当前位置:文档之家› 线性代数习题集带答案教学教材

线性代数习题集带答案教学教材

线性代数习题集带答案教学教材
线性代数习题集带答案教学教材

线性代数习题集带答

收集于网络,如有侵权请联系管理员删除

第一部分 专项同步练习

第一章 行列式

一、单项选择题

1.下列排列是5阶偶排列的是 ( ).

(A) 24315 (B) 14325 (C) 41523 (D)24351

2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C)

k n 2

! (D)k n n 2)1(

3. n 阶行列式的展开式中含1211a a 的项共有( )项.

(A) 0 (B)2 n (C) )!2( n (D) )!1( n

4. 0

001001001001

000( ).

(A) 0 (B)1 (C) 1 (D) 2

5. 0

001100000100100( ).

(A) 0 (B)1 (C) 1 (D) 2

6.在函数1

00

323211112)(x x x x x f 中3x 项的系数是( ).

(A) 0 (B)1 (C) 1 (D) 2

收集于网络,如有侵权请联系管理员删除

7. 若2

1

33

32

31

232221

131211 a a a a a a a a a D ,则 32

3133

31

2221232112

111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若

a a a a a 22

2112

11,则

21

11

2212ka a ka a ( ).

(A)ka (B)ka (C)a k 2 (D)a k 2

9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为

x ,1,5,2 , 则 x ( ).

(A) 0 (B)3 (C) 3 (D) 2

10. 若5

73

41111

1

326

3

478

D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0

11. 若2

235001011

11

0403

D ,则D 中第四行元的余子式的和为( ).

(A)1 (B)2 (C)3 (D)0

12. k 等于下列选项中哪个值时,齐次线性方程组

00321

321321x x kx x kx x kx x x 有非零解.

( )

(A)1 (B)2 (C)3 (D)0

二、填空题

收集于网络,如有侵权请联系管理员删除

1. n 2阶排列)12(13)2(24 n n 的逆序数是.

2.在六阶行列式中项261365415432a a a a a a 所带的符号是.

3.四阶行列式中包含4322a a 且带正号的项是

.

4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于

.

5. 行列式 0

100111010100111.

6.行列式

10000200

0010

n n .

7.行列式

01)1(2211)1(111

n n n n a a a a a a .

8.如果M a a a a a a a a a D 3332

31

232221

13

1211

,则 32

32

3331

2222232112121311

133333 3a a a a a a a a a a a a D .

9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为

.

收集于网络,如有侵权请联系管理员删除

10.行列式

111

1

11111

11111

1

1

x x x x .

11.n 阶行列式

11

1

111111

.

12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为

.

13.设行列式5

678123487654321

D ,j A 4)4,3,2,1( j 为D 中第四行元的代数余子

式,则

44434241234A A A A .

14.已知d

b c a c

c a b b a b c a c

b a D

, D 中第四列元的代数余子式的和为.

15.设行列式62

211765144334321

D ,j A 4为)4,3,2,1(4 j a j 的代数余子式,则

4241A A ,

4443A A .

收集于网络,如有侵权请联系管理员删除

16.已知行列式n

n D

10301

0021

12531 ,D 中第一行元的代数余子式的和为

.

17.齐次线性方程组

0202321

2

1321x x x kx x x x kx 仅有零解的充要条件是.

18.若齐次线性方程组

230520232132321kx x x x x x x x 有非零解,则k =.

三、计算题

1.

c

b a d

b a d

c a d

c b

d c b a d c b a d c b a

3

3

3

3

2222; 2.y

x

y

x x y x y y x y x ;

3.解方程

00

11011101110 x x x x ; 4.

1

11111

32

1

32122

1221

221 n n n n a a a a x a a a a x

a a a a x a a a a x

收集于网络,如有侵权请联系管理员删除

5. n

a a a a

1

111111

11111210(n j a j ,,1,0,1 ); 6. b

n b b

)1(11

11211

11

131111

7. n a b b b a a b b a a a b

32122

2111111111; 8.x

a a a a x

a a a a x a a a a x n n

n

3

21212121;

9.

2

2122

21212

121111n

n n n

n x x x x x x x x x x x x x x x

; 10.

2

1

120000021

000121

00012

11.a

a a a a a a

a a D

11000

110001100

0110001.

收集于网络,如有侵权请联系管理员删除

四、证明题

1.设1 abcd ,证明:

01111111111112

22

22

222

d

d

d

d c c c c b b b b a a a a .

2.3

3

3

222

11123

333322

22211

111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x

b a .

3.))()()()()()((1

1114

4

4

4

2222

d c b a c d b d b c a d a c a b d c b a d c b a

d

c b a .

4.

n

j i i j

n

i i

n n

n n

n n n n n

n

a a

a a a a a a a a a a a a a 11

2

12

2221222

212

1

)(111

.

5.设c b a ,,两两不等,证明01

1

1

3

33 c b a c b

a 的充要条件是0 c

b a .

收集于网络,如有侵权请联系管理员删除

参考答案

一.单项选择题

A D A C C D A

B

C

D B B 二.填空题

1.n ;

2.”

