第10章 遗传算法
- 格式:ppt
- 大小:513.50 KB
- 文档页数:28
第七章 遗传算法应用举例遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。
随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。
遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。
本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。
7.1 简单一元函数优化实例利用遗传算法计算下面函数的最大值:()sin(10) 2.0[1,2]f x x x x π=⋅+∈-,选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。
下面为一元函数优化问题的MA TLAB 代码。
figure(1);fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线% 定义遗传算法参数NIND= 40; % 个体数目(Number of individuals)MAXGEN = 25; % 最大遗传代数(Maximum number of generations)PRECI = 20; % 变量的二进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (2, MAXGEN); % 寻优结果的初始值FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群gen = 0; % 代计数器variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值while gen < MAXGEN,FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut(SelCh); % 变异variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加% 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号[Y,I]=max(ObjV),hold on;plot (variable (I),Y, 'bo');trace (1,gen)=max (ObjV); %遗传算法性能跟踪trace (2,gen)=sum (ObjV)/length (ObjV);endvariable=bs2rv (Chrom,FieldD); %最优个体的十进制转换hold on,grid;plot (variable',ObjV','b*');figure (2);plot (trace (1,:)');hold on;plot (trace (2,:)','-.');grid;legend ('解的变化','种群均值的变化')使用基于适应度的重插入确保四个最适应的个体总是被连续传播到下一代。
部分交叉匹配交叉遗传算法-概述说明以及解释1.引言1.1 概述在计算机科学和优化问题领域中,部分交叉匹配和交叉遗传算法是两种常见的优化技术。
它们分别基于不同的原理和策略,用于解决各种实际问题和优化目标。
部分交叉匹配是一种基于交叉操作的优化方法。
在部分交叉匹配中,我们将两个父代个体的染色体部分交换,以生成新的个体。
这种交叉方式能够保留原始个体的一些有利特征,同时引入新的变异和多样性,从而增加了搜索空间和解空间的覆盖程度。
部分交叉匹配在优化问题的搜索过程中表现出了良好的性能和适应性。
另一方面,交叉遗传算法是一种基于生物遗传学原理的优化算法。
在遗传算法中,个体的染色体是通过模拟自然选择和遗传操作来进化的。
交叉操作是其中的关键步骤,它将两个父代个体的染色体部分随机交换,以生成新的个体。
通过交叉操作,遗传算法能够有效地探索解空间和搜索最优解的可能性。
结合部分交叉匹配和交叉遗传算法可以综合利用它们的优势和特点,以更高效地解决优化问题。
通过部分交叉匹配,我们可以增加搜索空间和解空间的覆盖程度,同时引入新的变异和多样性。
而交叉遗传算法则能够模拟自然选择和进化的过程,以找到更优解。
通过结合这两种技术,我们可以充分发挥它们的优势,提高解决问题的效率和准确性。
在本文中,我们将详细介绍部分交叉匹配和交叉遗传算法的原理、特点和应用。
我们还将探讨如何结合这两种技术,并通过实验验证它们的效果和性能。
最后,我们将总结这两种方法在优化问题中的应用前景,以及可能的局限性和改进方向。
通过本文的研究和分析,我们希望读者能够深入了解部分交叉匹配和交叉遗传算法在优化问题中的应用价值,同时对如何结合它们进行更高效的问题求解有所启发。
文章结构部分的内容应该包括对整篇文章的组织和结构进行介绍,概括说明各个章节或部分的主要内容。
文章的结构通常遵循一个逻辑框架,以确保读者能够清晰地理解文章的主题和内容。
因此,本篇文章的结构部分需要介绍各个章节或部分的主要内容,以及它们在整篇文章中的位置和作用。
《算法统宗》范文
《算法统宗》共分为十个章节,每一章节都深入浅出地介绍了不同的
