车削螺纹常见故障及其解决方法如何减小金属材料的热处理变形
- 格式:doc
- 大小:42.00 KB
- 文档页数:5
数控车床螺纹加工常见故障与排除数控车床是一种高精度、高效率的加工设备,常用于各种金属材料的加工生产中。
在数控车床的螺纹加工过程中,常常会遇到一些故障问题,影响生产效率和产品质量。
掌握数控车床螺纹加工常见故障及其排除方法对于提高生产效率和产品质量至关重要。
1. 螺纹间距不准确在数控车床螺纹加工过程中,可能会出现螺纹间距不准确的情况,导致螺纹的质量不达标。
这可能是由于螺纹轴向或径向偏移、刀具的刀具偏差等原因造成的。
2. 螺纹表面粗糙螺纹表面粗糙会影响螺纹的密封性和强度,降低产品的质量。
造成螺纹表面粗糙的原因可能包括刀具磨损、切削参数设置不当等。
4. 刀具损坏在螺纹加工中,刀具可能出现损坏情况,例如刃口磨损、刀尖断裂等,这会影响螺纹加工的效果和效率。
5. 其他故障除了以上几种常见的故障之外,还可能会出现一些其他故障,例如机床零件损坏、数控系统故障等。
1. 调整加工参数针对螺纹间距不准确或螺纹表面粗糙的问题,可以通过调整加工参数来解决。
包括调整切削速度、进给速度、切削深度等参数,以获得更加精确和光滑的螺纹。
3. 加强机床维护定期对数控车床进行维护检查,及时发现并解决机床零部件的损坏问题,保证数控系统的正常运行。
4. 提高操作技能加强操作人员的技能培训,提高其对数控车床的操作技能,包括对刀具更换、加工参数设置、数控编程等。
5. 定期保养保养数控车床定期对数控车床进行保养,包括润滑、清洁、紧固等工作,保证机床的正常运行。
6. 定期校正数控系统定期对数控系统进行校正,保证其精度和稳定性。
7. 及时处理故障一旦发现故障,应立即停机检查并进行及时排除,以避免故障扩大影响生产。
数控车床螺纹加工常见故障及排除方法需要综合考虑机床、刀具、加工参数等多个因素,通过技术改进和经验总结,不断提高螺纹加工的质量和效率,为企业节约成本,提高竞争力。
浅谈螺纹车削原理及常见问题的解决办法作者:李建军来源:《职业·下旬》2014年第08期摘要:用车削的方法加工螺纹,是常用的加工方法和车工的基本技能之一。
但是,在螺纹加工中,初学者往往因为操作不当,无法正确加工出所需要的螺纹。
本文对螺纹车削中出现的问题,提出了相应的解决办法。
关键词:螺纹车削原理故障解决办法一、螺纹的加工原理螺纹的加工方法很多,其中用车削的方法加工螺纹是目前常用的加工方法。
无论车削哪一种螺纹,车床主轴与刀具之间必须保持严格的运动关系:主轴每转一圈(即工件转一圈),刀具应均匀地移动一个导程的距离。
工件的转动和车刀的移动都是通过主轴的带动来实现的,从而保证了工件和刀具之间严格的运动关系。
二、常见故障原因及解决办法螺纹车削是机械加工中非常普遍而且又比较复杂的问题。
螺纹车削的要求要高于其他普通车削操作,车削时所产生的切削力一般较大。
车削螺纹时,由于螺纹升角的影响,引起切削平面和基面位置的变化,从而使车刀工作时的前角和后角与刃磨的前角和后角的数值不同,影响正常车削。
在车削螺纹时,若有一个环节出现问题,就会产生意想不到的后果,影响正常加工,这时应及时加以解决。
下面,笔者就对车削螺纹时最常见的故障谈谈自己的见解和解决办法。
1.啃刀和打刀(1)故障原因之一:车刀安装得过高。
车刀装夹过高,在切削时,由于工件与车刀之间产生的主切削力的作用,螺纹车刀刀尖受到工件压力而向下移动,从而使车刀被压到工件的最大外圆处,使本来车削不深的车刀越来越进入工件深处,从而车削深度变深,使工件与车刀之间的车削力进一步增大,造成啃刀或打刀现象。