“ ; 3.43312214a a a a ; 4.0; 5.0; 6.!)1(1n n ; 7.1)1(212

)

1()1(n n n n n a a a ;

8.M 3 ; 9.160 ; 10.4x ; 11.1)( n n ; 12.2 ; 13.0; 14.0; 15.9,12 ;

16.)1

1(!1 n

k k n ; 17.3,2 k ; 18.7 k

三.计算题

1.))()()()()()((c d b d b c a d a c a b d c b a ; 2. )(233y x ; 3. 1,0,2 x ; 4. 1

1)(n k k a x

5. )1

1

1()1(00

n

k k n

k k a a ; 6. ))2(()1)(2(b n b b ;

7. n

k k k

n

a b

1

)()

1(; 8. n

k k n

k k a x a x 1

1

)()(;

9. n

k k x 1

1; 10. 1 n ;

11. )1)(1(42a a a . 四. 证明题 (略)

收集于网络,如有侵权请联系管理员删除

第二章 矩阵

一、单项选择题

1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

(a)2

2A A (b)))((22B A B A B A (c)AB A A B A 2)(

(d)T T T B A AB )( 2.设方阵A 、B 、C 满足AB=AC,当A 满足( )时,B=C 。

(a) AB =BA (b) 0 A (c) 方程组AX=0有非零解 (d) B 、C 可逆 3.若A 为n 阶方阵,k 为非零常数,则 kA ( )。

(a) A k (b) A k (c) A k n (d) A k n

4.设A 为n 阶方阵,且0 A ,则( )。

(a) A 中两行(列)对应元素成比例 (b) A 中任意一行为其它行的线性组合

(c) A 中至少有一行元素全为零 (d) A 中必有一行为其它行的线性组合 5.设A ,B 为n 阶可逆矩阵,下面各式恒正确的是( )。 (a) 111)( B A B A (b) B A AB T )(

(c) B A B A T 11)( (d) 111)( B A B A 6.设A 为n 阶方阵,*A 为A 的伴随矩阵,则( )。 (a) (a) 1* A A (b) A A * (c) 1* n A

A (d) 1

* n A

A

收集于网络,如有侵权请联系管理员删除

7. 设A 为3阶方阵,行列式1 A ,*A 为A 的伴随矩阵,则行列式

*12)2(A A ( )。 (a) 827

(b) 278 (c) 827 (d) 27

8 8. 设A ,B 为n 阶方矩阵,22B A ,则下列各式成立的是( )。

(a) B A (b) B A (c) B A (d) 2

2

B A 9. 设A ,B 均为n 阶方矩阵,则必有( )。

(a) B A B A (b) BA AB (c) BA AB (d) 2

2

B A 10.设A 为n 阶可逆矩阵,则下面各式恒正确的是( )。 (a )T A A 22 (b) 112)2( A A

(c) 111])[(])[( T T T A A (d) T T T T A A ])[(])[(11

11.如果

3332

31

232221

331332

1231

113332

31

232221

131211

333a a a a a a a a a a a a a a a a a a a a a A ,则 A ( )。

(a ) 103010001 (b) 100010301 (c) 101010300 (d)

130010001

12.已知

113022131A ,则( )。

(a )A A T (b) *1A A

收集于网络,如有侵权请联系管理员删除

(c ) 113202311010100001A (d )

113202311010100001A

13.设I C B A ,,,为同阶方阵,I 为单位矩阵,若I ABC ,则( )。

(a )I ACB (b )I CAB (c )I CBA (d )I BAC 14.设A 为n 阶方阵,且0|| A ,则( )。 (a )A 经列初等变换可变为单位阵I (b )由BA AX ,可得B X

(c )当)|(I A 经有限次初等变换变为)|(B I 时,有B A 1

(d )以上(a )、(b )、(c )都不对 15.设A 为n m 阶矩阵,秩n m r A )(,则( )。

(a )A 中r 阶子式不全为零 (b )A 中阶数小于r 的子式全为零

(c )A 经行初等变换可化为

00

0r

I (d )A 为满秩矩阵 16.设A 为n m 矩阵,C 为n 阶可逆矩阵,AC B ,则( )。 (a)秩(A )> 秩(B ) (b) 秩(A )= 秩(B )

(c) 秩(A )< 秩(B ) (d) 秩(A )与秩(B )的关系依C 而定 17.A ,B 为n 阶非零矩阵,且0 AB ,则秩(A )和秩(B )( )。

(a)有一个等于零 (b)都为n (c)都小于n (d)一个小于n ,一个等于n

18.n 阶方阵A 可逆的充分必要条件是( )。

(a)n r A r )( (b) A 的列秩为n

收集于网络,如有侵权请联系管理员删除

(c) A 的每一个行向量都是非零向量 (d)伴随矩阵存在 19.n 阶矩阵A 可逆的充要条件是( )。 (a) A 的每个行向量都是非零向量 (b) A 中任意两个行向量都不成比例

(c) A 的行向量中有一个向量可由其它向量线性表示

(d)对任何n 维非零向量X ,均有0 AX

二、填空题

1.设A 为n 阶方阵,I 为n 阶单位阵,且I A 2,则行列式 A _______

2.行列式 0

00

c b c a b

a

_______

3.设2

100020101A ,则行列式)9()3(21I A I A 的值为_______

4.设

212

32321A ,且已知I A 6,则行列式 11A _______ 5.设A 为5阶方阵,*A 是其伴随矩阵,且3 A ,则 *A _______ 6.设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为_______

7.非零矩阵

n n n n n n b a b a b a b a b a b a b a b a b a

21

2221

212111的秩为________

收集于网络,如有侵权请联系管理员删除

8.设A 为100阶矩阵,且对任何100维非零列向量X ,均有0 AX ,则A 的秩为_______

9.若)(ij a A 为15阶矩阵,则A A T 的第4行第8列的元素是_______ 10.若方阵A 与I 4相似,则 A _______

11.

