当前位置:文档之家› 教材:线性代数(DOC)

教材:线性代数(DOC)

教材:线性代数(DOC)
教材:线性代数(DOC)

2013届钻石卡学员学习计划---数学三第十五单元(课前或课后学习内容)

计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版

线性代数第一章行列式

第1章第1节二阶与三阶行列式(P1——P4)

第1章第2节全排列及其逆序数(P4——P5)

第1章第3节n阶行列式的定义(P5——P8)

第1章第4节对换(P8——P9)

第1章第5节行列式的性质(P9——P15)

第1章第6节行列式按行(列)展开(P16——P21)

第1章第7节克拉默法则(P21——P25)

本单元中我们应当学习——

1.行列式的概念和性质,行列式按行(列)展开定理.

2.用行列式的性质和行列式按行(列)展开定理计算行列式.

3.用克莱姆法则解齐次线性方程组.

2013届钻石卡学员学习计划---数学三

第十六单元(课前或课后学习内容)

计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版

线性代数第二章矩阵及其运算

第2章第1节矩阵(P29——P32)

第2章第2节矩阵的运算(P33——P42)

第2章第3节逆矩阵(P42——P47)

第2章第4节矩阵分块法(P47——P54)

2013届钻石卡学员学习计划---数学三线性代数第三章矩阵的初等变换与线性方程组

第3章第1节矩阵的初等变换(P57——P65)

本单元中我们应当学习——

1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.

2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.

3. 方阵的幂与方阵乘积的行列式的性质.

4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.

5. 伴随矩阵的概念,用伴随矩阵求逆矩阵.

6.分块矩阵及其运算.

2013届钻石卡学员学习计划---数学三

第十七单元(课前或课后学习内容)

计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版

线性代数第三章矩阵的初等变换与线性方程组

2013届钻石卡学员学习计划---数学三第3章第2节矩阵的秩(P65——P71)

第3章第3节线性方程组的解(P71——P78)

线性代数第四章向量组的线性相关性

第4章第1节向量组及其线性组合(P81——P86)

第4章第2节向量组的线性相关性(P87——P90)

第4章第3节向量组的秩(P90——P94)

本单元中我们应当学习——

1.矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵.

2.n维向量、向量的线性组合与线性表示的概念.

3.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.

4.向量组的极大线性无关组和向量组的秩的概念和求解.

5.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.

2013届钻石卡学员学习计划---数学三

第十八单元(课前或课后学习内容)

计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版

线性代数第四章向量组的线性相关性

第4章第4节线性方程组的解的结构(P94——P102)

第4章第5节向量空间(P102——P106)——本节内容数学三不要求

本单元中我们应当学习——

1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.

2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.

3.非齐次线性方程组解的结构及通解.

4.用初等行变换求解线性方程组的方法.

2013届钻石卡学员学习计划---数学三

第十九单元(课前或课后学习内容)

计划对应教材:工程数学线性代数 同济大学数学系编 高等教育出版社 第五版 线性代数 第五章 相似矩阵及二次型

第5章 第1节 向量的内积、长度及正交性(P111——P116) 第5章 第2节 方阵的特征值与特征向量(P117——P121) 第5章 第3节 相似矩阵(P121——P124) 本单元中我们应当学习——

1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt )方法. 2.规范正交基、正交矩阵的概念以及它们的性质.

3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.

4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.

2013届钻石卡学员学习计划---数学三

第二十单元(课前或课后学习内容)

计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版

线性代数第五章相似矩阵及二次型

第5章第4节对称矩阵的对角化(P124——P127)

第5章第5节二次型及其标准形(P127——P131)

第5章第6节用配方法化二次型成标准形(P131——P132)

第5章第7节正定二次型(P132——P134)

2013届钻石卡学员学习计划---数学三本单元中我们应当学习——

1.实对称矩阵的特征值和特征向量的性质.

2.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.

3.正交变换化二次型为标准形,配方法化二次型为标准形.

4.正定二次型、正定矩阵的概念和判别法.