解决方法:应及时调整车刀高度,使其刀尖与工件的轴线等高(可利用尾座顶尖对刀)。
(2)故障原因之二:工件装夹强度不够。
在车削螺纹时,工件与车刀主要产生的车削力是背向力(即切深抗力),与工件的直径方向一致,此时工件随时受到一个向外的力,这个力使工件随时有向外弯曲的趋势。
这样造成工件在车削时一边车削浅,一边车削深。
扎刀1、主要原因(1)车刀的前角太大,机床X轴丝杆间隙较大;(2)车刀安装得过高或过低;(3)工件装夹不牢;(4)车刀磨损过大;(5)切削用量太大。
2、解决方法(1)减小车刀前角,维修机床调整X 轴的丝杆间隙,利用数控车床的丝杆间隙自动补偿功能补偿机床X 轴丝杆间隙。
(2)车刀安装得过高或过低:过高,则吃刀到一定深度时,车刀的后刀面顶住工件,增大摩擦力,甚至把工件顶弯,造成扎刀现象;过低,则切屑不易排出,车刀径向力的方向是工件中心,加上横进丝杠与螺母间隙过大,致使吃刀深度不断自动趋向加深,从而把工件抬起,出现扎刀。
此时,应及时调整车刀高度,使其刀尖与工件的轴线等高(可利用尾座顶尖对刀)。
在粗车和半精车时,刀尖位置比工件的中心高出1%D左右(D表示被加工工件直径)。
(3)工件装夹不牢:工件本身的刚性不能承受车削时的切削力,因而产生过大的挠度,改变了车刀与工件的中心高度(工件被抬高了),形成切削深度突增,出现扎刀,此时应把工件装夹牢固,可使用尾座顶尖等,以增加工件刚性。
(4)车刀磨损过大:引起切削力增大,顶弯工件,出现扎刀。
此时应对车刀加以修磨。
(5)切削用量(主要是背吃刀量和切削速度)太大:根据工件5 导程大小和工件刚性选择合理的切削用量。
乱扣1、故障现象当丝杠转一转时,工件未转过整数转而造成的。
2、主要原因(1)机床主轴编码器同步传动皮带磨损,检测不到主轴的同步真实转速;(2)编制输入主机的程序不正确;X轴或Y轴丝杆磨损。
3、解决方法(1)主轴编码器同步皮带磨损由于数控车床车削螺纹时,主轴与车刀的运动关系是由机床主机信息处理中心发出的指令来控制的,车削螺纹时,主轴转速恒定不变,X 或Y 轴可以根据工件导程大小和主轴转速来调整移动速度,所以中心必须检测到主轴同步真实转速,以发出正确指令控制X 或Y 轴正确移动。
如果系统检测不到主轴的真实转速,在实际车削时会发出不同的指令给X或Y,那么这时主轴转一转,刀具移动的距离就不是一个导程,第二刀车削时螺纹就会乱扣。
数控车床螺纹加工常见故障与排除
数控车床螺纹加工是一种常见的加工方式,但在实际操作中常常会遇到一些故障。
本文将介绍数控车床螺纹加工常见的故障及其排除方法。
1. 前切刀沿螺纹轴向来回移动导致螺纹不对称。
解决方法:检查前切刀的工作行程,调整其运动参数,使其在加工过程中能够沿螺纹轴向依次前进后退,避免因不对称的运动而导致螺纹加工不均匀。
2. 外径螺纹加工时,切削刃与工件材料磨损严重。
解决方法:检查刀具材料及硬度是否符合加工要求,选择合适的切削刃形状和角度,保持刀具的锋利度,及时更换磨损的刀具。
3. 内径螺纹加工时,工件内孔直径未满足设计要求。
解决方法:检查车床主轴的同心度,修复或更换不满足要求的配件。
要注意切削速度和切削深度的选择,避免加工过程中产生过大的热量。
4. 外径螺纹加工时,表面粗糙度超过允许范围。
解决方法:调整刀具切削速度和进给速度,选择合适的冷却液和润滑剂,以降低切削温度,减少表面粗糙度。
5. 加工过程中,螺纹出现爆裂或开裂。
解决方法:检查工件材料的热处理和质量情况,确保工件内部结构均匀且无气孔、夹杂物等缺陷。
