中考数学全真模拟试题41
- 格式:docx
- 大小:100.87 KB
- 文档页数:12
江苏省镇江市丹阳市2024年中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-62.如图,在平面直角坐标系中,半径为2的圆P 的圆心P 的坐标为(﹣3,0),将圆P 沿x 轴的正方向平移,使得圆P 与y 轴相切,则平移的距离为( )A .1B .3C .5D .1或53.已知函数y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根4.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:35.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年6.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-7.如图,在△ABC 中,AB=AC=3,BC=4,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A .3B .4C .5D .68.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .89.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 10.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯二、填空题(共7小题,每小题3分,满分21分)11.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.12.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.13.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.15.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________16.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.17.欣欣超市为促销,决定对A ,B 两种商品统一进行打8折销售,打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元,打折后,小敏买50件A 商品和40件B 商品仅需________元.三、解答题(共7小题,满分69分)18.(10分)如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应数分别为a 、b 、c 、d 、e .(1)若a+e=0,则代数式b+c+d= ;(2)若a 是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M 表示的实数为m (m 与a 、b 、c 、d 、e 不同),且满足MA+MD=3,则m 的范围是 .19.(5分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.20.(8分)先化简,再求值:(12a+-1)÷212aa-+,其中a=31+21.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)22.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?23.(12分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?24.(14分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【题目详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【题目点拨】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2、D【解题分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【题目详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【题目点拨】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.3、A【解题分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【题目点拨】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、A【解题分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【题目详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【题目点拨】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.6、B【解题分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【题目详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【题目点拨】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.7、C【解题分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【题目详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【题目点拨】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.8、C【解题分析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DE BC EF=, 即123EF=, 解得EF =6,故选C.9、D【解题分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【题目点拨】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.10、B【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】210万=2100000,2100000=2.1×106,故选B .【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题(共7小题,每小题3分,满分21分)11、x <﹣2或0<x <2【解题分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【题目详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【题目点拨】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.12、213【解题分析】作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以3HC'=1,在Rt△MF'H中,即可求得F'M.【题目详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,∴PF=GQ,将BC'绕点C'逆时针旋转120°,Q点关于C'G的对应点为F',∴GF'=GQ,设F'M交AB于点E',∵F关于AB的对称点为G,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=';∴△FEP 的周长最小值为213故答案为:13【题目点拨】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.13、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.14、7【解题分析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 15、1【解题分析】 分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2k a)=1,最后解方程即可. 详解:设D (a ,k a ), ∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a), ∴E (2a ,2k a ), ∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1. 故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值.16、3或1【解题分析】由四边形ABCD 是平行四边形得出:AD ∥BC ,AD=BC ,∠ADB=∠CBD ,又由∠FBM=∠CBM ,即可证得FB=FD ,求出AD 的长,得出CE 的长,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵∠FBM=∠CBM ,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【题目点拨】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.17、1【解题分析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y 的值,进而求解即可.【题目详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得63=54 {34=32x yx y++,解得x=8 {y=2.所以0.8×(8×50+2×40)=1(元).即打折后,小敏买50件A商品和40件B商品仅需1元.故答案为1.【题目点拨】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题(共7小题,满分69分)18、(1)0;(1),;(3) ﹣1<x<1.【解题分析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【题目详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x <1.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.19、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解题分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【题目详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5; (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5, 张华得分为:90×10%+75×20%+75×30%+80×40%=78.5, ∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【题目点拨】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.20、【解题分析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式=()11333131=-=--+ 点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.21、29033cm 【解题分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .【题目详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用22、1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解题分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【题目详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y == 答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【题目点拨】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系23、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解题分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【题目详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m +75(50﹣m )≤4000,且50﹣m ≥0,解得,5≤m ≤10,利润是30m +20(50﹣m )=1000+10m ,当m 取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【题目点拨】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22=6,于是得到结论.BE BD【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.。
2024届湖北省武汉市东西湖区中考数学全真模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.抛物线经过第一、三、四象限,则抛物线的顶点必在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( ) A .8B .9C .10D .123.若x ﹣2y+1=0,则2x ÷4y ×8等于( ) A .1B .4C .8D .﹣164.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 25.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .a 2+a 3=a 5C .(a 2)3=a 6D .a 12÷a 6=a 2 6.下列运算正确的是( ) A .x •x 4=x 5B .x 6÷x 3=x 2 C .3x 2﹣x 2=3D .(2x 2)3=6x 67.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( ) A .28°,30°B .30°,28°C .31°,30°D .30°,30°8.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-9.如图,点A 、B 、C 在圆O 上,若∠OBC=40°,则∠A 的度数为( )A .40°B .45°C .50°D .55°10.主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( ) A .135×107B .1.35×109C .13.5×108D .1.35×101411.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .12.如图所示的几何体,它的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.双曲线11y x =、23y x=在第一象限的图像如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连结BD 、CE ,则BDCE=.14.设[x)表示大于x 的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x=0.5成立. 15.如图,点A 在双曲线y =kx的第一象限的那一支上,AB 垂直于y 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为_____.16.已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x 的值为_____. 17.如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)18.对于实数a ,b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ;当a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于x 的函数为y =max {x +3,﹣x +1},则该函数的最小值是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)解方程:x 2-4x -5=020.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A 类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.21.(6分)解不等式组:,并把解集在数轴上表示出来.22.(8分)下表给出A 、B 、C 三种上宽带网的收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min ) A 30 25 0.05 B 50 50 0.05 C120不限时设上网时间为t 小时. (I )根据题意,填写下表: 月费/元 上网时间/h 超时费/(元) 总费用/(元) 方式A 30 40 方式B50100(II )设选择方式A 方案的费用为y 1元,选择方式B 方案的费用为y 2元,分别写出y 1、y 2与t 的数量关系式; (III )当75<t <100时,你认为选用A 、B 、C 哪种计费方式省钱(直接写出结果即可)? 23.(8分)已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.(10分)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB=AD ,∠BFC=∠BAD=2∠DFC . 求证:(1)CD ⊥DF ; (2)BC=2CD .25.(10分)如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.26.(12分)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP . (2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=1.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A .设点P 的运动时间为t (秒),当DC 的长与△ABD 底边上的高相等时,求t 的值.27.(12分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】根据二次函数图象所在的象限大致画出图形,由此即可得出结论.【题目详解】∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.故选A.