K K

K K K K 311122

1lim _______ 12.

n

n 410013

1

212

1lim _______ 三、计算题

1.解下列矩阵方程(X 为未知矩阵).

1) 223221103212102X ; 2) 0101320100211100110X

; 3) 1()T T X I B C B I ,其中310404422B ; 101212121C

4) 2AX A X I ,其中101020101A

5) 2AX A X ,其中423110123A

收集于网络,如有侵权请联系管理员删除

2.设A 为n 阶对称阵,且20A ,求A .

3.已知110021101A

,求21

(2)(4)A I A I . 4.设11201A ,23423A ,30000A ,41201A

,求1234A A A

A

.

5.设112224336A

,求一秩为2的方阵B ,使0AB .

6.设211011101,121110110A B

,求非奇异矩阵C ,使T A C BC .

7.求非奇异矩阵P ,使1P AP 为对角阵.

1) 2112A 2) 112131201A

8.已知三阶方阵A 的三个特征根为1,1,2,其相应的特征向量依次为

(0,0,1),(1,1,0),(2,1,1)T T T ,求矩阵A . 9.设532644445A

,求100A .

四、证明题

1. 设A 、B 均为n 阶非奇异阵,求证AB 可逆.

收集于网络,如有侵权请联系管理员删除

2. 设0k A (k 为整数), 求证I A 可逆.

3.设12.,,k a a a L 为实数,且如果0k a ,如果方阵A 满足

1110k k k k A a A a A a I L ,求证A 是非奇异阵.

4. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .

5. 证明可逆的对称矩阵的逆也是对称矩阵.

6. 证明两个矩阵和的秩小于这两个矩阵秩的和.

7.证明两个矩阵乘积的秩不大于这两个矩阵的秩中较小者.

8. 证明可逆矩阵的伴随矩阵也可逆,且伴随矩阵的逆等于该矩阵的逆矩阵的伴随矩阵.

9.证明不可逆矩阵的伴随矩阵的逆不大于1.

10.证明每一个方阵均可表示为一个对称矩阵和一个反对称矩阵的和。

第二章参考答案

一:1. a ;2. b ;3.c ;4.d ;5.b ;6.d ;7.a ;8.d ;9.c ;10.d ;11.b ;12.c ;13.b ;14.a ;15.a ;16.b ;17.c ;18.b ;19.d.

二.1. 1或-1;2. 0;3. -4;4. 1;5. 81;6. 0;7. 1;8. 100;9.

i815

1i i4a a ;10. I ;12. 0;11.

0020.

收集于网络,如有侵权请联系管理员删除

三、1.1)、

0162

13010;2)、

2

132121

;3)、

461351341;4)、

201030102; 5)、 9122692683. 2. 0;3. 010131130

;4.

10002100121001

21; 5. 001111113不唯一;6. 100001010;7. 1)、

1111. 2)、

221112311;8.

111001023

;9.

13231213213232244322133221223100

100100100100100100100100100100100100)()()()()()()(.

第三章 向量

收集于网络,如有侵权请联系管理员删除

一、单项选择题

1. 321,, , 21, 都是四维列向量,且四阶行列式

m 1321 ,n 2321 ,则行列式

)(

21321

n m a )( n m b )( n m c )( n m d )(

2. 设A 为n 阶方阵,且0 A ,则( )。

成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (

3. 设A 为n 阶方阵,n r A r )(,则在A 的n 个行向量中( )。

个行向量线性无关必有r a )( 个行向量线性无关任意r )b (

性无关组个行向量都构成极大线任意r c )(

个行向量线性表示其它任意一个行向量都能被r )d (

4. n 阶方阵A 可逆的充分必要条件是( )

n r A r a )()( n A b 的列秩为)(

零向量的每一个行向量都是非)(A c

收集于网络,如有侵权请联系管理员删除

的伴随矩阵存在)(A d

5. n 维向量组s ,,,21 线性无关的充分条件是( )

)(a s ,,,21 都不是零向量

)(b s ,,,21 中任一向量均不能由其它向量线性表示

)(c s ,,,21 中任意两个向量都不成比例 )(d s ,,,21 中有一个部分组线性无关

6. n 维向量组)2(,,,21 s s 线性相关的充要条件是( )