算法。
第一章主要是算法的基础概念和分析方法,包括算法的定义、特性、时间复杂度和空间复杂度等。
第二章则重点介绍了排序算法,包括冒泡排序、插入排序、快速排序等常见排序算法和它们的性能分析。
第三章则讲
解了递归算法,包括递归的原理、递归函数的设计和应用等。
第四章介绍
了动态规划算法,包括最优子结构、重叠子问题和状态转移方程等相关概念。
第五章则介绍了贪心算法,包括贪心选择性质、最优子结构性质和贪
心算法的设计与证明等。
第六章至第八章分别讲解了图论算法、字符串匹配算法和几何算法。
其中,图论算法主要涉及最短路径、最小生成树和网络流等问题;字符串
匹配算法则主要介绍了暴力匹配、KMP算法和Boyer-Moore算法等常见的
字符串匹配算法;几何算法则介绍了平面几何和立体几何中的一些基本算
法和技巧。
第九章则讲解了近似算法,主要是介绍了NP问题和近似算法的一些
基本思想和应用。
最后一章则是一些其他算法的扩展和应用,包括计算几何、模拟退火和遗传算法等。
总之,《算法统宗》是一本经典的算法学教材,具有深入浅出、权威
全面的特点。
无论是作为算法学的入门教材,还是作为参考书籍,都是计
算机科学相关领域的学习者必备的一本书。
本科毕业论文图像分割技术研究Survey on the image segmentation学院名称:电气信息工程学院专业班级:电子信息工程0601班2010年 6 月图像分割技术研究摘要图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,也是图像处理、模式识别等多个领域中一个十分重要且又十分困难的问题。
在图像处理过程中,原有的图像分割方法都不可避免的会产生误差,这些误差会影响到图像处理和识别的效果。
遗传算法作为一种求解问题的高效并行的全局搜索方法,以其固有的鲁棒性、并行性和自适应性,使之非常适于大规模搜索空间的寻优,已广泛应用许多学科及工程领域。
在计算机视觉领域中的应用也正日益受到重视,为图像分割问题提供了新而有效的方法。
本文对遗传算法的基本概念和研究进展进行了综述;重点阐述了基于遗传算法的最大类间方差进行图像分割算法的原理、过程,并在MATLAB中进行了仿真实现。
实验结果表明基于遗传算法的最大类间方差方法的分割速度快,轮廓区域分割明显,分割质量高,达到了预期目的。
关键字:图像分割;遗传算法;阈值分割Survey on the image segmentationAbstract I mage segmentation is the first step of image processing and the basic of computer vision. It is an important part of the image, which is a very important and difficult problem in the field of image processing, pattern recognition.In image processing process, the original method of image segmentation can produce inevitable errors and these errors can affect the effect of image processing and identification .This paper discusses the current situation of the genetic algorithms used in the image segmentation and gives some kind of principles and the processes on genetic algorithm of image segmentationIn this paper.It also descripts the basic concepts and research on genetic algorithms .It emphasizes the algorithm based on genetic and ostu and realizes the simulation on Matlab. The experimental results show that this method works well in segmentation speed,the outline of the division and separate areas of high quality and achieve the desired effect.Genetic algorithm (GA) is a sort of efficient,paralled,full search method with its inherent virtues of robustness,parallel and self-adaptive characters. It is suitable for searching the optimization result in the large search space. Now