【题目点拨】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.2、A【解题分析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.3、B【解题分析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【题目详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【题目点拨】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.4、C【解题分析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.5、C【解题分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【题目详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选:C.【题目点拨】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.6、A【解题分析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误.故选A.7、D【解题分析】试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.考点:众数;算术平均数.8、D【解题分析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.9、C【解题分析】根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.【题目详解】∵OB=OC,∴∠OBC=∠OCB.又∠OBC=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°-2×40°=100°,∴∠A=∠BOC=50°故选:C.【题目点拨】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.10、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】将1350000000用科学记数法表示为:1350000000=1.35×109,故选B.【题目点拨】本题考查科学记数法的表示方法. 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.11、B【解题分析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B .点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字. 12、A 【解题分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线. 【题目详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线, 故选:A . 【题目点拨】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、23【解题分析】设A 点的横坐标为a ,把x=a 代入23y x =得23y a =,则点A 的坐标为(a ,3a). ∵AC ⊥y 轴,AE ⊥x 轴,∴C 点坐标为(0,3a ),B 点的纵坐标为3a ,E 点坐标为(a ,0),D 点的横坐标为a . ∵B 点、D 点在11y x =上,∴当y=3a 时,x=a 3;当x=a ,y=1a .∴B 点坐标为(a 3,3a ),D 点坐标为(a ,1a ).∴AB=a -3a =2a 3,AC=a ,AD=3a -1a =2a ,AE=3a .∴AB=23AC ,AD=23AE .又∵∠BAD=∠CAD ,∴△BAD ∽△CAD .∴BD AB 2CE AC 3==. 14、④ 【解题分析】根据题意[x)表示大于x 的最小整数,结合各项进行判断即可得出答案.【题目详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【题目点拨】此题考查运算的定义,解题关键在于理解题意的运算法则.15、16 3.【解题分析】由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,kx),从而表示出梯形BOCA的面积关于k的等式,求解即可. 【题目详解】如图,连接DC,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1. ∴△ADC的面积为4.∵点A在双曲线y=kx的第一象限的那一支上,∴设A点坐标为(x,kx ).∵OC=2AB,∴OC=2x.∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.∴梯形BOCA的面积=11(2)3822k kx x xx x+⋅=⋅⋅=,解得16k3=.【题目点拨】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质. 16、1. 【解题分析】试题分析:∵1x ,2x 是方程的两实数根,∴由韦达定理,知126x x +=-,123x x =,∴2112x x x x +=2121212()2x x x x x x +-=2(6)233--⨯=1,即2112x x x x +的值是1.故答案为1. 考点:根与系数的关系. 17、6.2 【解题分析】根据题意和锐角三角函数可以求得BC 的长,从而可以解答本题. 【题目详解】 解:在Rt △ABC 中, ∵∠ACB=90°,∴BC=AB•sin ∠BAC=12×0.515≈6.2(米), 答:大厅两层之间的距离BC 的长约为6.2米. 故答案为:6.2. 【题目点拨】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答. 18、2 【解题分析】试题分析:当x+3≥﹣x+1, 即:x≥﹣1时,y=x+3, ∴当x=﹣1时,y min =2, 当x+3<﹣x+1,即:x <﹣1时,y=﹣x+1, ∵x <﹣1, ∴﹣x >1, ∴﹣x+1>2, ∴y >2,∴y min=2,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、x1 ="-1," x2 =5【解题分析】根据十字相乘法因式分解解方程即可.20、(1)13(2)23.【解题分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.21、无解.【解题分析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.22、(I)见解析;(II)见解析;(III)见解析.【解题分析】(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.【题目详解】(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,填表如下:(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【题目点拨】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.23、(1)12,32-;(2)证明见解析.【解题分析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24、(1)详见解析;(2)详见解析. 【解题分析】(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得∠CDF=90°,则CD ⊥DF ; (2)应先找到BC 的一半,证明BC 的一半和CD 相等即可. 【题目详解】证明:(1)∵AB=AD ,∴弧AB=弧AD ,∠ADB=∠ABD . ∵∠ACB=∠ADB ,∠ACD=∠ABD , ∴∠ACB=∠ADB=∠ABD=∠ACD .∴∠ADB=(180°﹣∠BAD )÷2=90°﹣∠DFC . ∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°, ∴CD ⊥DF .(2)过F 作FG ⊥BC 于点G , ∵∠ACB=∠ADB , 又∵∠BFC=∠BAD ,∴∠FBC=∠ABD=∠ADB=∠ACB . ∴FB=FC .∴FG 平分BC ,G 为BC 中点,12GFC BAD DFC ∠=∠=∠, ∵在△FGC 和△DFC 中,,GFC DFC FC FCACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FGC ≌△DFC (ASA ), ∴12CD GC BC ==. ∴BC=2CD .【题目点拨】本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等.25、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒. 【解题分析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可. 试题解析:(1)∵a 、b 460.a b --= ∴a −4=0,b −6=0, 解得a =4,b =6, ∴点B 的坐标是(4,6), 故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O −C −B −A −O 的线路移动, ∴2×4=8, ∵OA =4,OC =6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.26、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解题分析】(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据AD⋅BC=AP⋅BP,就可求出t的值.【题目详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴2253-,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值为2秒或2秒.【题目点拨】本题考查圆的综合题.27、(1)4﹣2;﹣52<x≤2,在数轴上表示见解析【解题分析】(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【题目详解】解:(1)原式=4+2×22﹣2×32=4+2﹣62=4﹣52;(2)() 5231131322x xx x⎧+>-⎪⎨-≤-⎪⎩①②,解①得:x>﹣52,解②得:x≤2,不等式组的解集为:﹣52<x≤2,在数轴上表示为:.【题目点拨】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.。
江西省南昌市第二中学2024届中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于()A.13 B.14 C.15 D.162.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.3.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.54.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-25.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为()A .2B .4C .25D .456.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是( )A .a c =B .0ab >C .1a c +=D .1b a -=7.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是( )A .B .C .D .8.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A .45B .60C .120D .1359.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( ) A .y=2x+2B .y=2x-2C .y=-2x+2D .y=-2x-210.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60,则该直尺的宽度为____________cm .12.已知方程2390x x m -+=的一个根为1,则m 的值为__________.13.如图,AB 是半圆O 的直径,E 是半圆上一点,且OE ⊥AB ,点C 为的中点,则∠A=__________°.14.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.15.如图,在矩形ABCD 中,AB =4,BC =5,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE .延长AF 交边BC 于点G ,则CG 为_____.16.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.三、解答题(共8题,共72分)17.(8分)如图1,已知△ABC 是等腰直角三角形,∠BAC =90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .试猜想线段BG 和AE 的数量关系是_____;将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论; ②若BC =DE =4,当AE 取最大值时,求AF 的值.18.(8分)如图,直线11y k x b =+与第一象限的一支双曲线my x =交于A 、B 两点,A 在B 的左边. (1)若1b =4,B(3,1),求直线及双曲线的解析式:并直接写出不等式11mk x b x<+的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC 、BC,设直线BC 解析式为y kx b =+;当AC ⊥AB 时,求证:k 为定值.19.(8分)已知:如图,AB 为⊙O 的直径,C 是BA 延长线上一点,CP 切⊙O 于P ,弦PD ⊥AB 于E ,过点B 作BQ ⊥CP 于Q ,交⊙O 于H , (1)如图1,求证:PQ =PE ;(2)如图2,G 是圆上一点,∠GAB =30°,连接AG 交PD 于F ,连接BF ,若tan ∠BFE =3C 的度数;(3)如图3,在(2)的条件下,PD=63,连接QC交BC于点M,求QM的长.20.(8分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.21.(8分)某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y(只)与生产时间x(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;(2)若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y(只)与生产时间x(分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.22.(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?23.(12分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)24.观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.参考答案一、选择题(共10小题,每小题3分,共30分)1、D由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【题目详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【题目点拨】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.2、A【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3、B【解题分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【题目详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4;故选:B.本题考查了概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 4、A 【解题分析】试题分析:原方程变形为:x (x-1)=0 x 1=0,x 1=1. 故选A .考点:解一元二次方程-因式分解法. 5、C 【解题分析】根据等腰三角形的性质和勾股定理解答即可. 【题目详解】解:∵点A ,D 分别对应数轴上的实数﹣2,2, ∴AD =4,∵等腰△ABC 的底边BC 与底边上的高AD 相等, ∴BC =4, ∴CD =2,在Rt △ACD 中,AC =,故选:C . 【题目点拨】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理. 6、C 【解题分析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答. 【题目详解】解:∵AO =2,OB =1,BC =2, ∴a =-2,b =1,c =3,∴|a|≠|c|,ab <0,1a c +=,()123b a -=--=, 故选:C .此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.7、C【解题分析】根据左视图是从物体的左面看得到的视图解答即可.【题目详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C.【题目点拨】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.8、A【解题分析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【题目详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【题目点拨】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9、B【解题分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【题目详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴ ,解得,∴直线AB 的解析式为y =2x +1.将直线AB 向右平移1个单位长度后得到的解析式为y =2(x−1)+1,即y =2x +2, 再将y =2x +2绕着原点旋转180°后得到的解析式为−y =−2x +2,即y =2x−2, 所以直线l 的表达式是y =2x−2. 故选:B . 【题目点拨】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键. 10、C 【解题分析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C .点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.二、填空题(本大题共6个小题,每小题3分,共18分) 11、533【解题分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【题目详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒cos30AE OA ==︒tan 30OE AE =⋅︒=直尺的宽度:CE OC OE =-==【题目点拨】考查垂径定理,熟记垂径定理是解题的关键.12、1【解题分析】欲求m ,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m 值.