)(a s ,,,21 中至少有一个零向量 s b ,,,)(21 中至少有两个向量成比例 s c ,,,)(21 中任意两个向量不成比例

s d ,,,)(21 中至少有一向量可由其它向量线性表示

7. n 维向量组)3(,,,21n s s 线性无关的充要条件是( )

s k k k a ,,,)(21 存在一组不全为零的数使得02211 s s k k k s b ,,,)(21 中任意两个向量都线性无关

s c ,,,)(21 中存在一个向量,它不能被其余向量线性表示 s d ,,,)(21 中任一部分组线性无关

8. 设向量组s ,,,21 的秩为r ,则( )

s a ,,,)(21 中至少有一个由r 个向量组成的部分组线性无关

收集于网络,如有侵权请联系管理员删除

s b ,,,)(21 中存在由1 r 个向量组成的部分组线性无关 s c ,,,)(21 中由r 个向量组成的部分组都线性无关 s d ,,,)(21 中个数小于r 的任意部分组都线性无关

9. 设s ,,,21 均为n 维向量,那么下列结论正确的是( )

)(a 若02211 s s k k k ,则s ,,,21 线性相关 )(b 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211 s s k k k ,则s ,,,21 线性无关

)(c 若s ,,,21 线性相关,则对任意不全为零的数s k k k ,,,21 ,都有02211 s s k k k

)(d 若000021 s ,则s ,,,21 线性无关

10. 已知向量组4321,,, 线性无关,则向量组( )

14433221,,,)( a 线性无关 14433221,,,)( b 线性无关 14433221,,,)( c 线性无关 14433221,,,)( d 线性无关

11. 若向量 可被向量组s ,,,21 线性表示,则( )

)(a 存在一组不全为零的数s k k k ,,,21 使得s s k k k 2211 )(b 存在一组全为零的数s k k k ,,,21 使得s s k k k 2211

教材:线性代数(DOC)

2013届钻石卡学员学习计划---数学三第十五单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第一章行列式 第1章第1节二阶与三阶行列式(P1——P4) 第1章第2节全排列及其逆序数(P4——P5) 第1章第3节n阶行列式的定义(P5——P8) 第1章第4节对换(P8——P9) 第1章第5节行列式的性质(P9——P15) 第1章第6节行列式按行(列)展开(P16——P21) 第1章第7节克拉默法则(P21——P25) 本单元中我们应当学习—— 1.行列式的概念和性质,行列式按行(列)展开定理. 2.用行列式的性质和行列式按行(列)展开定理计算行列式. 3.用克莱姆法则解齐次线性方程组.

2013届钻石卡学员学习计划---数学三 第十六单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第二章矩阵及其运算 第2章第1节矩阵(P29——P32) 第2章第2节矩阵的运算(P33——P42) 第2章第3节逆矩阵(P42——P47) 第2章第4节矩阵分块法(P47——P54)

2013届钻石卡学员学习计划---数学三线性代数第三章矩阵的初等变换与线性方程组 第3章第1节矩阵的初等变换(P57——P65) 本单元中我们应当学习—— 1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质. 2.矩阵的线性运算、乘法运算、转置以及它们的运算规律. 3. 方阵的幂与方阵乘积的行列式的性质. 4.逆矩阵的概念和性质,矩阵可逆的充分必要条件. 5. 伴随矩阵的概念,用伴随矩阵求逆矩阵. 6.分块矩阵及其运算.

线性代数电子版教材

线性代数 线性代数是关于向量空间和线性映射的一个数学分支,包括对线、面和子空间的研究,也涉及到所有向量空间的一般性质。 线性代数是纯数学和应用数学的核心,它的含义随着数学的发展而不断扩大,其理论和方法已经渗透到数学的许多分支,也成为理论物理和理论化学不可缺少的代数基础知识。 1定义与历史编辑 概念 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,

线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。 历史 线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。 由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维线性空间的过渡。 随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。

线性代数发展简史讲述讲解

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级:2012084 成员组成:201208420 联系方式:************ 2013年11月6日

摘要:线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 关键词:行列式,矩阵,,,, 正文:线性代数的发展简史 引言 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生

的动力和钥匙。行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,数学家

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式 4.计算下列各行列式: (1)???? ????? ???71 10 025********* 4; (2)????????????-26 52321121314 1 2; (3)????????---ef cf bf de cd bd ae ac ab ; (4)????? ???? ???---d c b a 1 00 110011001 解 (1) 71100251020214 214 34327c c c c --0 10014 2310202110 214---=3 4)1(1431022 11014+-?---=14 31022110 14-- 3 21132c c c c ++14 171720010 99-=0 (2) 260 5232112131 412-24c c -2605032122130 412-24r r -0412032122130 412- 14r r -0 000032122130412-=0 (3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4 (4) d c b a 100 110011001---21ar r +d c b a ab 1 001 100 110 10---+=12)1)(1(+--d c a ab 1011 1--+

2 3dc c +0 10111-+-+cd c ad a a b =23)1)(1(+--cd ad ab +-+111=1++++ad cd ab abcd 5.证明: (1)1 11222 2b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2 2222222 2 2222222 =++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?; (5)1 22 110000 0100001a x a a a a x x x n n n +-----ΛΛΛΛΛΛ ΛΛΛΛn n n n a x a x a x ++++=--11 1Λ. 证明 (1)0 0122222221 312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开 按第一列 左边 bz ay by ax x by ax bx az z bx az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分 bz ay y x by ax x z bx az z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