it has been applied widely and perfectly in many study fields and engineering areas. In computer vision field GA is increasingly attached more importance. It provides the image segmentation a new and effective method.Key words image segmentation;genetic algorithm;image threshold segmentation目录第一章绪论 (1)1.1本课题研究的背景、目的与意义 (1)1.2本课题研究的现状与前景 (2)1.3本论文的主要工作及内容安排 (3)第二章图像分割基本理论 (4)2.1图像分割基本概念 (4)2.2图像分割的体系结构 (4)2.3图像分割方法分类 (5)2.3.1阈值分割方法 (5)2.3.2边缘检测方法 (8)2.3.3区域提取方法 (9)2.3.4结合特定理论工具的分割方法 (10)2.4图像分割的质量评价 (11)第三章遗传算法相关理论 (12)3.1遗传算法的应用研究概况 (12)3.2遗传算法的发展 (12)3.3遗传算法的基本概念 (13)3.4遗传算法基本流程 (14)3.5遗传算法的构成 (14)3.5.1编码 (14)3.5.2确定初始群体 (14)3.5.3适应度函数 (15)3.5.4遗传操作 (15)3.5.5控制参数 (17)3.6遗传算法的特点 (18)第四章 MATLAB相关知识 (20)4.1MATLAB简介 (20)4.2MATLAB的主要功能 (20)4.3MATLAB的技术特点 (21)4.4遗传算工法具箱(S HEFFIELD工具箱) (22)第五章基于遗传算法的最大类间方差图像分割算法 (24)5.1最大类间方差法简介 (24)5.2基于遗传算法的最大类间方差图像分割 (25)5.3流程图 (26)5.4实验结果 (27)第六章总结与展望 (29)6.1全文工作总结 (29)6.2展望 (29)致谢 (30)参考文献 (31)附录 (32)第一章绪论1.1本课题研究的背景、目的与意义数字图像处理技术是一个跨学科的领域。
板材切割优化算法的实现与比较第一章引言板材切割是制造业中重要的工艺之一,目的是最大限度地利用板材,减少浪费。
随着计算机技术的不断发展,利用计算机实现板材切割优化算法已成为当前工业界广泛关注的研究领域之一。
板材切割的优化算法旨在找到一种最优的切割方案,以最小化废料数量或最大化使用率。
本文将介绍两种常见的板材切割优化算法,分别是贪心算法和遗传算法,通过实验比较两种算法的性能,并着重讨论如何在实际应用中选择最佳的算法。
第二章贪心算法贪心算法是一种简单的启发式算法。
它的主要思想是在每一步中选择当前最好的选择,以期望最终结果也是最佳的。
在板材切割问题中,贪心算法的具体实现如下:1.按照板材尺寸排序,从最大的板材开始切割。
2.选择合适的模板尺寸,以覆盖需要切割的板材。
3.尽可能多地剪出这一模板所能承载的片材数量。
4.重复步骤2和3,直至所有板材都被切割完毕。
尽管贪心算法非常简单易懂,但是在实际应用中,它并不总是最优的。
由于贪心算法只考虑当前的最优解,而忽视了全局最优解,因此在处理一些复杂的切割情况时可能出现不好的结果。
第三章遗传算法遗传算法是一种进化算法,其核心思想是通过模拟自然选择和遗传的过程,寻找最优解。
在板材切割问题中,遗传算法的具体实现如下:1.初始种群的生成:随机生成一组合法的切割方案,作为初始种群。
2.适应度函数的确定:以废料数量或使用率作为适应度函数。
3.选择:按照适应度函数的大小,选择某些个体作为下一代的父母。
4.交叉:通过随机选择两个父母来生成子代,交叉的位置也是随机的。
5.变异:通过随机的方式来改变个体的某个优化参数。
6.新种群的生成:将交叉和变异产生的子代和父代合并生成新的种群。
7.重复步骤3至6,直到达到终止条件。
可以看出,遗传算法能够全面考虑切割问题的多种变量和约束条件,因此,它通常比贪心算法更加优秀。
但是,由于遗传算法的实现非常复杂,计算量较大,因此速度相对较慢,不适合处理实时性要求比较高的切割场景。
MATLAB 智能算法30个案例分析第1 章1、案例背景遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。
遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。
在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。
基因组成的串就是染色体,或者叫基因型个体( Individuals) 。
一定数量的个体组成了群体(Population)。
群体中个体的数目称为群体大小(Population Size),也叫群体规模。
而各个个体对环境的适应程度叫做适应度( Fitness) 。