【题目详解】设方程的另一根为x 1,又∵x=1, ∴1113{•1=3x m x +=, 解得m=1.故答案为1.【题目点拨】本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x 2-9x+m=0中求出m 的值.13、22.5【解题分析】连接半径OC ,先根据点C 为BE 的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=12×45°,可得结论. 【题目详解】连接OC ,∵OE ⊥AB ,∴∠EOB=90°,∵点C 为BE 的中点,∴∠BOC=45°,∵OA=OC ,∴∠A=∠ACO=12×45°=22.5°, 故答案为:22.5°.【题目点拨】本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.14、17【解题分析】∵8是出现次数最多的,∴众数是8,∵这组数据从小到大的顺序排列,处于中间位置的两个数都是9,∴中位数是9,所以中位数与众数之和为8+9=17.故答案为17小时.15、45【解题分析】如图,作辅助线,首先证明△EFG ≌△ECG ,得到FG =CG (设为x ),∠FEG =∠CEG ;同理可证AF =AD =5,∠FEA =∠DEA ,进而证明△AEG 为直角三角形,运用相似三角形的性质即可解决问题.【题目详解】连接EG ;∵四边形ABCD 为矩形,∴∠D =∠C =90°,DC =AB =4;由题意得:EF =DE =EC =2,∠EFG =∠D =90°;在Rt △EFG 与Rt △ECG 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EFG ≌Rt △ECG (HL ),∴FG =CG (设为x ),∠FEG =∠CEG ;同理可证:AF =AD =5,∠FEA =∠DEA ,∴∠AEG =12×180°=90°, 而EF ⊥AG ,可得△EFG ∽△AFE,∴2EF AF FG =∴22=5•x ,∴x =45, ∴CG =45, 故答案为:45. 【题目点拨】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.16、()()()()21212121----,,,,,,,(写出一个即可) 【解题分析】【分析】根据点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值,进行求解即可.【题目详解】设P (x ,y ),根据题意,得|x|=2,|y|=1,即x=±2,y=±1, 则点P 的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【题目点拨】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值是解题的关键.三、解答题(共8题,共72分)17、(1)BG=AE .(2)①成立BG=AE .证明见解析.②AF=【解题分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;(2)①如图2,连接AD ,由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论; ②由①可知BG=AE ,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【题目详解】(1)BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt △AEF 中,由勾股定理,得 AF=22AE EF + =3616+,∴AF=213 .【题目点拨】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.18、 (1) 1<x <3或x <0;(2)证明见解析.【解题分析】(1)将B (3,1)代入m y x=,将B (3,1)代入14y k x =+,即可求出解析式; 再根据图像直接写出不等式11m k x b x +<的解集;(2)过A 作l ∥x 轴,过C 作CG ⊥l 于G ,过B 作BH ⊥l 于H , △AGC ∽△BHA , 设B (m , 3m )、C (n , 3n ),根据对应线段成比例即可得出mn =-9,联立3y kx b y x =+⎧⎪⎨=⎪⎩,得2230k x bx +-=,根据根与系数的关系得39mn k -==-,由此得出13k =为定值. 【题目详解】解:(1)将B (3,1)代入m y x =, ∴m=3, 3y x=, 将B (3,1)代入14y k x =+,∴1341k +=,11k =-,∴4y x =-+, ∴不等式11m k x b x +<的解集为1<x <3或x <0 (2)过A 作l ∥x 轴,过C 作CG ⊥l 于G ,过B 作BH ⊥l 于H ,则△AGC ∽△BHA ,设B (m ,3m )、C (n , 3n), ∵AG BH CG AH=, ∴331313n m m n--=--, ∴131113m n m n m n-⋅-=--⋅, ∴ 3131m n =-, ∴mn =-9,联立∴3y kx b y x =+⎧⎪⎨=⎪⎩, ∴2230k x bx +-=∴39mn k -==-, ∴13k =为定值.【题目点拨】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.19、(1)证明见解析(2)30°【解题分析】试题分析:(1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB 于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得,在Rt△BEF中,由tan∠BFE=BE=,从而可得AB=,则OP=OA=,结合可得,这样即可得到sin∠OPE=12OEOP,由此可得∠OPE=30°,则∠C=30°;(3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,连接OP,PB,∵CP切⊙O于P,∴OP⊥CP于点P,又∵BQ⊥CP于点Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于点E,∴PQ=PE;(2)如下图2,连接OP ,∵CP 切⊙O 于P ,∴90OPC OPQ ∠=∠=︒∴90C COP ∠+∠=︒∵PD ⊥AB∴ 90PEO AEF BEF ∠=∠=∠=︒∴90EPO COP ∠+∠=︒∴C EPO ∠=∠在Rt FEA ∆中,∠GAB=30°∴设EF=x ,则tan303AE EF x =÷︒= 在Rt FEB ∆中,tan ∠BFE=33∴·tan 33BE EF BFE x =∠=∴43AB AE BE x =+=∴23AO PO x ==∴3EO AO AE x =-=∴在Rt ∆PEO 中, 1sin 2EO EPO PO ∠== ∴C EPO ∠=∠=30°;(3)如下图3,连接BG ,过点O 作OK HB ⊥于K ,又BQ ⊥CP ,∴90OPQ Q OKQ ∠=∠=∠=︒,∴四边形POKQ 为矩形,∴QK=PO,OK//CQ ,∴C KOB ∠=∠=30°,∵⊙O 中PD ⊥AB 于E ,,AB 为⊙O 的直径,∴PE= 12, 根据(2)得30EPO ∠=︒,在Rt ∆EPO 中,cos PE EPO PO ∠=,∴cos cos306PO PE EPO =÷∠=︒=,∴OB=QK=PO=6,∴在Rt KOB ∆中,sin KB KOB OB ∠=, ∴01sin30632KB OB =⋅=⨯=, ∴QB=9,在△ABG 中,AB 为⊙O 的直径,∴∠AGB=90°,∵∠BAG=30°,∴BG=6,∠ABG=60°, 过点G 作GN ⊥QB 交QB 的延长线于点N ,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos ∠GBQ=3,GN=BQ·sin ∠GBQ= ∴QN=QB+BN=12,∴在Rt △QGN 中,=∵∠ABG=∠CBQ=60°,∴BM 是△BQG 的角平分线,∴QM :GM=QB :GB=9:6,∴QM=915⨯=点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN 中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.20、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+3或7﹣3【解题分析】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【题目详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴3,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=73第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴3,∴3故答案为:373【题目点拨】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21、(1)25,150;(2)y甲=25x(0≤x≤20),()()15010=503501017x xyx x⎧≤≤⎪⎨-<≤⎪⎩乙;(3)x=14,150【解题分析】解:(1)甲每分钟生产50020=25只; 提高生产速度之前乙的生产速度=755=15只/分, 故乙在提高生产速度之前已生产了零件:15×10=150只; (2)结合后图象可得:甲:y 甲=25x (0≤x≤20);乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,乙:y 乙=15x (0≤x≤10),当10<x≤17时,设y 乙=kx +b ,把(10,150)、(17,500),代入可得:10k +b =150,17k +b =500,解得:k =50,b =−350,故y 乙=50x−350(10≤x≤17).综上可得:y 甲=25x (0≤x≤20);()()15010=503501017x x y x x ⎧≤≤⎪⎨-<≤⎪⎩乙; (3)令y 甲=y 乙,得25x =50x−350,解得:x =14,此时y 甲=y 乙=350只,故甲工人还有150只未生产.22、100或200【解题分析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x 元,列方程解答即可. 试题解析:设每台冰箱应降价x 元,每件冰箱的利润是:元,卖(8+x 50×4)件, 列方程得,(8+x 50×4)=4800, x 2﹣300x+20000=0,解得x 1=200,x 2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.考点:一元二次方程的应用.23、(1)证明见解析;(2)9﹣3π【解题分析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.24、(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解题分析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE ∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴MD AM CF DC=,设DC=x,∵∠ACB=45°,,∴AM=CM=1,MD=1-x,∴11xCF x -=,∴CF=-x2+x=-(x-12)2+14,∴当x=12时有最大值,CF最大值为14.点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.。
2024年重庆市沙坪坝区中考数学全真模拟试卷一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣2的相反数是()A.2B.﹣2C.D.2.(4分)六个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.(4分)反比例函数的图象一定经过的点是()A.(1,6)B.(﹣1,﹣6)C.(2,﹣3)D.(3,2)4.(4分)如图,直线m∥n,点A在直线m上,点B在直线n上,连接AB,过点A作AC ⊥AB,交直线n于点C.若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°5.(4分)如图,在平面直角坐标系中,△OAB和△OCD是以原点O为位似中心的位似图形.若OB=2OD,△OCD的周长为3,则△OAB的周长为()A.6B.9C.12D.306.(4分)估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间7.(4分)下列图形都是由同样大小的菱形按照一定规律组成的,其中第①个图形中共有9个菱形,第②个图形中共有12个菱形,第③个图形中共有15个菱形,…,按此规律排列下去,第⑥个图形中的菱形个数为()A.21B.24C.27D.308.(4分)如图,在△ABC中,∠B=30°,点O是边AB上一点,以点O为圆心,以OA 为半径作圆,⊙O恰好与BC相切于点D,连接AD.若AD平分∠CAB,,则线段AC的长是()A.2B.C.D.9.(4分)如图,正方形ABCD中,点E为边BA延长线上一点,点F在边BC上,且AE =CF,连接DF,EF.若∠FDC=α.则∠AEF=()A.90°﹣2αB.45°﹣αC.45°+αD.α10.(4分)已知a>b>0>c>d>e,对多项式a﹣b﹣c﹣d﹣e任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含减法运算,称这种操作为“绝对领域”,例如:a﹣|b﹣c﹣d|﹣e,a﹣|b﹣c|﹣|d﹣e|等,下列相关说法正确的数是()①一定存在一种“绝对领域”操作使得操作后的式子化简的结果为非负数;②一定存在一种“绝对领域”操作使得操作后的式子化简的结果与原式的和为0;③进行“绝对领域”操作后的式子化简的结果可能有9种结果.A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(4﹣π)0﹣|﹣3|=.12.(4分)如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.13.(4分)寒假期间,小明、小红二人在《满江红》《流浪地球2》《中国乒乓》《熊出没》四部影片中各自随机选择了一部影片观看(假设两人选择每部影片的机会均等),则二人恰好选择同一部影片观看的概率为.14.(4分)2023年,哈尔滨旅游强势出圈,全市旅游总收入达到1700亿元,据了解,2021年哈尔滨全市旅游总收入为950亿元,若设这两年全市旅游总收入的年平均增长率为x,则可列方程:.15.(4分)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠A=45°,AD=6,BC=2,以点C为圆心,CB长为半径画弧交CD于点E,则图中阴影部分面积为.16.(4分)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.17.(4分)若关于x的一元一次不等式组有且仅有3个偶数解,且关于y的分式方程的解为非负数,则所有满足条件的整数m的值之和是.18.(4分)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足a+b+c =d2;那么称这个四位数为“和方数”.例如:四位数2613,因为2+6+1=32,所以2613是“和方数”;四位数2514,因为2+5+1≠42,所以2514不是“和方数”.若是“和方数”,则这个数是;若四位数M是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N,若M+N能被33整除,则满足条件的M的最大值是.三、解答题(本大题共8个小题,19题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)y(x+y)+(x+y)(x﹣y);(2).20.(10分)为进一步营造良好的通信科技人才成长环境,提升信息科技素养,培养科技创新后备人才,某学校开展了以“青少年通信科技创新大赛”为主题的科技系列活动,初赛采用标准试题线上答题.其中该校对七、八年级学生进行了初赛测试,现从七、八年级中各随机抽取10名学生的成绩(百分制,单位:分)进行整理、描述和分析(成绩得分用x表示,共分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100),下面给出了部分信息:七年级10名学生的成绩是:63,72,76,82,82,86,86,86,97,100八年级10名学生的成绩在C组中的数据是:84,86,82,87,87.七、八年级抽取的学生成绩统计表年级七年级八年级平均数8383中位数84a众数b87八年级抽取的学生成绩扇形统计图请根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)根据以上数据,你认为哪个年级学生的初赛成绩更好?请说明理由(写出一条理由即可);(3)该校七年级有480人、八年级有560人参加了此次初赛测试,请估计两个年级参加初赛测试的成绩不低于90分的共有多少人.21.(10分)如图,在Rt△ABC中,∠B=90°,AD平分∠BAC.小明在刚学完“三角形全等的判定”这节课后,想利用所学知识,推导出△ABD和△ACD面积的比值与AB,AC两边比值的关系.他的思路是:过点D作AC的垂线,垂足为点H,再根据三角形全等来证明△ABD和△ACD的高相等,进一步得到△ABD和△ACD的面积之比等于∠BAC 的两邻边边长之比.请根据小明的思路完成以下作图与填空:(1)用直尺和圆规,过点D作AC的垂线,垂足为点H(只保留作图痕迹).(2)证明:∵DH⊥AC,∴∠AHD=90°=∠B.∵AD平分∠BAC,∴①.在△ABD和△AHD中,∴△ABD≌△AHD(AAS).∴③.∵,,∴.小明再进一步研究发现,只要一个三角形被其任意一内角角平分线分为两个三角形,均有此结论.请你依照题意完成下面命题:如果一个三角形满足被其任意一内角角平分线分为两个三角形,那么④.22.(10分)远方食品公司有甲、乙两个组共36名工人.甲组每天制作6400个粽子,乙组每天制作12000个粽子.已知乙组每人每天制作的粽子数量是甲组每人每天制作粽子数量的.(1)求甲、乙两组各有多少名工人?(2)为了提高粽子的日产量,公司决定从乙组抽调部分人员到甲组中,抽调后甲组每人每天制作粽子数量提高,而乙组每人每天制作粽子数量降低.若每天至少生产20300个粽子,则至少需要抽调多少人到甲工作组?23.(10分)如图1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=4,AB=10,点P 在四边形的边上,且沿着点B→C→D→A运动.设点P的运动路程为x,记AB、BP、P A 围成的面积为S,y1=S,.(1)请直接写出y1与x的函数关系式,并写出x的取值范围;(2)如图2,平面直角坐标系中已画出函数y2的图象,请在同一坐标系中画出函数y1的图象,并根据函数图象,写出函数y的一条性质;(3)结合y1与y2的函数图象,直接写出当y1>y2时,x的取值范围.(结果保留一位小数,误差范围不超过0.2).24.(10分)今年夏季我市持续高温引发多地山火.如图,某地山火火口AB宽10米,受风力等因素的影响,火源头A正沿东北方向的AD蔓延,火源头B正沿北偏东60°方向的BC蔓延,山火救援队在前方赶造一条阻燃带CD,已知CD∥AB,AB与CD间的距离为40米.(1)求阻燃带CD的长度(精确到个位);(2)若救援队赶造阻燃带的速度为每小时12米,火源头A的蔓延速度是每小时15米,火源头B的蔓延速度是每小时20米,受热浪影响,火源头到来前10分钟无法工作.通过计算说明,救援队能否在最先到达阻燃带CD的火源头到来前10分钟赶造好阻燃带?(参考数据:,)25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2过点(2,)且交x轴于点A(1,0),点B,交y轴于点C,顶点为D,连接AC,BC.(1)求抛物线的表达式.(2)点P是直线BC下方抛物线上的一动点,过点P作PM∥AC交x轴于点M,PH∥x 轴交BC于点H,求PM+PH的最大值,以及此时点P的坐标.(3)连接DA,把原抛物线沿射线DA方向平移个单位长度后交x轴于A,B两点(A′在B′右侧),在新抛物线上是否存在一点G,使得∠GA′B′=45°,若存在,求出点G的坐标,若不存在,请说明理由.26.(10分)已知△ABC为等边三角形,D是边AB上一点,连接CD,点E为CD上一点,连接BE.(1)如图1,延长BE交AC于点F,若∠CBF=45°,,求CF的长;(2)如图2,将△BEC绕点C顺时针旋转60°到△AGC,延长BC至点H,使得CH=BD,连接AH交CG于点N,求证CE=DE+2GN;(3)如图3,AB=8,点H是BC上一点,且BD=2CH,连接DH,点K是AC上一点,CK=AD,连接DK,BK,将△BKD沿BK翻折到△BKQ,连接CQ,当△ADK的周长最小时,直接写出△CKQ的面积.2024年重庆市沙坪坝区中考数学全真模拟试卷参考答案一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.A;2.C;3.C;4.B;5.A;6.B;7.B;8.C;9.B;10.B 二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.﹣2;12.250;13.;14.950(1+x)2=1700;15.6﹣π;16.2;17.8;18.8354;6213三、解答题(本大题共8个小题,19题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)xy+x2;(2).;20.86.5;86;30;21.∠BAD=∠HAD;BD=DH;这两个三角形的面积之比,等于这个角的两条邻边边长之比.;22.(1)甲组有16名工人,乙组有20名工人;(2)至少需要抽调7人到甲工作组.;23.(1)y1=;(2)作图见解答过程;当0<x<5时,y随x的增大而增大;当5<x<9时,y随x的增大而不变;当9<x<14时,y随x的增大而小;(3)3.2<x<13.2.;24.(1)阻燃带CD的长度约为39米;(2)救援队能在最先到达阻燃带CD的火源头到来前10分钟赶造好阻燃带,理由见解答.;25.(1);(2)最大值为,此时;(3)点G的坐标为:(1,﹣)或(﹣2,).;26.(1)2.(2)详见解答.(3)4.。
