高凝油开采工艺技术介绍(沈采)12.27
- 格式:ppt
- 大小:10.80 MB
- 文档页数:37
石油开采中的采油工艺技术石油是目前全球最重要的能源之一,而石油开采是获取这一宝贵资源的关键步骤。
在石油开采过程中,采油工艺技术起着至关重要的作用。
本文将重点探讨石油开采中的采油工艺技术,并在此基础上进行分析和讨论。
一、油井的建设油井是石油开采的首要设施,它旨在将地下的石油资源引至地面。
油井建设通常包括以下几个关键步骤:1. 地质勘探:通过地质勘探,确定石油资源的存在和分布情况,为油井建设提供依据。
2. 钻探井口:利用钻机将钻头钻入地下,直至达到目标层位,形成钻井井眼。
3. 封井固井:在钻探井眼中注入固井液,使油井壁面稳定,并阻止深层地下水和石油混合。
4. 安装套管:在钻探井眼中安装金属套管以加强井眼的稳定性,并保护井筒免受地下压力的影响。
二、常见的采油工艺技术1. 自然产油工艺技术自然产油工艺技术主要利用石油地下自行流动的特性进行采油。
这种技术适用于地下岩石孔隙连通性好、石油流动性较高的区域。
常见的自然产油工艺技术包括自然流动开发和气体驱油。
2. 人工增油工艺技术人工增油工艺技术通常用于地下岩石孔隙连通性较差、石油流动性较低的区域。
该工艺技术旨在改变地下石油流动规律,促进石油的开采。
常见的人工增油工艺技术包括水驱油、聚合物驱油、化学驱油和热采。
3. 水驱油工艺技术水驱油工艺技术利用注入水的方式,推动石油向井眼运移,从而增加采油量。
这种技术适用于地下岩石孔隙连通性好的油田。
实施水驱油工艺技术需要充分考虑水源的可行性和石油与水之间的相互作用。
4. 聚合物驱油工艺技术聚合物驱油工艺技术通过注入聚合物溶液,改变石油与地下岩石表面之间的相互作用力,增强石油在岩石孔隙中的流动性和驱替效应,提高采收率。
但该技术对聚合物的选择和注入量的控制有较高要求。
5. 化学驱油工艺技术化学驱油工艺技术是指通过注入化学剂,改变地下岩石与石油表面的相互作用力,并减小石油与地下岩石之间的黏附力,从而促进石油的流动和驱替。
化学驱油工艺技术需要针对不同的油藏条件,选择合适的化学剂。
高凝油捞油技术探究摘要:由于高凝油粘度大,流动性差,油藏的供油能力差,开采工艺复杂,开采效率低,为了最大限度地提高采收率,一些高凝油油田采用捞油技术。
关键词:高凝油捞油技术一、前言捞油技术作为一种成熟的采油工艺技术,它具有工艺简单、设备移动性好、成本低廉、效益好等特点,已经在国内各个油田得到广泛应用。
但是对于高凝油田,采用普通的捞油工艺技术,捞油工具在井筒内常出现卡阻和地面管线阻塞、罐车无法卸油现象。
对此,有些高凝油油田先后对捞油罐车、管线、井口、捞油工具等进行了改进,并在捞油的过程中配备了热洗车,优化了施工参数,从而实现了高凝油井捞油。
二、高凝油捞油技术1.井筒处理技术井筒处理的一般原理是:用一种热介质将液面上面凝固的原油熔化,并采取措施对井筒进行保温处理,保证捞油抽子能顺利下井,实现捞油作业。
通常采取下面几种方法:用热洗车向井筒内灌注热水加热、用电热棒给井筒内的原油加热使之熔化、化学加热法、连续油管车洗井加热。
2.捞油工艺技术技术原理:井筒处理后,尽快地下人带有加重杆的捞油抽子实施捞油作业;抽子上行时,抽子上部的套管刮蜡器可清除套管内壁未熔化的“死油”和蜡质,从而保证下次捞油时,抽子能顺利下人。
技术改进:捞油抽子在稀油井捞油时,就是简单的胶筒式捞油抽子,根据井筒尺寸的不同,选择合适的胶筒就可以实现捞油作业。
如井筒变形不严重,很少发生抽子遇卡的现象。
而在高凝油捞油过程中,由于井筒没有保温措施,离井口越近的地方,温度越低,越容易结蜡,甚至井壁上留有死油,因此捞油抽子离井口越近,越容易出现遇卡的现象,因此必须对原有的捞油抽子进行改进,使其能达到遇卡卸压。
长短不同的剪断块可保证在安全销剪断后能顺利实现泄油,两个销子配合可获得多种安全载荷,以满足不同井型的捞油需要。
加工各种型号的密封胶筒,根据套管的不同,φ178mm套管中应用φ156mm、φ158mm和4160mm型号的胶筒,以及在φ140mm套管中应用的φ124mm、φ125mm和φ126mm型号的胶筒。
稠油开采工艺技术及其应用的分析随着能源需求的不断增长和传统油田资源逐渐枯竭,对于稠油资源的开采和利用成为了石油行业的重要课题。