2013届钻石卡学员学习计划---数学三

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

12121211 12121222()121 2()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 == ()mn A O A A O A B O B O B B O A A A B B O B O *= =* * =-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==- 1 (即:所有取自不同行不 同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 2 2 22 1211 1112n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 111 由m n ?个数排成的m 行n 列的表11 12121 2221 2 n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为m n ?矩阵.记作:()ij m n A a ?=或m n A ? () 1121112222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ? --???? 1 主换位副变号

教材:线性代数(DOC)

2013届钻石卡学员学习计划---数学三第十五单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第一章行列式 第1章第1节二阶与三阶行列式(P1——P4) 第1章第2节全排列及其逆序数(P4——P5) 第1章第3节n阶行列式的定义(P5——P8) 第1章第4节对换(P8——P9) 第1章第5节行列式的性质(P9——P15) 第1章第6节行列式按行(列)展开(P16——P21) 第1章第7节克拉默法则(P21——P25) 本单元中我们应当学习—— 1.行列式的概念和性质,行列式按行(列)展开定理. 2.用行列式的性质和行列式按行(列)展开定理计算行列式. 3.用克莱姆法则解齐次线性方程组.

2013届钻石卡学员学习计划---数学三 第十六单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第二章矩阵及其运算 第2章第1节矩阵(P29——P32) 第2章第2节矩阵的运算(P33——P42) 第2章第3节逆矩阵(P42——P47) 第2章第4节矩阵分块法(P47——P54)

2013届钻石卡学员学习计划---数学三线性代数第三章矩阵的初等变换与线性方程组 第3章第1节矩阵的初等变换(P57——P65) 本单元中我们应当学习—— 1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质. 2.矩阵的线性运算、乘法运算、转置以及它们的运算规律. 3. 方阵的幂与方阵乘积的行列式的性质. 4.逆矩阵的概念和性质,矩阵可逆的充分必要条件. 5. 伴随矩阵的概念,用伴随矩阵求逆矩阵. 6.分块矩阵及其运算.

袁晖坪线性代数教材习题答案提示

第一章 行列式与Cramer 法则 第一章知识清单 1.行列式定义: () ()() 121211********* 212121,n n n n n i i i j j j n i j i j i j i j n n nn a a a a a a a a a a a a ττ? +=-∑L L L L L L 说明1)()()()12 1 ,n n n k i k k i i i t k t i τ====∑∑L ()k k k t i i i :在左边比打的数的个数. 说明2):行列式中每行均由不同行不同列的元素之积构成 2.计算方法 基本方法: 1)化为三角式;2)降阶法:10 n i k jk k D i j a A i j ==?=? ≠?∑ 常用方法: 利用定义或性质,拆解法,升阶法,递推法。 特殊行列式:上三角式,对角式,范德蒙行列式。 3.行列式性质(5条) 行列等同;两行互换值相反;数乘行列式;行列式加法;第三种初等行变换不改变行列式的值。 4.克莱姆法则

?????? ?=++=++=++n n nn n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛ221122222212111212111 .n A x b =即: 解:12,,,T n D D D x D D D ??= ???L ,.n D A = 推论:0.n n A x o A =?=有非零解 基本作业建议 A 组:1,4,6(1),7(1),8, 10(1); B 组:一 (1),(6);二(3),(4) 一(A )4(1):列标:54243,表明第四列有两元素:否; (2): () ()() 24531452131ττ+-. 一(A )5: () () ()()() () ()()23412143123412342132341411,a a a a a a a a ττ--. 一(A )6(5):32 1 42 2 222222223234 21 21 21 21 21212121 044444444222269696969 6 6 6 6 ,,i r r r r r r i a b c d a b c d a b c d a b c d D a b c d a b c d ---=++++++++=== ==== =++++++++ 一(A )7(1),(2):同6(3),见课件例1.15—1.18。四种方法: 1 1123,,,n i i i c r r i n D D =-=∑=========L 提公因式方法一:上三角式; 1 23,,,i r r i n D -=====L 方法二:箭形行列式 12312 3 1231231 2 3 10 n n n n n a a a a a b a a a a a b a a a a a b a a D a a a b ------=== --L L L L M M M M M M L 加边 方法三: 1231,2,311000100010001 L L L L L M M M M M M L n i r r i n a a a a b b b b +=------===== -- ()123 23 123231 232312323000n n n n n n n n a a a a c a a a a a c a a a c a a a a a c a a a c a a a a a c a a a c D ------=-=L L L L L L M M M M M M M M M M L L 拆解 方法四:略.