2、案例目录:1.1 理论基础1.1.1 遗传算法概述1. 编码2. 初始群体的生成3. 适应度评估4. 选择5. 交叉6. 变异1.1.2 设菲尔德遗传算法工具箱1. 工具箱简介2. 工具箱添加1.2 案例背景1.2.1 问题描述1. 简单一元函数优化2. 多元函数优化1.2.2 解决思路及步骤1.3 MATLAB程序实现1.3.1 工具箱结构1.3.2 遗传算法中常用函数1. 创建种群函数—crtbp2. 适应度计算函数—ranking3. 选择函数—select4. 交叉算子函数—recombin5. 变异算子函数—mut6. 选择函数—reins7. 实用函数—bs2rv8. 实用函数—rep1.3.3 遗传算法工具箱应用举例1. 简单一元函数优化2. 多元函数优化1.4 延伸阅读1.5 参考文献3、主程序:1. 简单一元函数优化:clcclear allclose all%% 画出函数图figure(1);hold on;lb=1;ub=2; %函数自变量范围【1,2】ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线xlabel('自变量/X')ylabel('函数值/Y')%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=20; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(2,MAXGEN); %寻优结果的初始值FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器Chrom=crtbp(NIND,PRECI); %初始种群%% 优化gen=0; %代计数器X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换ObjV=sin(10*pi*X)./X; %计算目标函数值while gen<MAXGENFitnV=ranking(ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异X=bs2rv(SelCh,FieldD); %子代个体的十进制转换ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群X=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=min(ObjV);trace(1,gen)=X(I); %记下每代的最优值trace(2,gen)=Y; %记下每代的最优值endplot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点grid on;plot(X,ObjV,'b*'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(2,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestY=trace(2,end);bestX=trace(1,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\n'])2. 多元函数优化clcclear allclose all%% 画出函数图figure(1);lbx=-2;ubx=2; %函数自变量x范围【-2,2】lby=-2;uby=2; %函数自变量y范围【-2,2】ezmesh('y*sin(2*pi*x)+x*cos(2*pi*y)',[lbx,ubx,lby,uby],50); %画出函数曲线hold on;%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=50; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(3,MAXGEN); %寻优结果的初始值FieldD=[PRECI PRECI;lbx lby;ubx uby;1 1;0 0;1 1;1 1]; %区域描述器Chrom=crtbp(NIND,PRECI*2); %初始种群%% 优化gen=0; %代计数器XY=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换X=XY(:,1);Y=XY(:,2);ObjV=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算目标函数值while gen<MAXGENFitnV=ranking(-ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异XY=bs2rv(SelCh,FieldD); %子代个体的十进制转换X=XY(:,1);Y=XY(:,2);ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群XY=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=max(ObjV);trace(1:2,gen)=XY(I,:); %记下每代的最优值trace(3,gen)=Y; %记下每代的最优值endplot3(trace(1,:),trace(2,:),trace(3,:),'bo'); %画出每代的最优点grid