当前位置:文档之家› AAPT物理竞赛和ARML数学竞赛

AAPT物理竞赛和ARML数学竞赛

AAPT物理竞赛和ARML数学竞赛
AAPT物理竞赛和ARML数学竞赛

AAPT“物理杯”高中物理竞赛

高中物理竞赛“物理杯”(PHYSICS BOWL)由“美国物理教师协会”(英文全称:American Association of Physics Teachers.缩写:AAPT)主办,是美国乃至全球最具影响力的高中生物理竞赛,每年有超过一万名美国优秀高中生参加。

在“物理杯”中取得最优异成绩的美国学生,将有机会受邀参加美国国家物理奥林匹克夏令营、甚至进入美国物理竞赛国家队。在比赛中获得高分者备受美国名校欢迎。过去8年中,仅1名高中生在该竞赛中得到满分。

美国物理教师协会是美国唯一专注于普及与提升物理教育的学术机构,由8000名美国大学物理教授、中学资深物理老师和物理教育工作者组成。其中一半成员是美国各名牌大学物理教授,约1/3成员是美国高中的有经验的物理老师。协会每年都会通过会议、论坛、杂志、竞赛等方式为美国大学与高中物理教育提供最新的物理前沿思想与更丰富的物理教育资源。

“物理杯”全部试题均由AAPT协会注册的大学物理教授和教学经验丰富的高中物理老师组成理事会进行出题和审核。

从2014年9月起,“物理杯”由AAPT协会和英国素质发展认证中心(ASDAN)合作,首度引入大中华地区。这次在大中华区(大陆及港澳台)设立了五个赛区,比赛高分者将备受美国名牌大学的欢迎及更多竞争优势。

1. 参赛费用

每人250元人民币(含考试费用、国际邮寄费与历年考试真题资料费用)

2. 报名时间

2016年3月20日截止

3. 考位分配

每个考点的考位有限,报完截止。本赛区学校同学可以选择不同考点的考位,但是不能够跨赛区选择考位

4. 选择考题

不需预先分组,所有参赛选手下发同样试卷。在答题卡上选择A组同学,回答1至40题,AAPT自动对1至40题评分;如果选择B组同学,回答10至50题,

AAPT自动对10至50题评分。

5. 考试语言

英文

6. 考试时间

2016年4月09日(星期六)下午:14:00-14:45 (45分钟)

7. 考试地点

全国主要城市各考点(报名注册后可以查阅、选择和注册参赛考点)

8. 参赛人员

高中各个年级学生

9. 比赛内容

笔试,40道单选题

10. 考题难度说明

考题分为两套,高一学生(IB10年级,A-Level的G1年级部分优秀学生和G2

年级)建议选择Division1考题,高二,高三学生(IB11-12年级,A-Level年级)选择Division2考题。Division2难度大于Division1

赛区划分

华北(全球第15赛区):北京、天津、黑龙江、吉林、辽宁、河北、山西、山东、内蒙

华南(全球第16赛区):广东、广西、福建、海南、香港、澳门

华东(全球第17赛区):上海、江苏、浙江

华中(全球第18赛区):安徽、江西、湖北、湖南、河南

华西(全球第19赛区):重庆、四川、云南、贵州、陕西、甘肃、宁夏、青海、西藏、新疆

奖项设置(比赛结束后6周内公布全球成绩)

a) 区域个人奖-前10名(Division1,Division2)

b) 全国个人奖-前10名(Division1, Division2)

c) 区域获胜团队奖前10名(每个参赛学校无论人数多少,取本校个人成绩前5名加总为团体总分)(Division1, Division2)

d) 全国获胜团队奖-前10名(Division1,Division2)

e) 全球个人奖-前10名(Division1,Division2)

f) 全球团队奖-前10名(Division1,Division2)

AAPT 物理杯中国区参考大纲:https://www.doczj.com/doc/fb6403605.html,/AAPT.jsp

美国区域数学联赛(ARML)