广东省深圳市南山区2024届中考数学全真模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.2.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.3.许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A.1915.15×108B.19.155×1010C.1.9155×1011D.1.9155×10124.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.5.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A .B .C .D .6.计算3()a a •- 的结果是( ) A .a 2B .-a 2C .a 4D .-a 47.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D8.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置是( )A .B .C .D .9.如图,四边形ABCD 内接于⊙O ,F 是CD 上一点,且DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°10.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m <B .94mC .94m >D .94m二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,扇形的半径为6cm ,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .12.一个圆锥的三视图如图,则此圆锥的表面积为______.13.计算:﹣22÷(﹣14)=_____.14.因式分解:x3﹣4x=_____.15.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线6 yx(x>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是__________.16.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB (指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.三、解答题(共8题,共72分)17.(8分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)18.(8分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ; (2)当点P 运动的路程x =4时,△ABP 的面积为y = ; (3)求AB 的长和梯形ABCD 的面积.19.(8分)(1)计算:035360502+ (2)解不等式组:3(1)5211132x x x x++-⎧⎪+-⎨-≤⎪⎩ 20.(8分)定义:对于给定的二次函数y=a (x ﹣h )2+k (a≠0),其伴生一次函数为y=a (x ﹣h )+k ,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x ﹣1. (1)已知二次函数y=(x ﹣1)2﹣4,则其伴生一次函数的表达式为_____; (2)试说明二次函数y=(x ﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m (x ﹣1)2﹣4m (m≠0)的伴生一次函数的图象与x 轴、y 轴分别交于点B 、A ,且两函数图象的交点的横坐标分别为1和2,在∠AOB 内部的二次函数y=m (x ﹣1)2﹣4m 的图象上有一动点P ,过点P 作x 轴的平行线与其伴生一次函数的图象交于点Q ,设点P 的横坐标为n ,直接写出线段PQ 的长为32时n 的值.21.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.22.(10分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC 与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.23.(12分)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f . (1)求证:PC 是⊙O 的切线; (2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d+f 的取值范围.24.如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1、D 【解题分析】试题解析:设现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,由题意得.故选D .考点:由实际问题抽象出二元一次方程组 2、C 【解题分析】试题分析:观察可得,只有选项C 的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图. 3、C 【解题分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】用科学记数法表示1915.5亿应为1.9155×1011, 故选C . 【题目点拨】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 4、C 【解题分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 【题目详解】解:观察二次函数图象可知: 开口向上,a >1;对称轴大于1,2ba->1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1, ∴一次函数图象经过第二、三、四象限. 故选C . 【题目点拨】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 5、C 【解题分析】 试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C .考点:二次函数图象与几何变换. 6、D 【解题分析】直接利用同底数幂的乘法运算法则计算得出答案. 【题目详解】解:34()=a a a •--,故选D . 【题目点拨】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 7、A 【解题分析】根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可. 【题目详解】解:∵绝对值等于2的数是﹣2和2, ∴绝对值等于2的点是点A . 故选A . 【题目点拨】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.8、B【解题分析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【题目详解】分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选B.【题目点拨】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9、B【解题分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【题目详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵DF BC,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【题目点拨】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.10、A【解题分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围即可. 【题目详解】∵关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根, ∴△=b 2﹣4ac =(﹣3)2﹣4×1×m >0, ∴m <94, 故选A . 【题目点拨】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(本大题共6个小题,每小题3分,共18分) 11、42cm 【解题分析】求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可. 【题目详解】 扇形的弧长=208161π⨯=4π,圆锥的底面半径为4π÷2π=2, 故圆锥的高为:2262-=42, 故答案为42cm . 【题目点拨】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长. 12、55cm 2 【解题分析】由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可. 【题目详解】由三视图可知,半径为5cm,圆锥母线长为6cm, ∴表面积=π×5×6+π×52=55πcm 2, 故答案为: 55πcm 2. 【题目点拨】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r ,母线长为l ,那么圆锥的表面积=πrl +πr 2.13、1【解题分析】解:原式=4(4)-⨯-=1.故答案为1.14、x (x+2)(x ﹣2)【解题分析】试题分析:首先提取公因式x ,进而利用平方差公式分解因式.即x 3﹣4x=x (x 2﹣4)=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.15、1【解题分析】根据反比例函数图象上点的坐标特征设E 点坐标为(t ,6t ),则利用AE :EB=1:3,B 点坐标可表示为(4t ,6t ),然后根据矩形面积公式计算.【题目详解】设E 点坐标为(t ,6t), ∵AE :EB=1:3, ∴B 点坐标为(4t ,6t), ∴矩形OABC 的面积=4t•6t =1. 故答案是:1.【题目点拨】考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16、4【解题分析】连接OP OB 、,把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为BOP △的面积的2倍.【题目详解】解:连接OP 、OB ,∵图形BAP 的面积=△AOB 的面积+△BOP 的面积+扇形OAP 的面积,图形BCP 的面积=△BOC 的面积+扇形OCP 的面积−△BOP 的面积,又∵点P 是半圆弧AC 的中点,OA =OC ,∴扇形OAP 的面积=扇形OCP 的面积,△AOB 的面积=△BOC 的面积,∴两部分面积之差的绝对值是2 4.BOP S OP OC =⋅=点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.三、解答题(共8题,共72分)17、12【解题分析】过点P 作PD ⊥OC 于D ,PE ⊥OA 于E ,则四边形ODPE 为矩形,先解Rt △PBD ,得出BD=PD•tan26.6°;解Rt △CBD ,得出CD=PD•tan37°;再根据CD ﹣BD=BC ,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE 中利用三角函数的定义即可求解.【题目详解】解:如图,过点P 作PD ⊥OC 于D ,PE ⊥OA 于E ,则四边形ODPE 为矩形.在Rt △PBD 中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD•tan ∠BPD=PD•tan26.6°.在Rt △CBD 中,∵∠CDP=90°,∠CPD=37°,∴CD=PD•tan ∠CPD =PD•tan37°.∵CD ﹣BD=BC ,∴PD•tan37°﹣PD•tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD•tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴PE60tanAE12120α===.18、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.【解题分析】(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【题目详解】(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.故答案为x,y;(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.故答案为2;(3)根据图象得:BC=4,此时△ABP为2,∴12AB•BC=2,即12×AB×4=2,解得:AB=8;由图象得:DC=9﹣4=5,则S梯形ABCD=12×BC×(DC+AB)=12×4×(5+8)=1.【题目点拨】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.19、(1)7(2)﹣2<x≤1.【解题分析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【题目详解】(1)03+1;(2)(2)()315211132x xx x>①②⎧++-⎪⎨+--≤⎪⎩由不等式①,得x>-2,由不等式②,得x≤1,故原不等式组的解集是-2<x≤1.【题目点拨】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.20、y=x﹣5【解题分析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q 点的坐标,由PQ的长列方程求解即可.详解:(1)∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,故答案为y=x﹣5;(2)∵二次函数y=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=x﹣5,∴当x=1时,y=1﹣5=﹣4,∴(1,﹣4)在直线y=x﹣5上,即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)∵二次函数y=m(x﹣1)2﹣4m,∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,∵P点的横坐标为n,(n>2),∴P的纵坐标为m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x轴,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵线段PQ的长为32,∴(n﹣1)2+1﹣n=32,∴n=372.点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.21、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解题分析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.22、(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241; 【解题分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【题目详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°, ∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ),∵AM=MN∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN== ∴AB AC AM AN =, ∴△ABM ~△ACN ∴BM AB CN AC=,∴CN AC BM AB ==cos45°=2,∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,==,∴【题目点拨】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.23、(1)详见解析;(2)3sin3OPC∠=;(3)915m≤≤【解题分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到33OCOP=,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=2?2AB AC-=12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【题目详解】(1)连接OC,∵OA=OC,∴∠A=∠OCA,∵AC∥OP,∴∠A=∠BOP,∠ACO=∠COP,∴∠COP=∠BOP ,∵PB 是⊙O 的切线,AB 是⊙O 的直径,∴∠OBP=90°,在△POC 与△POB 中,OC OB COP BOP OP OP ⎧⎪∠∠⎨⎪⎩===,∴△COP ≌△BOP ,∴∠OCP=∠OBP=90°,∴PC 是⊙O 的切线;(2)过O 作OD ⊥AC 于D ,∴∠ODC=∠OCP=90°,CD=12AC , ∵∠DCO=∠COP ,∴△ODC ∽△PCO , ∴CD OC OC PO=, ∴CD•OP=OC 2,∵OP=32AC , ∴AC=23OP , ∴CD=13OP , ∴13OP •OP=OC 2∴3OC OP = ∴sin ∠CPO=OC OP = (3)连接BC ,∵AB 是⊙O 的直径,∴AC ⊥BC ,∵AC=9,AB=1,∴,当CM⊥AB时,d=AM,f=BM,∴d+f=AM+BM=1,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤1.【题目点拨】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.∠=∠.24、AED ACB【解题分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【题目详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【题目点拨】本题重点考查平行线的性质和判定,难度适中.。