线性代数电子版教材

线性代数 线性代数是关于向量空间和线性映射的一个数学分支,包括对线、面和子空间的研究,也涉及到所有向量空间的一般性质。 线性代数是纯数学和应用数学的核心,它的含义随着数学的发展而不断扩大,其理论和方法已经渗透到数学的许多分支,也成为理论物理和理论化学不可缺少的代数基础知识。 1定义与历史编辑 概念 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,

线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。 历史 线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。 由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维线性空间的过渡。 随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。

线性代数复习提纲2017

线性代数复习提纲(2017) 第一章行列式 复习重点:第1、3、4、5节. 课本:P2,例2,例3;P11,例2;P15,例1;P22,例2;P26,例5. 练习册:P2,4; P4,一(1,2,3); P6,三(1);P7,三(2,3). 第二章矩阵 复习重点:第3、5节. 课本:P34,例2;P42,例1,例3, 例4;P54,例1;P57,例2;P59,例1,例4. 练习册:P10,1;P11,三,四;P12,2;P14,一(1,4,6);P16,九;P45,三(2); P48,三(2); P51,三(2). 第三章向量组的线性相关性 复习重点:第2、3节. 课本:P72,例2;P72,例3;P80,例4;P86,例9;P88,例1;P90,例2; P92,例2; P93,例4; P95,21. 练习册:P18,四;P19,1,2,3;P22,四(2)(4);P40,三;P45,三(3); P48,三(3). 第四章线性方程组 复习重点: 第2、3节. 课本:P103, 例1;P106, 例1;P107,例2,例3; 练习册:P25,四;P29,三(3)(4);P41,四; P43,三(4);P49,三(5). 第五章矩阵对角化 复习重点: 第1、2节.

课本:P116, 例1,例2;P120,例4;P122,例1;P123, 例2;P128,例6;P130,例7. 练习册:P31,1;P32,2,3;P33,4;P34,一(1),二(1); P44, 一(4);P47,一(4);P52,三(6). 第六章二次型 复习重点: 第2、3节. 课本:P141,例1; P143,例2; P145,例3; P149,例3. 练习册:P37,3;P38,一(1);三(1)(2);P49,三(7);P55,五.

(完整版)大学数学工程数学线性代数教材

第一章n阶行列式 在初等数学中讨论过二阶、三阶行列式,并且利用它们来解二元、三元线性方程组. 为了研究n元线性方程组,需要把行列式推广到n 阶,即讨论n阶行列式的问题. 为此,下面先介绍全排列等知识,然后引出n阶行列式的概念. §1 全排列及其逆序数 先看一个例子. 引例用1、2、3三个数字,可以组成多少个没有重复数字的三位数? 解这个问题相当于说,把三个数字分别放在百位、十位与个位上,有几种不同的放法? 显然,百位上可以从1、2、3三个数字中任选一个,所以有3种放法;十位上只能从剩下的两个数字中选一个,所以有两种放法;个位上只能放最后剩下的一个数字,所以只有1种放法. 因此,共有? ?种放法. 3= 1 6 2 这六个不同的三位数是: 123,132,213,231,312,321. 在数学中,把考察的对象,如上例中的数字1、2、3叫做元素. 上述问题就是:把3个不同的元素排成一列,共有几种不同的排法? 对于n个不同的元素,也可以提出类似的问题:把n个不同的元素排成一列,共有几种不同的排法? 把n个不同的元素排成一列,叫做这n个元素的全排列,简称排列. n个不同元素的所有排列的种数,通常用P n表示. 有引例的结果可知P3 = 3 . 2 . 1 = 6 . 1