ARML的标志

The American Regions Mathematics League的简称,即美国地区数学联盟,或者叫全美高中数学竞赛,因为参赛选手全是高中学生。ARML比赛在美国四所大学同时举行,分别是依阿华大学(University of lowa)、宾夕法尼亚州立大学(Pennsylvania State University)、内华达州立大学拉斯维加斯分校(University of Nevada, Las Vegas)、乔治亚大学(University of Georgia)。

ARML是全美历史最长、影响力最大的国际数学竞赛之一。该赛事诞生于1976年,至今已经举办了40届。每年,全美近四千名选手参加该项赛事。比赛得到美国众多著名科技公司和顶尖教育机构的支持,美国最一流的高中每年都会参加。

ARML主要包括区域赛与国际赛。区域赛在各个城市由各个老师组织,所有对数学感兴趣的学生都可以参加。国际赛主要在宾夕法尼亚大学、佐治亚州立

大学、爱荷华州立大学和位于拉斯维加斯的内华达州立大学四所大学同时举办。区域赛表现优异的团队将有机会参加国际赛。

为了让更多中国学生能在本土参加这个国际水平的赛事,ARML组委会将与ASDAN 中国合作,首次把该区域赛引入中国。中国区域赛将与美国区域赛同步开考、同样试题、同样赛制、同等评分、同时公布成绩以及全球统一排名。

ARML竞赛内容包括几何、代数、组合数学、概率、不等式等,以简答为主,以团队形式参赛,其更加注重数学的趣味性、跨学科运用的综合性以及同学们的团队协作能力。因此在赛制方面包含了个人赛、团队赛、接力赛、平局赛。比赛过程的互动性非常高,氛围激烈、有趣,非常受参赛同学欢迎。

比赛分为A组,B组,国际组,其中A组队伍主要为专业竞赛队,B组队伍为临时组建队,国际组又分为互联网比赛组和赴美现场比赛组。各组每队正式参赛队员均为15人。

ARML口号:Now Closer Than Ever!

参赛费用

每人350元人民币(其中包含ARML试卷费,考务费,评审阅卷费,国际邮递费,证书费,以及历年真题和学术培训资料费)

报名时间

2015年11月1日至2016年4月1日截止

报名方式

通过官网报名,注册,缴费,选考位,下载真题和查看成绩:

https://www.doczj.com/doc/fb6403605.html,/ARML

奖项设置

比赛结束后6周内公布成绩与排名。个人奖:

区域个人奖前10名

全国个人奖前10名

全球个人奖前10名

团队综合奖:

区域团队奖前10名

全国团队奖前10名

全球团队奖前10名

学术培训资料下载

https://www.doczj.com/doc/fb6403605.html,/ARML

提供8年的真题(共8年,24套题)和专门研发的教材

参考网址

https://www.doczj.com/doc/fb6403605.html,/ARML.jsp#tab006

在我国影响力

台湾

台湾自1999年开始参加ARML,2005年之后专门成立了ARML的赛前集训班,近几年台湾队成绩非常不错。

香港

香港队参加过近三届的ARML。

澳门

澳门队2009年第一次参加ARML,最终夺得团体总分第一名,引起很大震动。值得一提的是,队中有6名女选手,是近几年女选手比例最高的队伍。这批选手中已有1人签约加州大学伯克利分校,另有3人也已成功获得全美综合排名前50名的学校奖学金,赴美留学。

高中物理竞赛讲义:动量

专题六 动量 【扩展知识】 1.动量定理的分量表达式 I 合x =mv 2x -mv 1x , I 合y =mv 2y -mv 1y , I 合z =mv 2z -mv 1z . 2.质心与质心运动 2.1质点系的质量中心称为质心。若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为 r c=n n n m m m r m r m r m ++++++ 211211=M r m n i i i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为 x c =M x m n i i i ∑=1, y c =M y m n i i i ∑=1, z c =M z m n i i i ∑=1. 2.2质心速度与质心动量 相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。 v c=t r c ??=M p 总=M v m n i i i ∑=1, p c =Mv c =∑=n i i i v m 1 . 作用于质点系的合外力的冲量等于质心动量的增量 I 合= ∑=n i i I 1=p c -p c0=mv c -mv c0 . 2.3质心运动定律 作用于质点系的合外力等于质点总质量与质心加速度的乘积。F合=Ma c.。 对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为 a c =M a m n i i i ∑=1 .