广东省梅州五华县联考2024届中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(3,-1)B.(2,﹣1)C.(1,-3)D.(﹣1,3)2.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.103.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.44.抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=25.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为()A.80°B.90°C.100°D.120°6.4的平方根是( )A.2 B.2C.±2 D.±27.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)8.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =()A.13B.22C.12D.329.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为()A.62°B.56°C.60°D.28°10.如图,能判定EB∥AC的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC 11.计算6m 6÷(-2m 2)3的结果为( )A .m -B .1-C .34D .34- 12.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径为6,则GE+FH 的最大值为( )A .6B .9C .10D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组512324x x x x+>+⎧⎨+⎩的解集是__. 14.如图,已知直线y=x+4与双曲线y=kx (x <0)相交于A 、B 两点,与x 轴、y 轴分别相交于D 、C 两点,若AB=22,则k=_____.15.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC=30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ=OQ ,则满足条件的∠OCP 的大小为_______.16.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠BAD =60°,则∠ACD =_____°.17.因式分解:a3b﹣ab3=_____.18.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.20.(6分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC 与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,2,试求EF的长.21.(6分)如图,在平面直角坐标系xOy 中,直线y =kx+m 与双曲线y =﹣2x 相交于点A (m ,2). (1)求直线y =kx+m 的表达式;(2)直线y =kx+m 与双曲线y =﹣2x的另一个交点为B ,点P 为x 轴上一点,若AB =BP ,直接写出P 点坐标.22.(8分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.23.(8分)计算: 021( 3.14)()3|12|4cos30.24.(10分)计算:﹣14﹣2×(﹣3)2+327 ÷(﹣13)如图,小林将矩形纸片ABCD 沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,发现∠EFM=2∠BFM ,求∠EFC 的度数.25.(10分)如图,在平面直角坐标系xOy 中,正比例函数y =x 的图象与一次函数y =kx -k 的图象的交点坐标为A(m ,2).(1)求m 的值和一次函数的解析式;(2)设一次函数y =kx -k 的图象与y 轴交于点B ,求△AOB 的面积;(3)直接写出使函数y =kx -k 的值大于函数y =x 的值的自变量x 的取值范围.26.(12分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.27.(12分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】作AD ⊥y 轴于D ,作CE ⊥y 轴于E ,则∠ADO =∠OEC =90°,得出∠1+∠1=90°,由正方形的性质得出OC =AO ,∠1+∠3=90°,证出∠3=∠1,由AAS 证明△OCE ≌△AOD ,得到OE =AD =1,CE =OD =3,即可得出结果.【题目详解】解:作AD ⊥y 轴于D ,作CE ⊥y 轴于E ,如图所示:则∠ADO =∠OEC =90°,∴∠1+∠1=90°.∵AO =1,AD =1,∴OD 22213-=,∴点A 的坐标为(13,∴AD =1,OD 3 ∵四边形OABC 是正方形,∴∠AOC =90°,OC =AO ,∴∠1+∠3=90°,∴∠3=∠1.在△OCE 和△AOD 中,∵32OEC ADO OC AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△AOD (AAS ),∴OE =AD =1,CE =OD 3,∴点C 的31).故选A .【题目点拨】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.2、A【解题分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|−k|,利用反比例函数图象得到.【题目详解】作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|−k|,∴|−k|=1,∵k <0,∴k =−1.故选A .【题目点拨】本题考查了反比例函数y =k x (k≠0)系数k 的几何意义:从反比例函数y =k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.3、C【解题分析】【分析】首先确定原点位置,进而可得C 点对应的数.【题目详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【题目点拨】本题主要考查了数轴,关键是正确确定原点位置.4、B【解题分析】 根据抛物线的对称轴公式:2b x a=-计算即可. 【题目详解】解:抛物线y=x2+2x+3的对称轴是直线2121x=-=-⨯故选B.【题目点拨】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.5、B【解题分析】根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【题目详解】解:∵将△ABC绕点A顺时针旋转得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故选:B.【题目点拨】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.6、D【解题分析】,然后再根据平方根的定义求解即可.【题目详解】=2,2的平方根是的平方根是.故选D.【题目点拨】正确化简是解题的关键,本题比较容易出错.7、A【解题分析】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6,∴AD =BC =2,∵AD ∥BG ,∴△OAD ∽△OBG , ∴OA OB =13, ∴2OA OA +=13, 解得:OA =1,∴OB =3,∴C 点坐标为:(3,2),故选A .8、D【解题分析】根据圆心角,弧,弦的关系定理可以得出AC =CD =BD =°°1180603⨯=,根据圆心角和圆周角的关键即可求出CAD ∠的度数,进而求出它的余弦值.【题目详解】解:AC CD DB ==AC =CD =BD =°°1180603⨯=, °°160302CAD ∠=⨯=°cos cos30CAD ∠==故选D .【题目点拨】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键. 9、A【解题分析】连接OB .在△OAB 中,OA=OB (⊙O 的半径),∴∠OAB=∠OBA (等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB (同弧所对的圆周角是所对的圆心角的一半), ∴∠C=62°;故选A10、C【解题分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【题目详解】A 、∠C=∠ABE 不能判断出EB ∥AC ,故本选项错误;B 、∠A=∠EBD 不能判断出EB ∥AC ,故本选项错误;C 、∠A=∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故本选项正确;D 、∠C=∠ABC 只能判断出AB=AC ,不能判断出EB ∥AC ,故本选项错误.故选C .【题目点拨】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11、D【解题分析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.详解:原式=()663684m m ÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.12、B【解题分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O 的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【题目详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=12AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【题目点拨】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2≤x<1【解题分析】分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.【题目详解】解:512(1) 324(2)x xx x+>+⎧⎨+⎩,解①得x<1,解②得x≥2,所以不等式组的解集为2≤x<1.故答案为2≤x<1.【题目点拨】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14、-3【解题分析】设A(a,a+4),B(c,c+4),则4 y xkyx=+⎧⎪⎨=⎪⎩解得:x+4=kx,即x2+4x−k=0,∵直线y=x+4与双曲线y=kx相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=2∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=(222,2 (c−a)2=8,(c−a)2=4,∴16+4k =4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.15、40°【解题分析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°16、1【解题分析】连接BD.根据圆周角定理可得.【题目详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【题目点拨】考核知识点:圆周角定理.理解定义是关键.17、ab(a+b)(a﹣b)【解题分析】先提取公因式ab,然后再利用平方差公式分解即可.【题目详解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案为ab(a+b)(a﹣b).【题目点拨】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.18、2m【解题分析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.【题目详解】解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m.【题目点拨】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)1【解题分析】(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵EF为切线,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中点,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:连接BC交OD于H,如图,∵D是弧BC的中点,∴OD⊥BC,∴CH=BH,∴OH为△ABC的中位线,∴113 1.522OH AC==⨯=,∴HD=2.5-1.5=1,∵AB为⊙O的直径,∴∠ACB=90°,∴四边形DHCE为矩形,∴CE=DH=1.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.20、(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241; 【解题分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【题目详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN =, ∵AB=BC ,∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN== ∴AB AC AM AN =, ∴△ABM ~△ACN ∴BM AB CN AC=,∴CN AC BM AB ==cos45°=2,∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,==,∴【题目点拨】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.21、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(113-,0).【解题分析】(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题. 【题目详解】解:(1)∵点A(m,2)在双曲线2yx=-上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2)312y xyx=--⎧⎪⎨=-⎪⎩,解得12xy=-⎧⎨=⎩或233xy⎧=⎪⎨⎪=-⎩,∴B(23,﹣3),∴AB22553⎛⎫+⎪⎝⎭5103P(n,0),则有(n﹣23)2+32=2509,解得n=5或113 -,∴P1(5,0),P2(113-,0).【题目点拨】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.22、(1)见解析;(2)1 3 .【解题分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【题目详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【题目点拨】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.23、10【解题分析】【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.【题目详解】原式=1+9-33=10-233=10.【题目点拨】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.24、(1)﹣10;(2)∠EFC=72°.【解题分析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【题目详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=12x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°,解得:x=72°,则∠EFC=72°.【题目点拨】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.25、(1)y=1x﹣1(1)1(3)x>1【解题分析】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函数解析式为y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),所以S△AOB=×1×1=1;(3)自变量x的取值范围是x>1.考点:两条直线相交或平行问题26、(1)12;(2)他们获奖机会不相等,理由见解析.【解题分析】(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.【题目详解】(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴获奖的概率是12;故答案为12;(2)他们获奖机会不相等,理由如下:小芳:∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,∴P(小芳获奖)=123 164;小明:∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,∴P(小明获奖)=105= 126,∵P(小芳获奖)≠P(小明获奖),∴他们获奖的机会不相等.【题目点拨】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.27、(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(12+2,12﹣2)【解题分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大. 【题目详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【题目点拨】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.。