合理选择切削刃形状和角度,避免产生过大的切削力和热量。
解决方法:检查数控车床的精度和稳定性,修复或更换不满足要求的零部件。
调整切削参数,如进给速度、切削速度和刀具角度等,以提高加工精度。
金属热处理变形因素和改善措施众所周知,在金属材料加工过程中需要进行热处理,其内部结构与组织容易发生变化,以此提高其使用性能。
因为受到诸多因素所带来的影响,在金属材料热处理过程中容易发生变形现象,为从根本上缓解这一现象则需要从多个方面加以改善与处理。
故此本文主要对金属热处理变形因素展开研究,并提出相应的改善对策。
标签:金属;热处理;变形;措施从整体角度分析,在整个金属材料加工中为从根本上改善材料物理性能以及化学性能,满足基本的工艺需求,则需要进行热处理。
所谓的热处理是利用相应的方式进行加热、保温以及冷却,以此改变金属材料的内部结构,提高其使用性能,金属热处理过程中容易发生变化,需对其加以预防与改善。
1、金属热处理变形的主要影响因素1.1 温度因素一般而言,在金属热处理中因为材料性质以及外界因素所带来的影响,所以往往会出现加热或者冷却不均匀的现象,在整个金属热处理过程中温度梯度的变化会对金属材料的内部应力有所影响。
从其它角度分析,在一定条件下,金属材料容易发生内应力变形,比如像无法改变工件的体积,对工件的形状与结构有所影响,或者在每一次工件热处理之后其变形量往往会伴随着热处理的次数而不断增加。
另外在整个热处理的过程中,需要利用各种加热炉,且在冷却的时候需要利用冷却介质。
1.2 其它因素(1)预备热处理在预备热处理中如果温度过高那么则会导致内控变形增大,其中需要利用锻件加以控制。
从另外一个角度分析,因为金属正火、退火等在淬火之后需要进行调质,这样也会或多或少对金属造成影响,甚至还会对金属组织结构变化产生制约,且根据实践证明可以清楚的了解到,在采取正火之后需要采取等温淬火的方式可以保证金属组织结构的均匀性,减少其变形量。
(2)淬火介质从宏观角度分析,淬火冷却会对淬火的质量产生影响,因为介质使用不合理,所以往往产生内应力,导致变形与开裂现象的发生,所以冷速不可过大,也不可过小,现阶段在整个处理过程中主要的冷却介质是水与油。
数控车床螺纹加工常见故障与排除
数控车床螺纹加工是一种常见的金属加工方法,但在操作过程中常会出现一些故障。
下面将介绍一些数控车床螺纹加工常见的故障及其排除方法。
故障一:螺纹加工出现扭曲或错位现象。
排除方法:
1. 检查机床刀具和夹具的安装是否正确,如果不正确应重新安装。
2. 检查夹具和工件的紧固情况,确保夹具和工件紧固牢固。
3. 检查切削刀具是否磨损或破损,如有磨损或破损应及时更换。
4. 检查切削速度和进给速度是否合适,如有需要应调整切削速度和进给速度。
数控车床螺纹加工常见故障主要包括螺纹扭曲或错位、断刀、切削力过大和尺寸偏差过大等问题。
在排除故障时,需要注意刀具和夹具的安装是否正确、夹具和工件的紧固情况、切削刀具的磨损情况、切削速度和进给速度的合适性以及切削液的供应状态等。
通过及时排除故障,并做好相应的调整和维护工作,可以提高螺纹加工的质量和效率。
热处理变形产生的原因及控制方法1. 引言热处理是一种常用的工艺,用于改善金属材料的机械性能。
然而,热处理过程中常常会引起材料的无意变形,对最终产品的质量造成影响。
本文将探讨热处理变形产生的原因以及相应的控制方法。
2. 原因热处理变形产生的原因可以从以下几个方面来分析:2.1. 内应力释放热处理过程中,材料内部会产生应力,特别是在急冷或急热的情况下。