(完整版)大学数学工程数学线性代数教材

第一章n阶行列式 在初等数学中讨论过二阶、三阶行列式,并且利用它们来解二元、三元线性方程组. 为了研究n元线性方程组,需要把行列式推广到n 阶,即讨论n阶行列式的问题. 为此,下面先介绍全排列等知识,然后引出n阶行列式的概念. §1 全排列及其逆序数 先看一个例子. 引例用1、2、3三个数字,可以组成多少个没有重复数字的三位数? 解这个问题相当于说,把三个数字分别放在百位、十位与个位上,有几种不同的放法? 显然,百位上可以从1、2、3三个数字中任选一个,所以有3种放法;十位上只能从剩下的两个数字中选一个,所以有两种放法;个位上只能放最后剩下的一个数字,所以只有1种放法. 因此,共有? ?种放法. 3= 1 6 2 这六个不同的三位数是: 123,132,213,231,312,321. 在数学中,把考察的对象,如上例中的数字1、2、3叫做元素. 上述问题就是:把3个不同的元素排成一列,共有几种不同的排法? 对于n个不同的元素,也可以提出类似的问题:把n个不同的元素排成一列,共有几种不同的排法? 把n个不同的元素排成一列,叫做这n个元素的全排列,简称排列. n个不同元素的所有排列的种数,通常用P n表示. 有引例的结果可知P3 = 3 . 2 . 1 = 6 . 1

2 为了得出计算P n 的公式,可以仿照引例进行讨论: 从n 个元素中任取一个放在第一个位置上,有n 种取法;又从剩下的n -1个元素中任取一个放在第二个位置上,有n -1种取法; 这样继续下去,直到最后只剩下一个元素放在第n 个位置上,只有1种取法. 于是 P n =n .(n -1). … . 3 . 2 . 1 = n ! . 对于n 个不同的元素,我们规定各元素之间有一个标准次序(例如n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列. 下面我们来讨论计算排列的逆序数的方法. 不失一般性,不妨设n 个元素为1至n 这n 个自然数,并规定由小到大为标准次序. 设 n p p p Λ21 为这n 个自然数的一个排列,考虑元素 ),,2,1(n i p i Λ=,如果比i p 大的且排在i p 前面的元素有i t 个,就说i p 这个元素的逆序数是i t . 全体元素的逆序数之总和 ∑==+++=n i i n t t t t t 1 21Λ, 即是这个排列的逆序数. 例1 求排列32514的逆序数. 解 在排列32514中,

北大版线性代数第一章部分课后答案详解

习题: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1) 0100002 ;0 001000 n n -(2)00100 200 1000 n n -; 解:(1) 01 0002 001000 n n -=() () 23411n τ-123n ??? ?=() 1 1!n n --

(2) 00100 200 1 0000 n n -=() ()()() 12211n n n τ---123n ??? ?=() ()() 122 1!n n n --- 4.设n 阶行列式:A= 11 11 n n nn a a a a ,B=111112122122212 12n n n n n n n n nn a a b a b a b a a b a b a b a -----,其中0b ≠,试 证明:A=B 。 证明: B= 111112122122212 12n n n n n n n n nn a a b a b a b a a b a b a b a -----= () ( ) []12 121212 12121n n n n s s s s n s s s s s n s s s n a b a b a b τ---∈-∑! = ()( ) []12 121212 1212 1()n n n n s s s s n s s s s s n s s s n a a a b b b τ---∈-∑! = ()( ) []12 121212 (1)(2)() 12 1n n n n s s s s s s n s s s n s s s n a a a b τ-+-+ -∈-∑ ! = ()( ) []12 1212 121n n n s s s s s s n s s s n a a a τ∈-∑ ! =A 命题得证。 5.证明:如下2007阶行列式不等于0: D= 22 22 33332007 2007 2007 2007 1 220062007232007200834200820082007200820082008; 证明:最后一行元素,除去2007 2007是奇数以外,其余都是偶数,故含2007 2008 的因式也都 是偶数。若最后一行取2007 2007 ,则倒数第二行只有取2006 2007 才有可能最后乘积为奇数, 以此类推,只有次对角线上的元素的积为奇数,其余项的积都为偶数。故原命题得证。 习题

《线性代数》同济大学版 课后习题答案详解

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个)

《线性代数》课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3 )()()3()3(3)()()3()3(212121212 2112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3() 3(3)()()3()3()3(3)()()3()3(212121212 2112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 ) 3(33)(3)3() 3)(3()3)(3(3 322 22 212122 2 2 2121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+ --= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)( p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=?∈?,,从而有 q ab qb a p p 2)()( 2 2 2 ++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。