湖北省武汉青山区七校联考2025届中考数学全真模拟试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.计算--|-3|的结果是( ) A.-1 B.-5 C.1 D.5 2.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4 3.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形 C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形 4.下列命题正确的是( ) A.内错角相等 B.-1是无理数 C.1的立方根是±1 D.两角及一边对应相等的两个三角形全等 5.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A.45 B.54 C.43 D.34 6.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )
A.1 B. C. D. 7.在△ABC中,AB=AC=13,BC=24,则tanB等于( ) A.513 B.512 C.1213 D.125 8.小手盖住的点的坐标可能为( ) A.5,2 B.3,4 C.6,3 D.4,6 9.计算(-ab2)3÷(-ab)2的结果是( ) A.ab4 B.-ab4 C.ab3 D.-ab3 10.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
2024年江苏省常州市溧阳市中考数学全真模拟试卷一、选择题:本题共13小题,每小题4分,共52分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在直角坐标系中,设一质点M自处向上运动一个单位至,然后向左运动2个单位至处,再向下运动3个单位至处,再向右运动4个单位至处,再向上运动5个单位至处……,如此继续运动下去,设,,2,3,……,则……的值为()A.1B.3C.D.20192.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米B.40厘米、80厘米C.80厘米、120厘米D.90厘米、120厘米3.如图,AB为的直径,C为上的一动点不与A、B重合,于D,的平分线交于P,则当C在上运动时,点P的位置()A.随点C的运动而变化B.不变C.在使的劣弧上D.无法确定4.已知二次函数图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是,则该二次函数的对称轴是直线()A. B. C. D.5.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.B.C.D.6.计算的结果等于()A. B.8 C. D.27.如图,直线,AE平分,AE与CD相交于点E,,则()A.B.C.D.8.在中,,,的周长为60,那么的面积为()A.60B.30C.240D.1209.如图,中,,,,将折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.4B.5C.D.10.在平面内直角坐标系中,正方形、、、…按如图所示的方式放置,其中点在y轴上,点、、、、、、…在x轴上,已知正方形的边长为1,,…则正方形的边长是()A. B. C. D.11.如图,已知边长为2的正三角形ABC顶点A的坐标为,BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3B.C.4D.12.如图,在中,,,,垂足为D、E,F分别是CD,AD上的点,且如果,那么的度数为()A. B. C. D.13.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则的度数为()A.B.C.D.二、填空题:本题共5小题,每小题4分,共20分。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分:150分测试时间:120分钟一.选择题(共8小题,满分24分,每小题3分)1.(3分)若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7 B.﹣7 C.3 D.﹣32.(3分)下列计算正确的是()A.2a+3b=5ab B.(a﹣b)2=a2﹣b2C.(2x2)3=6x6D.x8÷x3=x53.(3分)下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是() A.B.C.D.4.(3分)下列事件不属于随机事件的是()A.打开电视正在播放新闻联播B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上D.若今天星期一,则明天是星期二5.(3分)一个多边形每一个外角都等于18°,则这个多边形的边数为()A.10 B.12 C.16 D.206.(3分)如图,已知E是△ABC的外心,P、Q分别是AB、AC的中点,连接EP、EQ交BC于点F、D,若BF=5,DF=3,CD=4,则△ABC的面积为()A.18 B.24 C.30 D.367.(3分)下列说法正确的是()A .√4的平方根是±2B .数轴上的点不表示有理数就是无理数C .√2−1的相反数是−√2−1D .√5−12<0.5 8.(3分)如图,矩形AOBC 的面积为4,反比例函数y =k x 的图象的一支经过矩形对角线的交点P ,则k 的值是( )A .1B .﹣2C .﹣1D .−12 二.填空题(共10小题,满分30分,每小题3分)9.(3分)函数y =2x−4中,自变量x 取值范围是 .10.(3分)因式分解:3xy 3﹣27x 3y = .11.(3分)近年来,我国5G 发展取得明显成效,截至2020年9月底,全国建设开通5G 基站超510000个,将数据510000用科学记数法可表示为 .12.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次运算的结果y n = (用含字母x 和n 的代数式表示).13.(3分)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数可能是 个.14.(3分)如图,圆锥的底面半径为1cm ,高SO 等于2√2cm ,则侧面展开图扇形的圆心角为 °.15.(3分)如图,把△ABC 绕着点A 顺时针方向旋转角度α(0°<α<90°),得到△AB 'C ',若B ',C ,C '三点在同一条直线上,∠B 'CB =46°,则α的度数是 .16.(3分)在Rt △ABC 中,∠B =90°,AC =5,BC =3,P 为线段AB 上一点,且CP =15√27,则sin ∠PCA 的值为 .17.(3分)直线y =2x +3与x 轴的交点坐标是 .18.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的”实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的”实际距离”为5,即PS +SQ =5或PT +TQ =5.若点A (3,2),B (5,﹣3),M (6,m )满足点M 分别到点A 和点B 的”实际距离”相等,则m = .三.解答题(共10小题,满分96分)19.(8分)(1)计算:√83−(12)﹣1+|﹣3+2|+2sin30°; (2)化简:(2−x−1x+1)÷x 2+6x+9x 2−120.(8分)解不等式组{x +5≤0,3x−12≥2x +1,并写出它的最大负整数解.21.(8分)光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:(1)填写下表:中位数 众数 随机抽取的50人的社会实践活动成绩(单位:分)(2)估计光明中学全体学生社会实践活动成绩的总分.22.(8分)如图是某教室里日光灯的四个控制开关(分别记为A 、B 、C 、D ),每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)求王老师按下第一个开关恰好能打开第一排日光灯的概率;(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请列表格或画树状图加以分析.23.(10分)如图,将▱ABCD 的边AB 延长至点E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.24.(10分)为了”迎国庆,向祖国母亲献礼”,某建筑公司承建了修筑一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费126000元;如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.(1)甲、乙两队单独完成此项工程,各需多少天?(2)为了尽快完成这项工程任务,甲、乙两队通过技术革新提高了速度,同时,甲队每天的施工费提高了a%,乙队每天的施工费提高了2a%,已知两队合作12天后,由甲队再单独做2天就完成了这项工程任务,且所需施工费比计划少了21200元.①分别求出甲、乙两队每天的施工费用;②求a的值.25.(10分)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若BC=4,cos∠BAD=34,CF=103,求BF的长.26.(10分)【阅读理解】设点P在矩形ABCD内部,当点P到矩形的一条边的两个端点距离相等时,称点P为该边的”和谐点”.例如:如图1,矩形ABCD中,若P A=PD,则称P为边AD的”和谐点”.【解题运用】已知,点P在矩形ABCD内部,且AB=10,BC=6.(1)设P是边AD的”和谐点”,则P边BC的”和谐点”(填”是”或”不是”);(2)若P是边BC的”和谐点”,连接P A,PB,当△P AB是直角三角形时,求P A的值;(3)如图2,若P是边AD的”和谐点”,连接P A,PB,PD,求tan∠P AB•tan∠PBA的最小值.27.(12分)如图,在四边形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.28.(12分)已知:如图1,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点D(0,﹣6),直线y=−13x+2交x轴于点B,与y轴交于点C.(1)求抛物线的函数解析式;(2)抛物线上点E位于第四象限,且在抛物线的对称轴的右侧,当△BCE的面积为32时,过点E作平行于y轴的直线交x轴于Q,交BC于点F,在y轴上是否存在点K,使得以K、E、F三点为顶点的三角形是直角三角形,若存在,求出点K的坐标,若不存在,请说明理由;(3)如图2,在线段OB上有一动点P,直接写出√10DP+BP的最小值和此时点P的坐标.参考答案一.选择题(共8小题,满分24分,每小题3分)1.(3分)若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7 B.﹣7 C.3 D.﹣3【分析】由绝对值的定义,得x=±5,y=±2,再根据x<0,y>0,确定x、y的具体对应值,最后代入计算x+y的值.【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.【点评】主要考查了绝对值的运算,先确定绝对值符号中x、y的取值再去计算结果.注意绝对值等于一个正数的数有两个;两个负数,绝对值大的反而小.2.(3分)下列计算正确的是()A.2a+3b=5ab B.(a﹣b)2=a2﹣b2C.(2x2)3=6x6D.x8÷x3=x5【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+3b,无法计算,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(2x2)3=8x6,故此选项错误;D、x8÷x3=x5,故此选项正确;故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.3.(3分)下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是() A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)下列事件不属于随机事件的是()A.打开电视正在播放新闻联播B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上D.若今天星期一,则明天是星期二【分析】根据事件发生的可能性大小判断即可.【解答】解:A、打开电视正在播放新闻联播是随机事件;B、某人骑车经过十字路口时遇到红灯是随机事件;C、抛掷一枚硬币,出现正面朝上是随机事件;D、若今天星期一,则明天是星期二是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)一个多边形每一个外角都等于18°,则这个多边形的边数为()A.10 B.12 C.16 D.20【分析】利用多边形的外角和除以外角度数可得边数.【解答】解:∵一个多边形的每一个外角都等于18°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷18°=20,故选:D.【点评】此题主要考查了多边形的外角,关键是掌握多边形的外角和为360°.6.(3分)如图,已知E是△ABC的外心,P、Q分别是AB、AC的中点,连接EP、EQ交BC于点F、D,若BF=5,DF=3,CD=4,则△ABC的面积为()A.18 B.24 C.30 D.36【分析】解:连接AF,AD,由题意得出AF=BF,AD=DC,可证得∠ADF=90°,根据三角形的面积公式可得出答案.【解答】解:连接AF,AD,∵E是△ABC的外心,P、Q分别是AB、AC的中点,∴EP⊥AB,EQ⊥AC,∴AF=BF,AD=DC,∵BF=5,CD=4,∴AF=5,AD=4,∵DF=3,∴DF2+AD2=AF2,∴∠ADF=90°,∵BC=BF+DF+DC=5+3+4=12,∴S△ABC=12×BC×AD=12×12×4=24.故选:B.【点评】本题考查了三角形的外接圆和外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了直角三角形的性质和勾股定理的逆定理,三角形的面积.7.(3分)下列说法正确的是()A.√4的平方根是±2B.数轴上的点不表示有理数就是无理数C .√2−1的相反数是−√2−1D .√5−12<0.5 【分析】根据平方根的定义、实数与数轴上点的对应关系、相反数的概念及实数的大小比较逐一判断即可得.【解答】解:A .√4=2,所以√4的平方根是±√2,此选项错误;B .数轴上的点不表示有理数就是无理数,此说法正确;C .√2−1的相反数是﹣(√2−1)=−√2+1,此选项错误;D .√5−12≈0.618>0.5,此选项错误; 故选:B .【点评】本题主要考查实数与数轴,解题的关键是掌握平方根的定义、实数与数轴上点的对应关系、相反数的概念及实数的大小比较方法.8.(3分)如图,矩形AOBC 的面积为4,反比例函数y =k x 的图象的一支经过矩形对角线的交点P ,则k 的值是( )A .1B .﹣2C .﹣1D .−12【分析】作PE ⊥x 轴于E ,PF ⊥y 轴于F ,根据矩形的性质得矩形OEPF 的面积=14矩形AOBC 的面积=14×4=1,然后根据反比例函数y =k x (k ≠0)系数k 的几何意义即可得到k =﹣1.【解答】解:作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图,∵点P 为矩形AOBC 对角线的交点,∴矩形OEPF的面积=14矩形AOBC的面积=14×4=1,∴|k|=1,而k<0,∴k=﹣1,故选:C.【点评】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.二.填空题(共10小题,满分30分,每小题3分)9.(3分)函数y=2x−4中,自变量x取值范围是x≠4.【分析】根据分式的意义,分母不能为0.据此得不等式求解.【解答】解:根据题意,得x﹣4≠0,解得x≠4.故答案为x≠4.【点评】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.10.(3分)因式分解:3xy3﹣27x3y=3xy(y+3x)(y﹣3x).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=3xy(y2﹣9x2)=3xy(y+3x)(y﹣3x).故答案为:3xy(y+3x)(y﹣3x).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)近年来,我国5G发展取得明显成效,截至2020年9月底,全国建设开通5G基站超510000个,将数据510000用科学记数法可表示为 5.1×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:510000=5.1×105,故答案为:5.1×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=2n x(2n−1)x+1(用含字母x和n的代数式表示).【分析】将y1代入y2计算表示出y2,将y2代入y3计算表示出y3,归纳总结得到一般性规律即可得到结果.【解答】解:将y1=2xx+1代入得:y2=2×2xx+12xx+1+1=4x3x+1;将y2=4x3x+1代入得:y3=2×4x3x+14x3x+1+1=8x7x+1,依此类推,第n次运算的结果y n=2n x(2n−1)x+1.故答案为:2n x(2n−1)x+1.【点评】此题考查了分式的混合运算,找出题中的规律是解本题的关键.13.(3分)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数可能是5个.【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值,从而得出答案.【解答】解:设袋子中红球有x个,根据题意,得:x20=0.25,解得x=5,即袋子中红球的个数可能是5个,故答案为:5.【点评】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.(3分)如图,圆锥的底面半径为1cm,高SO等于2√2cm,则侧面展开图扇形的圆心角为120°.【分析】根据勾股定理求出圆锥的母线长,根据弧长公式计算即可.【解答】解:设圆锥的侧面展开图扇形的圆心角度数为n °,∵圆锥的底面半径r 为1,高h 为2√2,∴圆锥的母线长为:√12+(2√2)2=3,则nπ×3180=2π×1,解得,n =120,故答案为:120°【点评】本题考查的是圆锥的计算,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.15.(3分)如图,把△ABC 绕着点A 顺时针方向旋转角度α(0°<α<90°),得到△AB 'C ',若B ',C ,C '三点在同一条直线上,∠B 'CB =46°,则α的度数是 46° .【分析】利用旋转的性质得出AC =AC ′,再利用等腰三角形的性质得出∠CAC ′的度数,则可求出答案.【解答】解:由题意可得:AC =AC ′,∠C '=∠ACB ,∴∠ACC '=∠C ',∵把△ABC 绕着点A 顺时针方向旋转α,得到△AB ′C ′,点C 刚好落在边B ′C ′上,∴∠B 'CB +∠ACB =∠C '+∠CAC ′,∠B 'CB =∠CAC '=46°.故答案为:46°.