 最新文档