【典型例题】 1.将不可伸长的细绳的一端固定于天花板上的C点,另一端系一质量为m的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示。已知A、B为某一直径上的两点,问小球从A点运动到B点的过程中细绳对小球的拉力T的冲量为多少? 2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示。求下落的绳离钉子的距离为x时,钉子对绳另一端的作用力是多少? 3.一长直光滑薄板AB放在平台上,OB伸出台面,在板左侧的D点放一质量为m1的小铁块,铁块以速度v向右运动。假设薄板相对于桌面不发生滑动,经过时间T0后薄板将翻倒。现让薄板恢复原状,并在薄板上O点放另一个质量为m2的小物体,如图所示。同样让m1从D点开始以速度v向右运动,并与m2发生正碰。那么从m1开始经过多少时间后薄板将翻倒?

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

高中物理竞赛的数学基础(自用修改)

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 1.1函数自变量和因变量绝对常量和任意常量 1.2函数的图象 1.3物理学中函数的实例 §2.导数 2.1极限 如果当自变量x无限趋近某一数值x0(记作x→x0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f(x)的极限值,并记作 (A.17)式中的“lim”是英语“limit(极限)”一词的缩写,(A.17)式读作“当x趋近x0时,f(x)的极限值等于a”。 极限是微积分中的一个最基本的概念,它涉及的问题面很广。这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。 求极限公式

(2) (3) (4) 等价无穷小量代换 sinx~x; tan~x; 2.2极限的物理意义 (1)瞬时速度 对于匀变速直线运动来说, 这就是我们熟悉的匀变速直线运动的速率公式(A.5)。 (2)瞬时加速度 时的极限,这就是物体在t=t0时刻的瞬时加速度a: (3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛讲义-镜像法

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b ) 用镜像电荷-q 代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ 平面)上方有一点电荷q ,距离 导体平面的高度为h 。 用位于导体平面下方h 处的镜像电荷-q 代替导体平面上的感应 电荷,边界条件维持不变,即YOZ 平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注 意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。 用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为)

电位: (4.4.2.5) 对地电容: (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9) 平行导线间单位长度电容: (4.4.2.10) 其中 小天线的镜像 与地面的小天线,长度为l ,离地高度为h 。

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

中学物理竞赛讲义动能定理

4.2动能定理 一、单个质点的动能定理 例1、设物体的质量为m ,在与运动方向相同的恒定外力F (F 未知)的作用下,在光滑水平面上发生一段位移l ,速度由v 1增加到v 2,如图所示。试用牛顿运动定律和运动学公式,推导出力F 对物体做功的表达式(与速度的关系)。 22211122 W mv mv =- 功是能量转化的量度,上式右边可以看成是能量的变化(末状态的能量减初状态的能量)。由于和速度有关,将其定义为动能。 1、动能 212 K E mv = 2、动能定理:合外力所做的功等于物体动能的变化量。 22211122 k W E mv mv =?=-合 3、动能定理的优越性: (1)适用于恒力做功,也适用于变力做功。 (2)适用于直线运动,也适用于曲线运动。 (3)适用于单一过程,也适用于全过程(复杂运动)。 *(4)机械能守恒定律是有适用条件的,而动能定理是普遍适用的。 例2、两个质量均为m 的小球.用长为2L 的轻绳连接起来,置于光滑水平面上, 绳恰好处于 伸直状态.如图所示.今用一个恒力F 作用在绳的中点,F 的方向水平且垂直 于绳的初始长度方向.原为静止的两个小球因此运动.求:(1)在两个小球第一次相碰前 的瞬间,小球在垂直于F 作用线方向上的分速度为多大?(2)若干次碰撞后,两球处于接触 状态一起运 动,求因碰撞损失的总能量。 二、质点系统的动能定理 质点系的动能增量等于作用于质点系所有外力和内力做功的代数和。 k E W W ?=+∑∑外内 注意: 系统牛顿第二定律:F =ma ,不需要考虑内力。 但是,系统动能定理,不仅需要考虑外力做功,还要考虑内力做功 例3、速度为v 1的子弹射入静止在光滑桌面上的木块,子弹受到的阻力为f ,子弹未从木块中射出,子弹和木块以共同的速度v 2在桌面上运动。子弹射入木块的深度为d ,求木块和子弹构成的系统动能的减少量。