【点评】此题主要考查了旋转的性质以及等腰三角形的性质等知识,根据题意得出AC =AC ′是解题关键.16.(3分)在Rt △ABC 中,∠B =90°,AC =5,BC =3,P 为线段AB 上一点,且CP =15√27,则sin ∠PCA 的值为 √22 . 【分析】根据题意画出图形并作PD ⊥AC 于点D ,根据勾股定理求出AB 、BP 的长,进而可得AP 的长,再根据三角函数求出PD 的长,从而可求sin ∠PCA 的值.【解答】解:如图,作PD ⊥AC 于点D ,在Rt △ABC 中,∠B =90°,AC =5,BC =3,∴AB =√AC 2−BC 2=4,在Rt △CBP 中,CP =15√27,BC =3, ∴BP =√CP 2−BC 2=37,∴AP =AB ﹣BP =257, ∵sin ∠A =BC AC =PD AP , 即35=PD 257,∴PD =157, ∴sin ∠PCA =PD CP =157×15√2=√22. 故答案为:√22. 【点评】本题考查了解直角三角形、勾股定理,解决本题的关键是构造适当的辅助线.17.(3分)直线y =2x +3与x 轴的交点坐标是 (−32,0) .【分析】求出函数解析式中y =0时x 的值,进而可得答案.【解答】解:当y =0时,2x +3=0,解得:x =−32,则与x 轴的交点坐标是(−32,0), 故答案为:(−32,0).【点评】此题主要考查了一次函数图象上点的坐标特点,关键是掌握x 轴上的点纵坐标为0.18.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的”实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的”实际距离”为5,即PS +SQ =5或PT +TQ =5.若点A (3,2),B (5,﹣3),M (6,m )满足点M 分别到点A 和点B 的”实际距离”相等,则m = 0.5 .【分析】根据点M 分别到点A 和点B 的”实际距离”相等,构建方程求解即可.【解答】解:如图,由题意,3+2﹣m =1+m +3,解得m =0.5,故答案为0.5.【点评】本题考查坐标与图形性质,解题的关键是理解题意,学会利用参数构建方程解决问题.三.解答题(共10小题,满分96分)19.(8分)(1)计算:√83−(12)﹣1+|﹣3+2|+2sin30°; (2)化简:(2−x−1x+1)÷x 2+6x+9x 2−1【分析】(1)本题涉及绝对值、立方根、负指数幂、特殊角三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)一方面注重第一个括号内的通分,另一方面注重对多项式的因式分解即可.【解答】解:(1)√83−(12)﹣1+|﹣3+2|+2sin30° =2﹣2+1+2×12=1+1=2故原式的值为2.(2)原式=(2x+2x+1−x−1x+1)÷(x+3)2(x+1)(x−1) =x+3x+1×(x+1)(x−1)(x+3)2 =x−1x+3. 【点评】本题考查的是实数的综合运算以及分式的化简求值,重点是化简与运算过程中不能出现纰漏,按运算顺序正确计算是关键.20.(8分)解不等式组{x +5≤0,3x−12≥2x +1,并写出它的最大负整数解. 【分析】分别求出每一个不等式的解集,根据口诀:同小取小确定不等式组的解集,从而得出答案.【解答】解:解不等式x +5≤0,得x ≤﹣5,解不等式3x−12≥2x +1,得:x ≤﹣3,则不等式组的解集为x ≤﹣5,所以不等式组的最大负整数解为﹣5.【点评】本题考查的是解一元一次不等式组及其整数解,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:(1)填写下表:中位数 众数 随机抽取的50人的社会实践活动成绩(单位:分) 4 4(2)估计光明中学全体学生社会实践活动成绩的总分.【分析】(1)根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;(2)算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【解答】解:(1)中位数 众数 随机抽取的50人的社会实践活动成绩(单位:分)4 4(2)随机抽取的50人的社会实践活动成绩的平均数是:x =1×2+2×9+3×13+4×14+5×1250=3.5(分). 估计光明中学全体学生社会实践活动成绩的总分是:3.5×900=3150(分)【点评】本题考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(8分)如图是某教室里日光灯的四个控制开关(分别记为A 、B 、C 、D ),每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)求王老师按下第一个开关恰好能打开第一排日光灯的概率;(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请列表格或画树状图加以分析.【分析】(1)根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.(2)用列表法或树状图法列举出所以可能,再利用概率公式解答即可.【解答】解:(1)由题意可知王老师按下第一个开关恰好能打开第一排日光灯是:随机事件,概率为14; (2)画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.即P (两个开关恰好能打开第一排与第三排日光灯)=16.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,将▱ABCD 的边AB 延长至点E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.【分析】(1)根据平行四边形的判定与性质得到四边形BECD 为平行四边形,然后由SSS 推出两三角形全等即可;(2)欲证明四边形BECD 是矩形,只需推知BC =ED .【解答】证明:(1)在平行四边形ABCD 中,AD =BC ,AB =CD ,AB ∥CD ,则BE ∥CD .又∵AB =BE ,∴BE =DC ,∴四边形BECD 为平行四边形,∴BD =EC .∴在△ABD 与△BEC 中,{AB =BE BD =EC AD =BC,∴△ABD ≌△BEC (SSS );(2)由(1)知,四边形BECD 为平行四边形,则OD =OE ,OC =OB .∵四边形ABCD 为平行四边形,∴∠A =∠BCD ,即∠A =∠OCD .又∵∠BOD =2∠A ,∠BOD =∠OCD +∠ODC ,∴∠OCD =∠ODC ,∴OC =OD ,∴OC +OB =OD +OE ,即BC =ED ,∴平行四边形BECD 为矩形.【点评】本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.24.(10分)为了”迎国庆,向祖国母亲献礼”,某建筑公司承建了修筑一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费126000元;如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.(1)甲、乙两队单独完成此项工程,各需多少天?(2)为了尽快完成这项工程任务,甲、乙两队通过技术革新提高了速度,同时,甲队每天的施工费提高了a %,乙队每天的施工费提高了2a %,已知两队合作12天后,由甲队再单独做2天就完成了这项工程任务,且所需施工费比计划少了21200元.①分别求出甲、乙两队每天的施工费用;②求a 的值.【分析】(1)设甲公司单独完成此项工程需x 天,直接利用甲、乙两公司合做,18天可以完成,利用两公司合作每天完成总量的118,进而列出方程求出答案;(2)①设甲公司技术革新前每天的施工费用是y 元,那么乙公司技术革新前每天的施工费用是(y ﹣1000)元,可列出方程,解方程即可;②根据①可分别表示甲、乙公司技术革后每天的施工费用,于是可列出方程,解方程即可.【解答】解:(1)设甲公司单独完成此项工程需x 天,根据题意可得:1x +11.5x =118,解得:x =30,检验,知x=30符合题意,∴1.5x=45,答:甲公司单独完成此项工程需30天,乙公司单独完成此项工程需45天;(2)①设甲公司技术革新前每天的施工费用是y元,那么乙公司技术革新前每天的施工费用是(y﹣1000)元,则由题意可得:(y+y﹣1000)×18=126000,解得:y=4000,∴y﹣1000=3000,答:技术革新前,甲公司每天的施工费用是4000元,乙公司每天的施工费用是3000元;②4000×14×(1+a%)+3000×12×(1+2a%)=126000﹣21200,解得:a=10.答:a的值是10.【点评】此题主要考查了分式方程的应用和一元一次方程的应用,正确得出等量关系是解题关键.25.(10分)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若BC=4,cos∠BAD=34,CF=103,求BF的长.【分析】(1)根据切线的判定即可得直线AE是⊙O的切线.(2)根据直径所对圆周角是直角可得∠ACB=90°,根据BC=4,cos∠BAD=34,即可求BF的长.【解答】解:(1)证明:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)过点B作CF边的垂线交CF于点H.∵cos∠BAD=3 4,∴cos∠BCD=3 4,∵BC=4,∴CH=3,∴BH=√7,∴FH=CF﹣CH=1 3,在Rt△BFH中,BF=8 3.【点评】本题考查了切线的判定与性质、圆周角定理、解直角三角形,解决本题的关键是综合运用以上知识.26.(10分)【阅读理解】设点P在矩形ABCD内部,当点P到矩形的一条边的两个端点距离相等时,称点P为该边的”和谐点”.例如:如图1,矩形ABCD中,若P A=PD,则称P为边AD的”和谐点”.【解题运用】已知,点P在矩形ABCD内部,且AB=10,BC=6.(1)设P是边AD的”和谐点”,则P是边BC的”和谐点”(填”是”或”不是”);(2)若P是边BC的”和谐点”,连接P A,PB,当△P AB是直角三角形时,求P A的值;(3)如图2,若P 是边AD 的”和谐点”,连接P A ,PB ,PD ,求tan ∠P AB •tan ∠PBA 的最小值.【分析】(1)连接PB 、PC ,证△BAP ≌△CDP (SAS ),得PB =PC ,即可得出结论;(2)先由”和谐点”的定义得PB =PC ,P A =PD ,则点P 在AD 和BC 的垂直平分线上,过点P 作PE ⊥AD 于E ,PF ⊥AB 于F ,求出AE =PF =3,再证△APF ∽△PBF ,得PF 2=AF •BF ,设AF =x ,则BF =10﹣x ,解得x =1或x =9,当AF =1时,P A =√10;当AF =9时,P A =3√10;(3)过点P 作PN ⊥AB 于N ,先证出tan ∠P AB •tan ∠PBA =9AN⋅BN,设AN =x ,则BN =10﹣x ,再求出当x =5时,AN •BN 有最大值25,即可得出结论.【解答】解:(1)P 是边BC 的”和谐点”,理由如下:连接PB 、PC ,如图1所示:∵P 是边AD 的”和谐点”,∴P A =PD ,∴∠PDA =∠P AD ,∵四边形ABCD 是矩形,∴AB =CD ,∠CDA =∠BAD =90°,∴∠BAP =∠CDP ,在△BAP 和△CDP 中,{PA =PD ∠BAP =∠CDP AB =CD,∴△BAP ≌△CDP (SAS ),∴PB =PC ,∴P是边BC的”和谐点”,故答案为:是;(2)∵P是边BC的”和谐点”,由(1)可知:P也是边AD的”和谐点”,∴PB=PC,P A=PD,∴点P在AD和BC的垂直平分线上,过点P作PE⊥AD于E,PF⊥AB于F,如图3所示:则AE=12AD,∠PEA=∠PF A=90°,∵四边形ABCD是矩形,∴∠BAD=90°,BC=AD=6,∴四边形AEPF是矩形,AE=3,∴AE=PF=3,∵△P AB为直角三角形,且P在矩形内部,∴只有∠APB=90°,∴∠APF+∠BPF=90°,∵PF⊥AB,∴∠AFP=∠PFB=90°,∴∠APF+∠P AF=90°,∴∠P AF=∠BPF,∴△APF∽△PBF,∴AF:PF=PF:BF,∴PF2=AF•BF,∴PF2=AF(AB﹣AF),设AF=x,则BF=10﹣x,∴x(10﹣x)=32,解得:x=1或x=9,当AF=1时,P A=√AF2+PF2=√12+32=√10;当AF=9时,P A=√AF2+PF2=√92+32=3√10;∴P A的值为√10或3√10;(3)过点P作PN⊥AB于N,如图2所示:由(2)知:点P在AD和BC的垂直平分线上,∴PN=12BC=3,∵tan∠P AB=PNAN,tan∠PBA=PNBN,∴tan∠P AB•tan∠PBA=PNAN×PNBN=PN2AN⋅BN=32AN⋅BN=9AN⋅BN,设AN=x,则BN=10﹣x,∴AN•BN=x(10﹣x)=﹣x2+10x=﹣(x﹣5)2+25,当x=5时,AN•BN有最大值25,∴9AN⋅BN 有最小值925,∴tan∠P AB•tan∠PBA的最小值是925.【点评】本题是四边形综合题目,考查了矩形的判定与性质、新定义”和谐点”的判定与性质、全等三角形的判定与性质、线段垂直平分线的判定与性质、相似三角形的判定与性质、勾股定理、锐角三角函数定义以及二次函数的应用等知识;本题综合性强,熟练掌握新定义”和谐点”的判定与性质,证明三角形全等和三角形相似是解题的关键,属于中考常考题型.27.(12分)如图,在四边形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;。
2024届甘肃省重点中学中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE 等于( )A .40°B .70°C .60°D .50°2.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--3.如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P 的坐标为( )A .(﹣4,﹣3)B .(﹣3,﹣4)C .(﹣3,﹣3)D .(﹣4,﹣4)4.一次函数()()y m 1x m 2=-+-的图象上有点()11M x ,y 和点()22N x ,y ,且12x x >,下列叙述正确的是( ) A .若该函数图象交y 轴于正半轴,则12y y <B .该函数图象必经过点()1,1--C .无论m 为何值,该函数图象一定过第四象限D .该函数图象向上平移一个单位后,会与x 轴正半轴有交点5.下列各式属于最简二次根式的有( )A .8B .21x +C .3yD .126.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA .1B .2C .3D .47.△ABC 的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )A .13,5B .6.5,3C .5,2D .6.5,28.不等式的最小整数解是( )A .-3B .-2C .-1D .29.﹣3的绝对值是( )A .﹣3B .3C .-13D .1310.实数6 的相反数是 ( )A .-6B .6C .16D .6-二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在等腰直角三角形ABC 中,∠C=90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AB=4,则图中阴影部分的面积为_____(结果保留π).12.已知函数||(2)31m y m x x =+-+是关于x 的二次函数,则m =__________.13.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD =∠B ,AD =1,AC =2,△ADC 的面积为1,则△BCD 的面积为_____.14.已知一个正六边形的边心距为3,则它的半径为______ .15.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=1DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .下列结论:①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =1.其中正确结论的是_____.16.若⊙O 所在平面内一点P 到⊙O 的最大距离为6,最小距离为2,则⊙O 的半径为_____.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系xOy 中有不重合的两个点()11,Q x y 与()22,P x y .若Q 、P 为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“直距”记做PQ D ,特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.例如下图中,点()1,1P ,点()3,2Q ,此时点Q 与点P 之间的“直距”3PQ D =.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则AO D =_________,BO D =_________;②点C 在直线3y x =-+上,求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点,点F 是直线24y x =+上一动点.直接写出点E 与点F 之间“直距”EF D 的最小值.18.(8分)某生姜种植基地计划种植A,B 两种生姜30亩.已知A,B 两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B 两种生姜各种多少亩?(2)若要求种植A 种生姜的亩数不少于B 种的一半,那么种植A,B 两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?19.(8分)x 取哪些整数值时,不等式5x +2>3(x -1)与12x≤2-32x 都成立? 20.(8分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求AC 和AB 的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)21.(8分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.22.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.23.(12分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.24.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【题目详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【题目点拨】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.2、A【解题分析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.3、A【解题分析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【题目详解】如图,点P的坐标为(-4,-3).故选A.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.4、B【解题分析】利用一次函数的性质逐一进行判断后即可得到正确的结论.