on;plot3(XY(:,1),XY(:,2),ObjV,'bo'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(3,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestZ=trace(3,end);bestX=trace(1,end);bestY=trace(2,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ), '\n']) 第2 章基于遗传算法和非线性规划的函数寻优算法1.1案例背景1.1.1 非线性规划方法非线性规划是20世纪50年代才开始形成的一门新兴学科。
物流企业配送路线优化算法研究论文第一章绪论 (2)1.1 研究背景及意义 (2)1.2 国内外研究现状 (2)1.3 研究内容及方法 (3)第二章物流配送路线优化基础理论 (3)2.1 物流配送概述 (3)2.2 配送路线优化问题的描述 (4)2.3 配送路线优化算法分类 (4)第三章遗传算法在物流配送路线优化中的应用 (5)3.1 遗传算法基本原理 (5)3.2 遗传算法在配送路线优化中的改进 (5)3.3 实例分析 (5)第四章蚁群算法在物流配送路线优化中的应用 (6)4.1 蚁群算法基本原理 (6)4.2 蚁群算法在配送路线优化中的改进 (7)4.3 实例分析 (7)第五章粒子群算法在物流配送路线优化中的应用 (7)5.1 粒子群算法基本原理 (8)5.2 粒子群算法在配送路线优化中的改进 (8)5.3 实例分析 (8)第六章模拟退火算法在物流配送路线优化中的应用 (9)6.1 模拟退火算法基本原理 (9)6.2 模拟退火算法在配送路线优化中的改进 (9)6.3 实例分析 (9)第七章混合算法在物流配送路线优化中的应用 (10)7.1 混合算法基本原理 (10)7.1.1 混合算法概述 (10)7.1.2 混合算法基本原理 (10)7.2 混合算法在配送路线优化中的改进 (11)7.2.1 算法改进策略 (11)7.2.2 改进后的混合算法流程 (11)7.3 实例分析 (11)第八章配送路线优化算法功能评价与比较 (12)8.1 算法功能评价指标 (12)8.2 算法功能比较 (12)8.3 影响因素分析 (12)第九章基于大数据的物流配送路线优化 (13)9.1 大数据概述 (13)9.1.1 大数据的定义与特点 (13)9.1.2 大数据的来源与采集 (13)9.2 大数据在物流配送路线优化中的应用 (13)9.2.1 数据挖掘与分析 (13)9.2.2 路线规划与优化 (14)9.2.3 实时监控与调度 (14)9.3 发展趋势与展望 (14)9.3.1 大数据技术的不断进步 (14)9.3.2 跨界融合与创新 (14)9.3.3 智能化物流体系的构建 (14)9.3.4 绿色物流的发展 (14)第十章结论与展望 (14)10.1 研究结论 (14)10.2 研究不足与展望 (15)第一章绪论1.1 研究背景及意义我国经济的快速发展,物流行业作为支撑国民经济的重要支柱产业,其发展速度和效率日益受到广泛关注。
《网络营销与策划》教案第十章大数据下的网络营销变革授课教师:张小艳课时:4课时一、知识点回顾及课程导入(10分钟)上节课我们学习了网络营销效果评价的基础概念、原则、意义,以及网络营销评价中的基础指标,网络营销效果评价常用的工具,网络营销效果评价报告的撰写,网络营销绩效考核指标体系,大家要对这些进行理解、区分。
随着网络技术的发展,我们已经进入了一个大数据时代,面对这样一个新时代的降临,企业社会都将面临一场变革。
能够及时利用大数据的企业,将拥有更大的竞争优势。
网络营销人员可以通过分析大数据去更好的开展营销。
那今天我们就来学习一下第十章,去了解大数据下的网络营销的变革。
二、本章目的◆掌握大数据营销及其特点◆掌握网络营销中大数据的采集、处理和应用◆掌握移动大数据下精准营销的方法◆掌握知识管理的定义、内容◆理解大数据下的网络营销伦理三、本章重难点◆网络营销中大数据采集、处理与应用方法◆移动大数据精准营销方法◆网络营销中知识管理的主要内容四、授课流程(一)知识点讲解知识点1 大数据营销及其特点(25分钟)1.1大数据的定义与特点1.大数据的定义:大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
2.大数据的特点:①数据量大;②类型繁多;③价值密度低;④速度快、时效高;⑤真实性。
1.2大数据在营销中的价值体现大数据在营销中具有以下价值:①大数据可以使企业更完整地理解用户需求,帮助企业进行经营决策;②实现用户细分与精准营销,提高企业销售效率和用户满意度;③全面分析用户需求,改善服务质量,提高用户忠诚度;④开启新型盈利模式:例如:数据租售服务模式;数据分析服务模式;本地化数据集市与个性化精准推荐;数据化实时定位服务。
1.3大数据营销的概念及特点:1.大数据营销概念:大数据营销是指企业在采集、描述、分析和预测大量用户行为数据的基础上,有针对性地制定营销策略的过程。
2.大数据营销的特点:①多平台的数据采集;②强调时效性;③个性化营销;④性价比高。