线性代数基础学习书单

线性代数基础学习书单 线性代数是很传统的课程,国内还比较喜欢叫做高等代数,这就更加传统了。一般地,在我们的高等代数里,除了线性空间外,还有大量的矩阵论,一点点多项式理论。大致来说,线性代数可以从两个角度去看它,一是它的几何理论,即线性空间以及线性空间里的线性变换;二是代数方法,那就是矩阵论了。“所谓线性代数学,就是或者直接研究线性空间的几何问题,或者将线性空间的一些几何问题化为化为矩阵问题。所以线性空间理论和矩阵论实际上是相伴而生的。”(许以超,线性代数与矩阵论(第二版)·序言,p.ii) 至于多项式,在这里主要是一个将平面上的几何问题化为代数多项式问题来解决的方案,这是平面解析几何的问题。那么,多项式要不要学,光是看看那么多线性代数教科书里都要包含一章来讲多项式,就知道答案是肯定的。几何问题其实都可以是线性问题,这样,间接地,多项式也就跟线性代数挂上了钩。 不过,是否可以把多项式分出去就是一个值得考虑的问题了。我觉得多项式还是不要放在线性代数课程中为好,一则费时,二则也讲不透。事实上,很多老师会把本来放在前头的多项式挪到后面来讲,甚至干脆就不讲。有一门课叫做“整数与多项式”,不过现在很少在大学课堂里出现了。整数理论是属于数论的,但加减乘除跟多项式是一样的,比较一下算术基本定理和代数基本定理就知道了。另外,多项式其实也不是一个简单的问题,更不只限于跟整数挂钩。在多项式环中,我们有带余除法,若表示为分式,就扩展到有理域了,更进一步,我们去求根的话,那就有实根甚至复根,再则,还有多元多项式的问题。这显然不是在一本线性代数教科书的一章之内就可以交代清楚的。 当代线性代数课是比较注重空间理论的。这是符合线性代数本质的,因为在线性空间里,毕竟都是几何对象。首先得弄清楚这门课的对象,这一点是毫无疑义的。所以,刚开始学习线性代数时,应该把注意力集中在这方面。等到对此有了一个比较透彻的理解时,就该开始苦练矩阵计算的功夫了。矩阵是一种代数方法,虽然它看起来比线性空间理论要古老些,但现代数学的发展却是越来越重代数了,要想把线性代数的水平从本科程度上提高一下的话,代数基本功是重要的——以后可能不一定要用到矩阵论,但作为大一基础课,矩阵论是一个最好的也是最初的代数训练。另外,矩阵论已经相当成熟,有着一整套标准计算技巧和方法,很有实用价值。 还有两个问题要引起注意。一是要看到线性代数与其他课程的关系。比如,很多学校不是从一年级上学期就开这门课的,而是从下学期开,美国有些极端的做法甚至在大三才开课。这种情况其实就暗示了学习线性代数是需要一点其他知识的,尤其是微积分或者说数学分析的知识;另外,当微积分学到多元的时候,在高维空间里说话,也就需要一点线性代数的支持了。线性代数不跟其他东西联系起来,那是没有用的。 第二个问题是,线性代数仍在快速发展中,新的结果很多,要在基础课中追时髦是不太现实的。而且,实际上在本科阶段把它学好了,就已经可以在这个领域里开始做研究了(这一点比其他课都要划算)。所以,我认为在学这门课时,还是把眼睛紧盯着基础为上。 补充一点:线性代数是一门很基础的课程,但是,它不容易学。我觉得比较好的办法是,在学过一本基础教材后,那些“语言”不再是问题的时候,再去读一本高级一点的教材,然后再回头看过来。美国是有第二课程的,可以在这里面找找,或者读一本研究生水平的书。对于初学者,还是从容易入手的开始—— 1. 李尚志,线性代数(数学专业用),高等教育出版社,2006 这本书是我觉得比较适合作为初学者入门的教材的。它不算是一本有分量的书,但绝对是一本很好的引论。这是对它的评论:“1.不是从定义出发,而是从问题出发来展开课程内容,

国内现行《线性代数》教材分论

第24卷第2期2010年4月 河南财政税务高等专科学校学报Journal of Henan College of Finance &Tax a tion Vol .24.No .2 Apr .2010  [收稿日期]2010-01-22 [作者简介]司国星(3—),男,河南洛阳人,郑州工业安全职业学院助教;王凯红(—),女,河南郑州人,郑州 工业安全职业学院助教。 国内现行《线性代数》教材分论 司国星,王凯红 (郑州工业安全职业学院基础部,河南郑州451192) [摘 要]《线性代数》是高等数学中的基础课程,也是研究生入学考试的必考课程。通过分析目前国内多所高校的教材可以看出,根据专业的不同教材内容上也有所侧重,教师应根据自身和学生的实际情况,选择适当的教材,达到教好、学好《线性代数》的目的。 [关键词]线性代数;教材 [中图分类号]O221.1 [文献标识码]A [文章编号]1008-5793(2010)02-0091-03 《线性代数》是代数的一个分支,它研究有限维空间中线性关系的理论和方法,有着悠久的历史和丰富的内容。如今它已经成为高等理工科学校教学计划中的基础理论课,也是研究生入学考试的必考课程。随着计算机的快速发展,用代数方法解决实际问题已渗透到现代科学、技术、经济、管理的各个领域,尤其在计算机、通讯、电子等学科领域,其重要性和实用性日渐显现。因此各大高校的《线性代数》教材也日趋完善和实用。 一、《线性代数》课程的主要内容和特点 近年来,随着科学技术的发展,特别是电子计算机的广泛使用,作为重要的数学工具之一,线性代数的应用已经深入到自然科学、社会科学、工程技术、经济和管理等各个领域,各高校许多院系都将《线性代数》设为必修的基础课程之一,同时向加强基础、计算与应用的方向推进,对《线性代数》的教学内容和教学形式提出了更高的要求。 《线性代数》的主要内容是研究代数学中线性关系的经典理论。线性关系是变量之间比较简单的一种关系,线性问题广泛存在于科学技术的各个领域,一些非线性问题在一定条件下也可以转化或近似转化为线性问题。因此《线性代数》所介绍的思想方法已成为从事科学研究和工程应用工 作的必不可少的工具,尤其在计算机高速发展和 日益普及的今天,《线性代数》作为高等本科学校工科各专业的一门重要的基础理论课,其地位和作用更显得重要。 《线性代数》主要研究矩阵、方程组和向量三种对象,这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,熟练地从一种理论的叙述转移到另一种理论,是学习《线性代数》时应养成的一种重要习惯和素质。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示《线性代数》中各种问题的内在联系和本质属性。 学习《线性代数》课程应该掌握矩阵、方程组和向量的内在联系,重点关注以下几方面事项,遇到问题就能左右逢源,举一反三,化难为易。首先要注重对基本概念的理解与把握,正确、熟练运用基本方法及基本运算。《线性代数》的概念很多,在学习过程中不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。同时,《线性代数》中运算法则多,学习中也应整理清楚,避免混淆,保证基本运算与基本方法过关。其次要注重知识点的衔接与转换,知识要成网,努力提高综 19819801 9