【题目详解】解:一次函数()()y m 1x m 2=-+-的图象与y 轴的交点在y 轴的正半轴上,则m 10->,m 20->,若12x x >,则12y y >,故A 错误;把x 1=-代入()()y m 1x m 2=-+-得,y 1=-,则该函数图象必经过点()1,1--,故B 正确;当m 2>时,m 10->,m 20->,函数图象过一二三象限,不过第四象限,故C 错误;函数图象向上平移一个单位后,函数变为()()y m 1x m 1=-+-,所以当y 0=时,x 1=-,故函数图象向上平移一个单位后,会与x 轴负半轴有交点,故D 错误,故选B .【题目点拨】本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.5、B【解题分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【题目详解】A =A 选项错误;B B 选项正确;C =D =D 选项错误; 故选:B .【题目点拨】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.6、C【解题分析】由题意得到DA ′=DA ,EA ′=EA ,经分析判断得到阴影部分的周长等于△ABC 的周长即可解决问题.【题目详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【题目点拨】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.7、D【解题分析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为512132+-,【题目详解】解:如下图,∵△ABC的三条边长分别是5,13,12,且52+122=132, ∴△ABC是直角三角形,其斜边为外切圆直径,∴外切圆半径=132=6.5,内切圆半径=512132+-=2,故选D.【题目点拨】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.8、B【解题分析】先求出不等式的解集,然后从解集中找出最小整数即可.【题目详解】∵,∴,∴,∴不等式的最小整数解是x=-2.故选B.【题目点拨】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.9、B【解题分析】根据负数的绝对值是它的相反数,可得出答案.【题目详解】根据绝对值的性质得:|-1|=1.故选B.【题目点拨】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.10、A【解题分析】根据相反数的定义即可判断.【题目详解】的相反数是故选A.【题目点拨】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.二、填空题(本大题共6个小题,每小题3分,共18分)11、4﹣π【解题分析】由在等腰直角三角形ABC 中,∠C=90°,AB=4,可求得直角边AC 与BC 的长,继而求得△ABC 的面积,又由扇形的面积公式求得扇形EAD 和扇形FBD 的面积,继而求得答案.【题目详解】解:∵在等腰直角三角形ABC 中,∠C=90°,AB=4,∴AC=BC=AB•sin45°=2 ∴S △ABC =12AC•BC=4, ∵点D 为AB 的中点,∴AD=BD=12AB=2, ∴S 扇形EAD =S 扇形FBD =45360×π×22=12π, ∴S 阴影=S △ABC ﹣S 扇形EAD ﹣S 扇形FBD =4﹣π.故答案为:4﹣π.【题目点拨】此题考查了等腰直角三角形的性质以及扇形的面积.注意S 阴影=S △ABC ﹣S 扇形EAD ﹣S 扇形FBD .12、1【解题分析】 根据一元二次方程的定义可得:2m =,且20m +≠,求解即可得出m 的值.【题目详解】 解:由题意得:2m =,且20m +≠,解得:2m =±,且2m ≠-,∴2m =故答案为:1.【题目点拨】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”.13、1【解题分析】由∠ACD=∠B 结合公共角∠A=∠A ,即可证出△ACD ∽△ABC ,根据相似三角形的性质可得出ACD ABC S S ∆∆=(AD AC)2=14,结合△ADC 的面积为1,即可求出△BCD 的面积. 【题目详解】∵∠ACD =∠B ,∠DAC =∠CAB ,∴△ACD ∽△ABC ,∴ACD ABC S S ∆∆=(AD AC )2=(12)2=14, ∴S △ABC =4S △ACD =4,∴S △BCD =S △ABC ﹣S △ACD =4﹣1=1.故答案为1.【题目点拨】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.14、2【解题分析】试题分析:设正六边形的中心是O ,一边是AB ,过O 作OG ⊥AB 与G ,在直角△OAG 中,根据三角函数即可求得OA .解:如图所示,在Rt △AOG 中,OG 3,∠AOG =30°,∴OA =OG ÷cos 30°3÷3; 故答案为2. 点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.15、①②③【解题分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.【题目详解】①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=13CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.理由:∵S△GCE=12GC•C E=12×1×4=6∵GF=1,EF=2,△GFC和△FCE等高,∴S△GFC:S△FCE=1:2,∴S△GFC=35×6=185≠1.故④不正确.∴正确的个数有1个: ①②③.故答案为①②③【题目点拨】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.16、2或1【解题分析】点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.【题目详解】解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;当点在圆内时,则这个圆的半径是(6+2)÷2=1.故答案为2或1.【题目点拨】此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.三、解答题(共8题,共72分)17、(1)①3,1;②最小值为3;(1)252【解题分析】(1)①根据点Q 与点P 之间的“直距”的定义计算即可;②如图3中,由题意,当D CO 为定值时,点C 的轨迹是以点O 为中心的正方形(如左边图),当D CO =3时,该正方形的一边与直线y =-x +3重合(如右边图),此时D CO 定值最小,最小值为3;(1)如图4中,平移直线y =1x +4,当平移后的直线与⊙O 在左边相切时,设切点为E ,作EF ∥x 轴交直线y =1x +4于F ,此时D EF 定值最小;【题目详解】解:(1)①如图1中,观察图象可知D AO =1+1=3,D BO =1,故答案为3,1.②(i )当点C 在第一象限时(03x <<),根据题意可知,CO D 为定值,设点C 坐标为(),3x x -+,则()33CO D x x =+-+=,即此时CO D 为3;(ii )当点C 在坐标轴上时(0x =,3x =),易得CO D 为3;(ⅲ)当点C 在第二象限时(0x <),可得()3233CO D x x x =-+-+=-+>;(ⅳ)当点C 在第四象限时(3x >),可得()3233CO D x x x ⎡⎤⎣⎦=+--+=->;综上所述,当03x 时,CO D 取得最小值为3;(1)如解图②,可知点F 有两种情形,即过点E 分别作y 轴、x 轴的垂线与直线24y x =+分别交于1F 、2F ;如解图③,平移直线24y x =+使平移后的直线与O 相切,平移后的直线与x 轴交于点G ,设直线24y x =+与x 轴交于点M ,与y 轴交于点N ,观察图象,此时1EF 即为点E 与点F 之间“直距”EF D 的最小值.连接OE ,易证MON GEO ∽△△,∴MN ON GO OE =,在Rt MON △中由勾股定理得25MN =2541=,解得5GO =,∴1522EF D EF MG MO GO ===-=-.【题目点拨】本题考查一次函数的综合题,点Q 与点P 之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.失分原因第(1)问 (1)不能根据定义找出AO 、BO 的“直距”分属哪种情形;(1)不能找出点C 在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E 与点F 之间“直距” 取最小值时点E 、F 的位置;(1)不能想到由相似求出GO 的值18、(1)种植A 种生姜14亩,种植B 种生姜16亩;(2) 种植A 种生姜10亩,种植B 种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解题分析】试题分析:(1)设该基地种植A 种生姜x 亩,那么种植B 种生姜(30-x )亩,根据:A 种生姜的产量+B 种生姜的产量=总产量,列方程求解;(2)设A 种生姜x 亩,根据A 种生姜的亩数不少于B 种的一半,列不等式求x 的取值范围,再根据(1)的等量关系列出函数关系式,在x 的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A 种生姜x 亩,那么种植B 种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A 种生姜14亩,种植B 种生姜16亩;(2)由题意得,x≥(30-x),解得x≥10,设全部收购该基地生姜的年总收入为y 元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y随x的增大而减小,∴当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【题目点拨】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.19、-2,-1,0,1【解题分析】解不等式5x+2>3(x-1)得:得x>-2.5;解不等式12x≤2-32x得x≤1.则这两个不等式解集的公共部分为 2.51x-≤<,因为x取整数,则x取-2,-1,0,1.故答案为-2,-1,0,1【题目点拨】本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).20、AC= 6.0km,AB= 1.7km;【解题分析】在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
中考数学模拟试题41班级: _________ 姓名: ___________ 得分: ____________一、填空题(每小题3分,共24分) 1 .如果 |a| + a = 0,贝V一1)2 + :. a = _____ .2. _________________________________________________ 已知x 2-x-1 = 0,则代数式-x 3+2x 2 + 2002的值为 _________________________________________ . 3.若由你选择一个你喜欢的数值 m ,使一次函数y = (m- 2)x +m 的图象经过第一、二、四 象限,则m 的值可以是 ________ .4.升国旗时,某同学站在离旗杆底部 18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为 ________ 米.5. 如图1,某涵洞的截面是抛物线形,现测得水面宽 AB = 1.6 m ,涵洞顶点O 到水面的距 离CO 为2.4 m ,在图中直角坐标系内,涵洞截面所在抛物线的解析式是 _____________ .40。
,那么这个弦切角所夹的弧所对的圆心角的度数是7.如图2,在Rt A ABC 中,腰 AC = BC = 1,按下列方法折叠 Rt △ ABC ,点B 不动,使 BC 落在AB 上,点A 不动,使 AB 落在AC 的延长线上;点 C 不动,使CA 落在CB 上, 设点A 、B 、C 对应的落点分别为 A '、B '、C ',则厶A ' B ' C '的面积是 _______________________________ . &如图3,0 O 1的半径是O 02的直径,O O 1的半径OQ 交O 02于B ,若… 的度数是48°, 那么壮的度数是 ________________ . 二、选择题(每小题3分,共18分) 9.如果一个多边形的内角和等于它的外角和的 2倍,那么这个多边形的边数为 ()A . 3B . 4C . 5D . 6、丨1 JIII/\ 1 1 r r/ \1 L \丄」1 \16 .已知一个圆的弦切角等于 7A图2图310. 在一次汽车性能测试中,型号不同的甲、千米的B地行驶,结果甲车7小时到达,乙两辆汽车同时从A地出发,匀速向距离560 乙车8小时到达,则两车行驶时离A地的距离s(千米)与行驶时间t(小时)的函数关系对应的图象大致是()12. 在 Rt △ ABC 中,/ C = Rt ,若/ A = 30°,贝U cosA + sinB 等于()14 .当今材料科学已发展到纳米时代, 1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为()98109A . 4X 10-米B . 0.4 X 10-米C . 4X 10-米D . 0.4X 10-米三、解答题(15〜19每小题8分,共40分)x-2 x1015 .解万程xx —2 316 .某校初二年级四个班的同学外出 植树一天,已知每小时 5个女生种 3棵树,3个男生种5棵树,各班人 数如图所示,则植树最多的是初二 几班.11.两圆的圆心坐标分别为 (3, 0), (0, 4),它们的直径分别为 4和6,则这两圆的位置关玄阜 系疋A .外离B .相交C .外切D .内切B . 1C . 3D .宁13.在直角坐标系中,已知 A (1 ,合条件的点P 共有() 1),在x 轴上确定点 C . 3个 卩,使厶AOP 为等腰三角形,则符匚二I 男生17. 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(C )有关,下表列出了一组不同气温时的音速:(1) 求y与(2) 当气温为22。
时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地约相距多少米?18. 某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1) 正中间留出一条宽2米的道路(如图);(2) 道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3) 设计好的整个图形既是轴对称图形,又是中心对称图形. (计算结果精确到0.1米).I --------------- 50m ----------------- >19 .已知:△ ABC是O O的内接三角形,BT为O O的切线,B为切点,P为直线AB上一点,过P作BC的平行线交直线BT于点E,交直线AC于点F .⑴如图6(1)所示,当P在线段AB上时,求证:PA• PB = PE • PF ;(2)如图6(2)所示,当P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.四、解答题(每题9分,共18分)20. 先仔细阅读下列材料,然后回答问题:如果a>0, b>0,那么(.a- b)2》0,即a+ b-2ab >0 得 >2 .. ab2其中,当a= b时取等号,我们把称为a、b的算术平均数,..ab称为a、b的2几何平均数.如果a>0, b>0, c>0,同样可以得到a b c>3.. abc,其中,当a= b = c时取3等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数•请用上述定理解答问题:把边长为30 cm的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图7)(1)设剪去的小正方形边长为x cm,无盖纸盒的容积为V,求V与x的函数关系式及x的取值范围.(2)当x为何值时,容积V有最大值,最大值是多少?21 .以△ ABC的边AC为直径的半圆交AB边于D点,/ A、1 21c,且二次函数y= (a+ c)x - bx+ (c-a)顶点在x轴上,2 2(1)证明:/ ACB= 90°;⑵若设b= 2x,弓形面积S弓形AED = S1,阴影面积为S2, ⑶在⑵的条件下,当BD为何值时,(S2-S”最大?/ B、/ C所对边长为a、b、a是方程z2+ z-20= 0的根.求(S2- S1)与X的函数关系式;参考答案1. -2a + 12. 20033. 1(满足 0v m v 2 的 m 值均可4. 19.65. y = - 15x 26.41 1=-AB • AB ' sinA- —AC ' • AB ' sinA 2 2(AB- AC ' )sinA= # [2-( . 2-1)] sin45& 24 °二、9. D 10. C 11. C 、15. x 〔 -1, X 2 3.16.由图可知因为每,比较 结果不变,每个班减去13个女生和18个男生,一班余下女生9人,可植树? X 9 = 5-(棵).553 5 1 班余下女生5人和男生2人,可植树- X 5 + - X 2 = 6-(棵).三班余下男生 4人,可植树53352351-X 4= 62(棵).四班余下女生 2人和男生3人,可植树-X 2 + - X 3 = 6^(棵).所以种 3 3 5 3 5树最多的班级是三班.17.解:(1)依题可设,y = kx + b ,则有f =31解得忙5,5k 加=3,4 b ^31.y = 3x + 331.5(2)当 x = 22 时,y = - X 22 + 331 = 344.25334.2X 5= 1721 .•••此人与燃放的烟花所在地约相距 1721米.18 .这里给出一种设计方案(如图).下面求出x 即可.根据 题意可列方程:(50-2-4x )(30-2x )= (50 一2)30 .280°7. S ^A B ' C ' = S ^ABB ' - S AAB 12. C 13. D 14. C22x 的值约取3.9米.这里只给出了一种设计方案,仅供参考. PA • PB = PE • PF . (2)结论成立,证法同上(略).四、20. (1)V = x(30-2x)(30-2x)= 4x(15-x)2(0v x v 15)(2)V — 2 • 2x • (15-x) • (15-x )w 2 • : 2x (15-刈(15-x) :3— 2X 103 这时,当2x — 15-x ,即x — 5时取等号.•••当剪去的小正方形边长为 5 cm 时,无盖空盒的容积最大为2X 103 1 2 121. (1)因为二次函数 y — (a + c)x-bx + (c- a)的顶点在x 轴上,2 22 1 1• △ — 0,即:b - 4 x (a + c) x (c- a) — 0,2 2c 2— a 2 + b 2,得/ ACB — 90°. 或者从抛物线顶点的纵坐标为零求得:1 1 24 (a c) (c -a) -b 2即 y — 2 2— 04汉丄(a +c)2可得 c 2— a 2 + b 2. (2) •/ z 2+ z-20— 0.Z 1— - 5, Z 2 — 4,T a >0,得 a — 4.■ 5 On弊19.⑴ 由^ APFEPB ,PA PFPE3cm、 1设 b — AC — 2x ,有 S A ABC — AC • BC — 4x ,2⑶ S T S — - - (x- - )2+ -,S2- S — & ABC -(S 半圆-S [)- S 1 — S ^ABC -S 半圆——L x 2 + 4x 222 --当X =—时,(S 2- ◎)有最大值—- n n 这时,b = 8 , a =4, c = —^2 ■+— JI 3TBD= BC 2 a 24兀 J J!2 +4 BA c 兀2 +4。