2 为了得出计算P n 的公式,可以仿照引例进行讨论: 从n 个元素中任取一个放在第一个位置上,有n 种取法;又从剩下的n -1个元素中任取一个放在第二个位置上,有n -1种取法; 这样继续下去,直到最后只剩下一个元素放在第n 个位置上,只有1种取法. 于是 P n =n .(n -1). … . 3 . 2 . 1 = n ! . 对于n 个不同的元素,我们规定各元素之间有一个标准次序(例如n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列. 下面我们来讨论计算排列的逆序数的方法. 不失一般性,不妨设n 个元素为1至n 这n 个自然数,并规定由小到大为标准次序. 设 n p p p Λ21 为这n 个自然数的一个排列,考虑元素 ),,2,1(n i p i Λ=,如果比i p 大的且排在i p 前面的元素有i t 个,就说i p 这个元素的逆序数是i t . 全体元素的逆序数之总和 ∑==+++=n i i n t t t t t 1 21Λ, 即是这个排列的逆序数. 例1 求排列32514的逆序数. 解 在排列32514中,

线性代数发展简史讲述讲解

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级:2012084 成员组成:201208420 联系方式:************ 2013年11月6日

摘要:线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 关键词:行列式,矩阵,,,, 正文:线性代数的发展简史 引言 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生

的动力和钥匙。行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,数学家

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

线性代数基础学习书单

线性代数基础学习书单 线性代数是很传统的课程,国内还比较喜欢叫做高等代数,这就更加传统了。一般地,在我们的高等代数里,除了线性空间外,还有大量的矩阵论,一点点多项式理论。大致来说,线性代数可以从两个角度去看它,一是它的几何理论,即线性空间以及线性空间里的线性变换;二是代数方法,那就是矩阵论了。“所谓线性代数学,就是或者直接研究线性空间的几何问题,或者将线性空间的一些几何问题化为化为矩阵问题。所以线性空间理论和矩阵论实际上是相伴而生的。”(许以超,线性代数与矩阵论(第二版)·序言,p.ii) 至于多项式,在这里主要是一个将平面上的几何问题化为代数多项式问题来解决的方案,这是平面解析几何的问题。那么,多项式要不要学,光是看看那么多线性代数教科书里都要包含一章来讲多项式,就知道答案是肯定的。几何问题其实都可以是线性问题,这样,间接地,多项式也就跟线性代数挂上了钩。 不过,是否可以把多项式分出去就是一个值得考虑的问题了。我觉得多项式还是不要放在线性代数课程中为好,一则费时,二则也讲不透。事实上,很多老师会把本来放在前头的多项式挪到后面来讲,甚至干脆就不讲。有一门课叫做“整数与多项式”,不过现在很少在大学课堂里出现了。整数理论是属于数论的,但加减乘除跟多项式是一样的,比较一下算术基本定理和代数基本定理就知道了。另外,多项式其实也不是一个简单的问题,更不只限于跟整数挂钩。在多项式环中,我们有带余除法,若表示为分式,就扩展到有理域了,更进一步,我们去求根的话,那就有实根甚至复根,再则,还有多元多项式的问题。这显然不是在一本线性代数教科书的一章之内就可以交代清楚的。 当代线性代数课是比较注重空间理论的。这是符合线性代数本质的,因为在线性空间里,毕竟都是几何对象。首先得弄清楚这门课的对象,这一点是毫无疑义的。所以,刚开始学习线性代数时,应该把注意力集中在这方面。等到对此有了一个比较透彻的理解时,就该开始苦练矩阵计算的功夫了。矩阵是一种代数方法,虽然它看起来比线性空间理论要古老些,但现代数学的发展却是越来越重代数了,要想把线性代数的水平从本科程度上提高一下的话,代数基本功是重要的——以后可能不一定要用到矩阵论,但作为大一基础课,矩阵论是一个最好的也是最初的代数训练。另外,矩阵论已经相当成熟,有着一整套标准计算技巧和方法,很有实用价值。 还有两个问题要引起注意。一是要看到线性代数与其他课程的关系。比如,很多学校不是从一年级上学期就开这门课的,而是从下学期开,美国有些极端的做法甚至在大三才开课。这种情况其实就暗示了学习线性代数是需要一点其他知识的,尤其是微积分或者说数学分析的知识;另外,当微积分学到多元的时候,在高维空间里说话,也就需要一点线性代数的支持了。线性代数不跟其他东西联系起来,那是没有用的。 第二个问题是,线性代数仍在快速发展中,新的结果很多,要在基础课中追时髦是不太现实的。而且,实际上在本科阶段把它学好了,就已经可以在这个领域里开始做研究了(这一点比其他课都要划算)。所以,我认为在学这门课时,还是把眼睛紧盯着基础为上。 补充一点:线性代数是一门很基础的课程,但是,它不容易学。我觉得比较好的办法是,在学过一本基础教材后,那些“语言”不再是问题的时候,再去读一本高级一点的教材,然后再回头看过来。美国是有第二课程的,可以在这里面找找,或者读一本研究生水平的书。对于初学者,还是从容易入手的开始—— 1. 李尚志,线性代数(数学专业用),高等教育出版社,2006 这本书是我觉得比较适合作为初学者入门的教材的。它不算是一本有分量的书,但绝对是一本很好的引论。这是对它的评论:“1.不是从定义出发,而是从问题出发来展开课程内容,