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

高中物理竞赛讲义——微积分初步

高中物理竞赛讲义——微积分初步 一:引入 【例】问均匀带电的立方体角上一点的电势是中心的几 倍。 分析: ①根据对称性,可知立方体的八个角点电势相等;将原立 方体等分为八个等大的小立方体,原立方体的中心正位于个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即U 1=8U 2 ; ②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长a ;三立方体的形状; 根据点电荷的电势公式U=K Q r 及量纲知识,可猜想边长为a 的立方体角点电势为 U=CKQ a =Ck ρa 2 ;其中C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度;其中Q=ρa 3 ③ 大立方体的角点电势:U 0= Ck ρa 2 ;小立方体的角点电势:U 2= Ck ρ(a 2 )2=CK ρa 2 4 大立方体的中心点电势:U 1=8U 2=2 Ck ρa 2 ;即U 0=12 U 1 【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。 二:导数 ㈠ 物理量的变化率 我们经常对物理量函数关系的图像处理,比如v-t 图像,求其斜率可 以得出加速度a ,求其面积可以得出位移s ,而斜率和面积是几何意义上 的微积分。我们知道,过v-t 图像中某个点作出切线,其斜率即a= △v △t . 下面我们从代数上考察物理量的变化率: 【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t 2,试求其t 时刻的速度的表达式。(所有物理量都用国际制单位,以下同)

最新高中物理竞赛讲义(完整版)

最新高中物理竞赛讲义 (完整版) 目录 最新高中物理竞赛讲义(完整版) (1) 第0 部分绪言 (5) 一、高中物理奥赛概况 (5)

二、知识体系 (6) 第一部分力&物体的平衡 (7) 第一讲力的处理 (7) 第二讲物体的平衡 ............................. 1...0.. 第三讲习题课 ................................. 1..1... 第四讲摩擦角及其它........................... 1...7..第二部分牛顿运动定律 ............................ 2..2.. 第一讲牛顿三定律 ............................. 2...2.. 第二讲牛顿定律的应用 ......................... 2..3.. 第二讲配套例题选讲........................... 3...7..第三部分运动学 ................................. 3...7... 第一讲基本知识介绍 .......................... 3..7.. 第二讲运动的合成与分解、相对运动 ............. 4..0 第四部分曲线运动万有引力 ....................... 4...4. 第一讲基本知识介绍........................... 4...4.. 第二讲重要模型与专题 ......................... 4..7.. 第三讲典型例题解析............................. 5...9..第五部分动量和能量 ............................... 5...9.. 第一讲基本知识介绍............................. 5...9.. 第二讲重要模型与专题.......................... 6..3.. 第三讲典型例题解析............................. 8...3..第六部分振动和波 ................................. 8..3...