当材料的结构发生变化时,这些应力会引起材料的塑性变形,导致尺寸变化或形状失真。
2.2. 相变效应在热处理过程中,金属材料的组织可能发生相变。
例如,当钢材经过淬火过程时,奥氏体会转变为马氏体。
这种相变过程会引起材料的体积变化和形状失真。
2.3. 不均匀加热或冷却如果热处理过程中加热或冷却不均匀,材料的局部温度会存在差异。
这种温度差异会导致材料的非均匀膨胀或收缩,从而引起变形。
3. 控制方法为了减少热处理产生的变形,可以采取以下控制方法:3.1. 控制加热和冷却速率合理控制加热和冷却速率,避免过快或过慢,可以减少材料的变形。
在进行急冷或急热处理时,可以采取预先控制的温度梯度,以缓解内应力的释放。
3.2. 优化工艺参数通过调整热处理过程中的工艺参数,如温度、时间和冷却介质等,可以最大限度地减少材料的变形。
合理选择工艺参数,可以提高材料的均匀性和稳定性。
3.3. 采用合适的支撑结构对于形状复杂的工件,可以采用合适的支撑结构来减少变形。
支撑结构可以提供一定的约束,防止材料发生不受控制的变形。
4. 结论热处理变形是热处理过程中常见的问题,但通过合理的控制方法可以有效减少其影响。
合理控制加热和冷却速率、优化工艺参数以及采用合适的支撑结构都是减少热处理变形的有效途径。
这些控制方法可以提高最终产品的质量和性能。
---以上是关于热处理变形产生的原因及控制方法的内容。
请基于以上内容,进一步完善和添加具体细节,使文档达到800字以上的要求。
普通车床螺纹车削常见故障及解决方法1. 放松刀夹:在车削过程中,如果刀夹没有固定好,会导致刀具松动或者偏位,从而造成螺纹不良。
解决方法是检查刀夹固定螺母是否紧固,如果松动则重新固定。
2. 刀具磨损:长时间使用刀具会磨损,导致刀尖变钝,从而无法进行正常的车削。
解决方法是更换刀具,保持刀具的锐利度。
3. 机床不稳定:如果机床本身存在不稳定的问题,例如床身变形、主轴不平衡等,会导致螺纹加工时产生偏差。
解决方法是定期检测和调整机床,确保其稳定性。
4. 刀具与工件匹配不良:在螺纹车削过程中,刀具与工件的匹配也非常重要。
如果选用的刀具尺寸不合适,就会导致螺纹加工结果不理想。
解决方法是选择合适尺寸的刀具,确保刀具与工件的配合良好。
5. 刀具进给速度不恰当:刀具进给速度过快或者过慢都会影响螺纹加工的质量。
解决方法是根据不同的工件材料和螺纹规格,调整刀具的进给速度,确保加工的质量。
6. 冷却液不适用:在螺纹车削过程中,适当使用冷却液可以降低温度,减少摩擦,提高切削润滑效果,从而改善加工质量。
如果使用的冷却液性质不合适,也会影响螺纹加工结果。
解决方法是选择合适的冷却液,根据加工工件的要求进行选择。
7. 机床刚度不足:机床刚度不足会导致在螺纹车削过程中产生振动和共振,造成螺纹不良。
解决方法是增加机床的刚度,例如加强机床床身的结构,增加加工时的稳定性。
8. 机床零件磨损:长时间使用机床,有些零部件会磨损,例如导轨、导向轨等,会导致加工误差。
解决方法是定期检查和更换机床零部件,保证机床的准确性和稳定性。
总之,普通车床螺纹车削常见故障的解决方法就是:确保刀具的固定和锐利度,稳定机床的结构和性能,选择合适尺寸和质量的刀具,调整进给速度和冷却液的使用,定期检查和维护机床零部件,确保加工质量和效果。