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式 4.计算下列各行列式: (1)???? ????? ???71 10 025********* 4; (2)????????????-26 52321121314 1 2; (3)????????---ef cf bf de cd bd ae ac ab ; (4)????? ???? ???---d c b a 1 00 110011001 解 (1) 71100251020214 214 34327c c c c --0 10014 2310202110 214---=3 4)1(1431022 11014+-?---=14 31022110 14-- 3 21132c c c c ++14 171720010 99-=0 (2) 260 5232112131 412-24c c -2605032122130 412-24r r -0412032122130 412- 14r r -0 000032122130412-=0 (3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4 (4) d c b a 100 110011001---21ar r +d c b a ab 1 001 100 110 10---+=12)1)(1(+--d c a ab 1011 1--+

2 3dc c +0 10111-+-+cd c ad a a b =23)1)(1(+--cd ad ab +-+111=1++++ad cd ab abcd 5.证明: (1)1 11222 2b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2 2222222 2 2222222 =++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?; (5)1 22 110000 0100001a x a a a a x x x n n n +-----ΛΛΛΛΛΛ ΛΛΛΛn n n n a x a x a x ++++=--11 1Λ. 证明 (1)0 0122222221 312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开 按第一列 左边 bz ay by ax x by ax bx az z bx az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分 bz ay y x by ax x z bx az z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会 一、学习方法 今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。 首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。 总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。 我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动, 认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

线性代数(完整版)

线性代数复习题 一、选择题 1、 课本P44第5题 四元素乘积243241k i a a a a 是四阶行列式ij a (i,j=1,2,3,4)中的一项,i,k 的取值及该项 前应冠以的符号,有下列四种可能情况: (1)i=3,k=1,前面冠以正号 (2)i=3,k=1,前面冠以负号 (3)i=1, k=3,前面冠以正号 (4)i=1.k=3,前面冠以负号 选项正确的是(C ) A 、1.3正确 B 、1.4正确 C 、2.3正确 D 、2.4正确 解:当i=3,k=1时,N(3241)+N(1432)=4+3=7,该项前面冠以负号 当i=1,k=3时,N(1243)+N(1432)=1+3=4,该项前面冠以正号 故选择C 2、 课本P44第7题 下列选项中不属于五阶行列式ij a (i,j=1,2…5)中的一项的是(C ) A 、 54 45322311a a a a a B 、25 34431251a a a a a - C 、4521345213a a a a a - D 、1122334455a a a a a 解:选项C 中,N(15324)+N(32415)=4+4=8,前面应该冠以正号,而选项中是负号,故不属于五阶行列式中的一项 3、 3、课本P45第9题 若行列式D=,133 32 31 232221 131211 =a a a a a a a a a 则行列式33 32 3131 23222121 13 1211111324324324a a a a a a a a a a a a D ---==( A ) A 、-12 B 、12 C 、-24 D 、24 解:33 32 31 232221 13121133 32 31 23222113111133323131 23222121 13121111 343434242424324324324a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---+=--- =33 32 31 232221 13 1211 )3(*40a a a a a a a a a -+=(—12)*1=—12

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

相关主题
文本预览
相关文档 最新文档