高中物理竞赛基础:电路化简

§2. 4、电路化简 2.4.1、 等效电源定理 实际的直流电源 可以看作电动势为 ε,内阻为零的恒压 源与内阻r 的串联, 如图2-4-1所示,这部分电路被称为电压源。 不论外电阻R 如何,总是提供不变电流的理想电源为恒流源。实际电源ε、r 对外电阻R 提供电流I 为 r R r r r R I +? =+=ε ε 其中r /ε 为电源短路电流0I ,因而实际电源可看作是一定的内阻与恒流并 联的电流源,如图2-4-2所示。 实际的电源既可看作电压源,又可看作电流源,电流源与电压源等效的条件是电流源中恒流源的电流等于电压源的短路电流。利用电压源与电流源的等效性可使某些电路的计算简化。 等效电压源定理又叫戴维宁定理,内容是:两端有源网络可等效于一个电压源,其电动势等于网络的开路电压,内 阻等于从网络两端看除电源以外网络的电阻。 如图2-4-3所示为两端有源网络A 与电阻R 的串联,网络A 可视为一电压源, 图2-4-1 图 2-4-2 图2-4-3 图2-4-4

等效电源电动势0ε等于a 、b 两点开路时端电压,等效内阻0r 等于网络中除去电动势的内阻,如图2-4-4所示。 等效电流源定理 又叫诺尔顿定理,内容是:两端有源网络可等效于一个电流源,电流源的0I 等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除电源外网络的电阻。 例4、如图2-4-5所示的电路中, Ω=Ω= Ω=Ω=Ω===0.194 ,5.43,0.101 ,0.12 ,5.01,0.12 ,0.31R R R R r r V V εε (1)试用等效电压源定理计算从电源()22r 、ε正极流出的电流2I ;(2)试用等效电流源定理计算从结点B 流向节点A 的电流1I 。 分析: 根据题意,在求通过2ε电源的电流时,可将ABCDE 部分电路等效为一个电压源,求解通过1R 的电流时,可将上下两个有源支路等效为一个电流源。 解: (1)设ABCDE 等效电压源电动势0ε,内阻0r ,如图2-4-6所示,由等效电压源定理,应有 V R R R r R 5.11321110=+++=εε ()Ω=+++++= 53 21132110R R R r R R r R r 电源00r 、ε与电源22r 、ε串联,故 A r R r I 02.02 400 22-=+++= εε A 2 图2-4-5 图2-4-6

高中物理竞赛讲义-圆周运动

圆周运动 一、匀速圆周运动 1、基本物理量 半径r 、线速度v 、角速度ω、周期T 、频率f 、转速n 、向心加速度a n 、向心力F n 2、物理量之间的关系 v r ω= 1 T f = n f = 222r v rf rn T πππ= == 222f n T πωππ=== 22 224==n n v F ma m m r m r r T πω== 例1、半径为R 的圆柱夹在互相平行的两板之间,两板分别以速 度v1,v2反向运动,圆柱与板无相对滑动。问圆柱上与板接触 的A 点的加速度是多少? 例2、如图一半径为R 的刚性圆环竖直地在刚性水平地面上作纯滚动, 圆环中心以不变的速度v o 在圆环平面内水平向前运动.求圆环圆心等高 的P 点的瞬时速度和加速度. 例3、缠在线轴上的线绕过滑轮B 后,以恒定速度v0被拉出, 如图所示,这时线轴沿水平面无滑动滚动。求线轴中心点 O 的 速度随线与水平方向的夹角 α 的变化关系。(线轴的内、外半径 分别为r 和R )

二、变速圆周运动 速率变化的圆周运动,加速度不再沿着半径方向。可以加速度分解为半径方向的向心加速度a n和切线方向的切向加速度a t。向心加速度a n改变速度方向,切向加速度a t改变速度大小。此时,角速度的大小也在变化,角速度变化的快慢叫做角加速度β。 = t dv d r dt dt a r ω β = 例4、如图所示,在离水面高度为h的岸边,有人用绳子拉船靠 岸,若人拉绳的速率恒为v 0,试求船在离岸边s距离处时的速度 和加速度。 例5、如图所示,直杆AB以匀速v0搁在半径为r的固定圆 环上做平动,试求图示位置时,杆与环的交点M的速度 和加速度。

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

相关主题
文本预览
相关文档 最新文档