金属材料的热处理是将固态金属或合金,采用适当的方式进行加热、保温和冷却,有时并兼之以化学作用和机械作用,使金属合金内部的组织和结构发生改变,从而获得改善材料性能的工艺。热处理工艺是使各种金属材料获得优良性能的重要手段。很多实际应用中合理选用材料和各种成形工艺并不能满足金属工件所需要的力学性能、物理性能和化学性能,这时热处理工艺是必不可少的。 但是热处理工艺除了具有积极的作用之外,在处理过程中也不可避免地会产生或多或少的变形,而这又是机械加工中必须避免的,两者之间是共存而又需要避免的关系,只能采用相应的方法尽量把变形量控制在尽量小的范围内。 一、温度是变形的关键因素 工业上实际应用的热处理工艺形式非常多,但是它们的基本过程都是热作用过程,都是由加热、保温和冷却三个阶段组成的。整个工艺过程都可以用加热速度、加热温度、保温时间、冷却速度以及热处理周期等几个参数来描述。在热处理工艺中,要用到各种加热炉,金属热处理便在这些加热炉中进行(如基本热处理中的退火、淬火、回火、化学热处理的渗碳、渗氨、渗铝、渗铬或去氢、去氧等等)。因此,加热炉内的温度测量就成为热处理的重要工艺参数测量。每一种热处理工艺规范中,温度是很重要的内容。如果温度测量不准确,热处理工艺规范就得不到正确的执行,以至造成产品质量下降甚至报废。温度的测量与控制是热处理工艺的关键,也是影响变形的关键因素。 (1)工艺温度降低后工件的高温强度损失相对减少,塑性抗力增强。这样工件的抗应力变形、抗淬火变形、抗高温蠕变的综合能力增强,变形就会减少; (2)工艺温度降低后工件加热、冷却的温度区间减少,由此而引起的各部位温度不一致性也会降低,由此而导致的热应力和组织应力也相对减少,这样变形就会减少; (3)如果工艺温降低、且热处理工艺时间缩短,则工件的高温蠕变时间减少,变形也会减少。 减小热处理变形需要合理的热处理工艺。例如经热处理后的20CRNI2MOA钢齿圈齿表面、齿心部硬度及有效硬化层深度均达到要求。图1为模数MN=12MM的齿圈经不同温度球化退火后的硬度梯度曲线。由图1可以看出,在650℃球化退火后的硬度梯度和740℃球化+680℃等温处理的硬度梯度结果相近,未经球化退火的齿轮的硬度较前两个低。这是因为球化退火可使淬火后渗层表面残留奥氏体量减少,从而提高了齿表面硬度,因此20CRNI2MOA钢齿圈渗碳后应采用球化退火工艺,同时为减小热处理变形,在650℃球化退火效果更好。 二、变形的其它影响因素及减小措施 (一)预备热处理 正火硬度过高、混晶、大量索氏体或魏氏组织都会使内孔变形增大,所以要用控温正火或等温退火来处理锻件。金属的正火、退火以及在进行淬火之前的调质,都会对金属最终的变形量产生一定的影响,直接影响到的是金属组织结构上的变化。实践证明,在正火时采用等温淬火可有效地使金属组织结构趋于均匀,从而使其变形量减小。 (二)运用合理的冷却方法 金属淬火后冷却过程对变形的影响也是很重要的一个变形原因。热油淬火比冷油淬火变形小,一般控制在100±20℃。油的冷却能力对变形也是至关重要的。淬火的搅拌方式和速度均影响变形。金属热处理冷却速度越快,冷却越不均匀,产生的应力越大,模具的变形也越大。可以在保证模具硬度要求的前提下,尽量采用预冷;采用分级冷却淬火能显著减少金属淬火时产生的热应力和组织应力,是减少一些形状较复杂工件变形的有效方法;对一些特别复杂或精度要求较高的工件,利用等温淬火能显著减少变形。 (三)零件结构要合理 金属热处理后在冷却过程中,总是薄的部分冷得快,厚的部分冷得慢。在满足实际生产需要的情况下,应尽量减少工件厚薄悬殊,零件截面力求均匀,以减少过渡区因应力集中产生畸变和开裂倾向;工件应尽量保持结构与材料成分和组织的对称性,以减少由于冷却不均引起的畸变;工件应尽量避免尖锐棱角、沟槽等,在工件的厚薄交界处、台阶处要有圆角过渡;尽量减少工件上的孔、槽筋结构不对称;厚度不均匀零件采用预留加工量的方法。 (四)采用合理的装夹方式及夹具 目的使工件加热冷却均匀,以减少热应力不均,组织应力不均,来减小变形,可改变装夹方式,盘类零件与油面垂直,轴类零件立装,使用补偿垫圈,支承垫圈,叠加垫圈等,花键孔零件可用渗碳心轴等。 (五)机械加工 当热处理是工件加工过程的最后工序时,热处理畸变的允许值应满足图样上规定的工件尺寸,而畸变量要根据上道工序加工尺寸确定。为此,应按照工件的畸变规律,热处理前进行尺寸的预修正,使热处理畸变正好处于合格范围内。当热处理是中间工序时,热处理前的加工余量应视为机加工余量和热处理畸变量之和。通常机械加工余量易于确定,而热处理由于影响因素多比较复杂,因此为机械加工留出足够的加工余量,其余均可作为热处理允许畸变量。热处理后再加工,根据工件的变形规律,施用反变形、收缩端预胀孔,提高淬火后变形合格率。 (六)采用合适的介质
在保证同样硬度要求的前提下,尽量采用油性介质,实验和实践证明,再其他条件无差异的前提下,油性介质的冷却速度较慢,而水性介质的冷却速度则相对快一些。而且,和油性介质相比,水温变化对水性介质冷却特性的影响较大,在同样的热处理条件下,油性介质相对水性介质淬火后的变形量要相对小。 #p#分页标题#e#车削加工螺纹底孔直径及孔深 http://www.qxugpx.com/zyzs/338.html
窗帘洗涤方法整体橱柜购买须慎重 http://www.zzsnsj.com/zyzs/379.html 工薪阶层如何选择装修 装修安全注意事项 http://www.qxcdr.com/zyzs/337.html 五金安装要谨慎建材选择省钱攻略 http://www.qingxinjiaoyu.com/snsj/248.html Yigo管理软件CAD&AutoRun http://www.qxcad.com/cadjc/827.html 冲头之设计母模之设计 http://www.qingxinjx.com/zyzs/354.html 轴类零件的材料 轴类零件的功用 http://www.qingxinedu.com 螺纹是在圆柱工件表面上,沿着螺旋线所形成的,具有相同剖面的连续凸起和沟槽。在机械制造业中,带螺纹的零件应用得十分广泛。用车削的方法加工螺纹,是目前常用的加工方法。在卧式车床(如CA6140) 车削螺纹常见故障及其解决方法
上能车削米制、英寸制、模数和径节制四种标准螺纹,无论车削哪一种螺纹,车床主轴与刀具之间必须保持严格的运动关系:即主轴每转一转(即工件转一转),刀具应均匀地移动一个(工件的)导程的距离。它们的运动关系是这样保证的:主轴带着工件一起转动,主轴的运动经挂轮传到进给箱;由进给箱经变速后(主要是为了获得各种螺距)再传给丝杠;由丝杠和溜板箱上的开合螺母配合带动刀架作直线移动,这样工件的转动和刀具的移动都是通过主轴的带动来实现的,从而保证了工件和刀具之间严格的运动关系。在实际车削螺纹时,由于各种原因,造成由主轴到刀具之间的运动,在某一环节出现问题,引起车削螺纹时产生故障,影响正常生产,这时应及时加以解决。车削螺纹时常见故障及解决方法如下: 一、啃刀 故障分析及解决方法:原因是车刀安装得过高或过低,工件装夹不牢或车刀磨损过大。 1.车刀安装得过高或过低 过高,则吃刀到一定深度时,车刀的后刀面顶住工件,增大摩擦力,甚至把工件顶弯,造成啃刀现象;过低,则切屑不易排出,车刀径向力的方向是工件中心,加上横进丝杠与螺母间隙过大,致使吃刀深度不断自动趋向加深,从而把工件抬起,出现啃刀。此时,应及时调整车刀高度,使其刀尖与工件的轴线等高(可利用尾座顶尖对刀)。