线性代数(完整版)

线性代数复习题 一、选择题 1、 课本P44第5题 四元素乘积243241k i a a a a 是四阶行列式ij a (i,j=1,2,3,4)中的一项,i,k 的取值及该项 前应冠以的符号,有下列四种可能情况: (1)i=3,k=1,前面冠以正号 (2)i=3,k=1,前面冠以负号 (3)i=1, k=3,前面冠以正号 (4)i=1.k=3,前面冠以负号 选项正确的是(C ) A 、1.3正确 B 、1.4正确 C 、2.3正确 D 、2.4正确 解:当i=3,k=1时,N(3241)+N(1432)=4+3=7,该项前面冠以负号 当i=1,k=3时,N(1243)+N(1432)=1+3=4,该项前面冠以正号 故选择C 2、 课本P44第7题 下列选项中不属于五阶行列式ij a (i,j=1,2…5)中的一项的是(C ) A 、 54 45322311a a a a a B 、25 34431251a a a a a - C 、4521345213a a a a a - D 、1122334455a a a a a 解:选项C 中,N(15324)+N(32415)=4+4=8,前面应该冠以正号,而选项中是负号,故不属于五阶行列式中的一项 3、 3、课本P45第9题 若行列式D=,133 32 31 232221 131211 =a a a a a a a a a 则行列式33 32 3131 23222121 13 1211111324324324a a a a a a a a a a a a D ---==( A ) A 、-12 B 、12 C 、-24 D 、24 解:33 32 31 232221 13121133 32 31 23222113111133323131 23222121 13121111 343434242424324324324a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---+=--- =33 32 31 232221 13 1211 )3(*40a a a a a a a a a -+=(—12)*1=—12

线性代数教案(正式打印版)

线性代数教案(正式打印版)

第(1)次课授课时间() 教学章节第一章第一、二、三节学时2学时 教材和 参考书 1.《线性代数》(第4版)同济大学编 1.教学目的:熟练掌握2阶,3阶行列式的计算; 掌握逆序数的定义, 并会计算; 掌握n阶行列式的定义; 2.教学重点:逆序数的计算; 3.教学难点:逆序数的计算. 1.教学内容:二、三阶行列式的定义;全排列及其逆序数;n阶行列式的定义 2.时间安排:2学时; 3.教学方法:讲授与讨论相结合; 4.教学手段:黑板讲解与多媒体演示.

基本内容备注第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22换 成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公

《线性代数》课程标准讲解

课程名称:线性代数适用专业:经济、管理类 新疆财经大学应用数学学院 基础数学教研室

第一部分课程性质 (3) 第二部分课程目标 (3) 第三部分教学内容与基本要求 (3) 第四部分教学方案 (8) 第五部分课程作业与考核评价 (9) 第六部分教材与教学参考书 (10) 第一部分课程性质 一、课程性质线性代数是高等院校经济类、管理类专业的一门重要的基础课,是为培养适应四个现代化需要的本科层次的经济、管理类专业人员而设的一门必修课,通过该课程的学习,不仅使学生了解有关线性代数的基本概念,掌握线性代数的基本计算方法,培养学生的抽象思维、逻辑推理能力,而且使学生会应用线性代数知识分析、解决实际问题,并为后续课程作好必要的准备。 二、课程基本情况 课程名称:线性代数适用专业:财经。管理类各专业总学时数:54 学时修课方式:必修 三、课程说明本课程共六章,由于我校线性代数课实行普通班与快班分级教学,根据教学计划(每周3 课时),因此,第一至四章为必学内容,主要掌握矩阵、

线性方程组理论、n维向量空间、矩阵的特征值、特征向量及其有关的基本知识,第五章为快班必学内容,普通班为选学内容,第六章为普通班和快班选学内容。 第二部分课程目标 通过本课程的教学,使学生系统地掌握矩阵及线性方程组理论,n 维向量空间、矩 阵的特征值、特征向量,二次型理论知识,并能解决一些实际问题,培养学生独特的代数思维模式及逻辑推理能力,并为进一步学习后继课程和现代化科学技术打下坚实的数学基础。 第三部分教学内容与基本要求 第一章行列式(8 学时)【教学内容】§ 1.1 阶行列式的定义 二、三阶行列式的定义、排列的逆序数、n 阶行列式的定义。 § 1.2 行列式的性质 行列式的性质 § 1.3 行列式的展开定理余子 式和代数余子式的概念、行列式 按行(列)展开定理。 § 1.4 行列式的计算 § 1.5 克莱姆法则克莱 姆法则。 基本要求】 1、了解排列与逆序的概念。 2、理解n 阶行列式的定义、性质。 3、掌握按一行(列)展开的定理。 4、熟练掌握用行列式的定义、性质和有关定理计算较简单的n 阶行列式的方法。 5、掌握克莱姆法则。 6、本章内容对普通班的学生只要求掌握基本知识和基本技能,而对于快班的学生不仅要 掌握基本知识和基本技能,还要求有一定的综合知识的应用能力。

线性代数教案正式打印版

线性代数教案正式打印 版 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第(1)次课授课时间()

基本内容备注 第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式 ,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b ,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公 式(2)中 2 x的表达式的分子。 于是二元方程组的解的公式又可写为 ? ? ? ?? ? ? = = D D x D D x 2 2 1 1 其中0 ≠ D

线性代数习题集带答案教学教材

线性代数习题集带答 案

收集于网络,如有侵权请联系管理员删除 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2 ! (D)k n n 2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2 n (C) )!2( n (D) )!1( n 4. 0 001001001001 000( ). (A) 0 (B)1 (C) 1 (D) 2 5. 0 001100000100100( ). (A) 0 (B)1 (C) 1 (D) 2 6.在函数1 00 323211112)(x x x x x f 中3x 项的系数是( ). (A) 0 (B)1 (C) 1 (D) 2

收集于网络,如有侵权请联系管理员删除 7. 若2 1 33 32 31 232221 131211 a a a a a a a a a D ,则 32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若 a a a a a 22 2112 11,则 21 11 2212ka a ka a ( ). (A)ka (B)ka (C)a k 2 (D)a k 2 9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为 x ,1,5,2 , 则 x ( ). (A) 0 (B)3 (C) 3 (D) 2 10. 若5 73 41111 1 326 3 478 D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0 11. 若2 235001011 11 0403 D ,则D 中第四行元的余子式的和为( ). (A)1 (B)2 (C)3 (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1 (B)2 (C)3 (D)0 二、填空题

(完整版)大学数学工程数学线性代数教材.doc

第一章n 阶行列式 在初等数学中讨论过二阶、三阶行列式,并且利用它们来解二元、三元线性方程组 . 为了研究n元线性方程组,需要把行列式推广到 n 阶,即讨论 n 阶行列式的问题 . 为此,下面先介绍全排列等知识,然 后引出 n 阶行列式的概念. § 1全排列及其逆序数 先看一个例子. 引例用 1、2、3 三个数字,可以组成多少个没有重复数字的三 位数? 解这个问题相当于说,把三个数字分别放在百位、十位与个位 上,有几种不同的放法? 显然,百位上可以从1、 2、 3 三个数字中任选一个,所以有 3 种放法;十位上只能从剩下的两个数字中选一个,所以有两种放法; 个位上只能放最后剩下的一个数字,所以只有 1 种放法 . 因此,共有 3 2 1 6 种放法. 这六个不同的三位数是: 123, 132, 213, 231, 312, 321. 在数学中,把考察的对象,如上例中的数字 1、2、3 叫做元素 . 上述问题就是:把 3 个不同的元素排成一列,共有几种不同的排法? 对于 n 个不同的元素,也可以提出类似的问题:把 n 个不同的元素排成一列,共有几种不同的排法? 把 n 个不同的元素排成一列,叫做这n个元素的全排列,简称排列. n 个不同元素的所有排列的种数,通常用 P n表示 . 有引例的结果可 知 P3 = 3 . 2 . 1 = 6 .

为了得出计算 P n的公式,可以仿照引例进行讨论: 从 n 个元素中任取一个放在第一个位置上,有 n 种取法;又从剩下的 n- 1 个元素中任取一个放在第二个位置上,有n- 1 种取法; 这样继续下去,直到最后只剩下一个元素放在第n 个位置上,只有 1 种取法 . 于是 P n=n .( n-1).?. 3 . 2 . 1 = n! . 对于 n 个不同的元素,我们规定各元素之间有一个标准次序(例如 n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有 1 个逆序 . 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列. 下面我们来讨论计算排列的逆序数的方法. 不失一般性,不妨设 n 个元素为 1 至 n 这 n 个自然数,并规定由小到大为标准次序 . 设 p1 p2p n 为这 n 个自然数的一个排列,考虑元素p i (i 1,2,, n) ,如果比 p i 大的且排在p i前面的元素有t i个,就说p i这个元素的逆序数是t i. 全体元素的逆序数之总和 n t t1t 2t n t i, i 1 即是这个排列的逆序数. 例1 求排列 32514 的逆序数 . 解在排列 32514 中,

相关主题
文本预览
相关文档 最新文档