在粗车和半精车时,刀尖位置比工件的中心高出1%D左右(D表示被加工工件直径)。 2.工件装夹不牢 工件本身的刚性不能承受车削时的切削力,因而产生过大的挠度,改变了车刀与工件的中心高度(工件被抬高了),形成切削深度突增,出现啃刀,此时应把工件装夹牢固,可使用尾座顶尖等,以增加工件刚性。 3.车刀磨损过大 引起切削力增大,顶弯工件,出现啃刀。此时应对车刀加以修磨。 二、乱扣 故障分析及解决方法:原因是当丝杠转一转时,工件未转过整数转而造成的。 1.当车床丝杠螺距与工件螺距比值不成整倍数时 如果在退刀时,采用打开开合螺母,将床鞍摇至起始位置,那么,再次闭合开合螺母时,就会发生车刀刀尖不在前一刀所车出的螺旋槽内,以致出现乱扣。
解决方法是采用正反车法来退刀,即在第一次行程结束时,不提起开合螺母,把刀沿径向退出后,将主轴反转,使车刀沿纵向退回,再进行第二次行程,
数控机床的振动爬行处理简单故障报警处理的方法 http://www.qxugpx.com/zyzs/339.html 管道装修不可忽略楼梯油漆工艺细节 http://www.zzsnsj.com/zyzs/380.html 门牌也要求讲风水空间的合理利用 http://www.qxcdr.com/zyzs/338.html 属于女性的衣帽间 厨房装饰用材注意事项 http://www.qingxinjiaoyu.com/snsj/249.html 在AutoCAD R14中输出位图复制图形或特性 http://www.qxcad.com/cadjc/828.html 模板之设计轭式模板之设计注意事项 http://www.qingxinjx.com/zyzs/355.html 模具对准单元导注及导套单元 http://www.qingxinedu.com这样往复过程中,因主轴、丝杠和刀架之间的传动没有分离过,车刀始终在原来的螺旋槽中,就不会出现乱扣。
2.对于车削车床丝杠螺距与工件妇距比值成整倍数的螺纹 工件和丝杠都在旋转,提起开合螺母后,至少要等丝杠转过一转,才能重新合上开合螺母,这样当丝杠转过一转时,工件转了整数倍,车刀就能进入前一刀车出的螺旋槽内,就不会出现乱扣,这样就可以采用打开开合螺母,手动退刀。这样退刀快,有利于提高生产率和保持丝杠精度,同时丝杠也较安全。 三、螺距不正确 故障分析及解决方法: 1.螺纹全长上不正确 原因是挂轮搭配不当或进给箱手柄位置不对,可重新检查进给箱手柄位置或验算挂轮。 2.局部不正确 原因是由于车床丝杠本身的螺距局部误差(一般由磨损引起),可更换丝杠或局部修复。 3.螺纹全长上螺距不均匀 原因是: o 丝杠的轴向窜动。 o 主轴的轴向窜动。 o 溜板箱的开合螺母与丝杠不同轴而造成啮合不良。 o 溜板箱燕尾导轨磨损而造成开合螺母闭合时不稳定。 o 挂轮间隙过大等。 通过检测: o如果是丝杠轴向窜动造成的,可对车床丝杠与进给箱连接处的调整圆螺母进行调整,以消除连接处推力球轴承轴向间隙。 o 如果是主轴轴向窜动引起的,可调整主轴后调整螺母,以消除后推力球轴承的轴向间隙。 o 如果是溜板箱的开合螺母与丝杠不同轴而造成啮合不良引起的,可修整开合螺母并调整开合螺母间隙。 o如果是燕尾导轨磨损,可配制燕尾导轨及镶条,以达到正确的配合要求。 o 如果是挂轮间隙过大,可采用重新调整挂轮间隙。 4. 出现竹节纹 原因是从主轴到丝杠之间的齿轮传动有周期性误差引起的,如挂轮箱内的齿轮,进给箱内齿轮由于本身,制造误差、或局部磨损、或齿轮在轴上安装偏心等造成旋转中心低,从而引起丝杠旋转周期性