稠油是指粘度较高的原油,通常含有大量的沥青质和杂质,传统开采技术对其开采存在很大的难度。
研究并应用适合稠油开采的工艺技术成为了当前石油行业发展的重要方向。
本文将对稠油开采工艺技术及其应用进行分析,为完善稠油资源的开采提供参考。
一、稠油特性及开采难点稠油资源通常是指油井出口处原油的粘度在100厘波以上的原油,其具有以下特点:1. 高粘度:稠油的粘度远高于常规原油,这使得常规的采出工艺对其不适用。
2. 高密度:稠油的密度一般较大,采出后需要进行稀释才能满足运输和加工的需要。
3. 高凝点:稠油中的树脂、沥青等杂质含量较高,使得其凝固点较高,对于输送和处理造成了困难。
由于以上特性,稠油开采具有以下难点:1. 开采困难:由于粘度大、密度大等特性,传统的采出工艺对稠油的开采难度大,采油效率低。
2. 输送困难:稠油的输送难度大,需要借助特殊的热力设备或添加稀释剂。
3. 加工困难:稠油含有较多的杂质,对于提炼和加工设备要求高。
二、稠油开采工艺技术针对稠油的开采难点,石油行业逐渐形成了一系列针对稠油的开采工艺技术:1. 热采技术热采技术是指通过注入高温高压蒸汽或热介质,对稠油进行加热以降低其粘度,再通过泵功传播、压力差等将稠油推向地面。
热采技术有效克服了稠油高粘度的问题,提高了采油效率。
2. 溶剂辅助采油技术溶剂辅助采油技术是指通过注入溶剂,降低稠油的粘度以提高采油效率。
这种技术可以使用天然气、液体碳氢化合物等作为溶剂,有助于提高稠油的流动性。
3. 微生物驱油技术微生物驱油是指通过在稠油地层中注入适当的微生物,利用微生物的代谢活动改变地层中原油的理化性质,提高采油效率。
以上工艺技术主要是针对稠油的高粘度、高密度、高凝度等问题而设计的,在稠油开采中有着广泛的应用。
目前,稠油开采工艺技术在全球范围内得到了广泛的应用,其中主要是在以下领域:1. 加拿大稀油沙地区:加拿大稀油沙地区是世界上最为著名的稠油资源富集地之一,采用了大量的热采技术和溶剂辅助采油技术,取得了较好的开采效果。
油田机械采油工艺技术油田机械采油工艺技术是指使用机械设备将地下油藏中的石油提取至地面的技术。
油藏采油一般分为三个阶段,即初期开发阶段、高产期开采阶段和末期开采阶段。
不同阶段需要采用不同的采油工艺技术。
初期开发阶段初期开发阶段是指发掘一个新的油藏,在这个阶段需要采用勘探和钻探技术找到新的油藏。
然后开始进行油藏的开发和产油。
常用的工艺技术有:1. 钻井技术:使用钻机在地下钻井,通过引入钻头挖掘地下油藏。
对于比较深的油藏,需要使用深钻井技术。
2. 泥浆技术:钻井时需要使用泥浆来冷却和润滑钻头,同时也能把钻探过程中产生的岩屑带出井口。
不同的地层需要使用不同的泥浆。
3. 起下钻技术:完成一根钻井后,需要用起下钻机进行钻杆的拼接和拆卸,以及将管柱放入井中。
4. 固井技术:在钻进完毕后,需要对井眼进行固井处理以避免井口瓦斯爆炸和油气泄漏等安全问题。
在油藏开发初期,当油井升石油的产量不断上升时,油井生产也进入了高产期。
这个阶段需要采用一些高效的工艺技术,以提高生产效率。
1. 裂缝压裂技术:利用人工压裂机将压缩空气注入油井,产生内部压力,通过分离水和油,将处于压力的油迫出。
这种方法可以大幅度增加油藏的产出量。
2. 人工提高采油技术:根据油藏的特性,可以通过向井下注入高压水和化学物质等,改变原油的粘度和流动状态,提高油的采集效率。
3. 热采技术:利用热能源加热油藏,使原油的粘度降低,流动性增强,提高油的采集率。
随着时间的推进,油藏生产量逐渐下降,油井进入末期开采阶段。
这个阶段需要采用技术手段维持油井的开采率,并尽可能减少成本。
1. 油井加注技术:在油井注入薄发油液以维持油井的生产效率,保证油井能持续产出。
总之,不管是初期开发阶段、高产期开采阶段还是末期开采阶段,都需要选择合适的采油工艺技术,以提高效率、降低成本等,同时也要重视环保措施以减少对环境的影响。
稠油和高凝油开发技术发布:石油博客 | 发布时间: 2007年12月1日《加入石油杂志》1 常规地质评价技术通过精细油藏描述研究,建立了稠油、高凝油油藏的地质模型。
首先建立了地层模型、构造模型、沉积模型和储层模型,然后采用储层及其属性参数三维预测技术、油藏建模技术和数值模拟技术,以静态模型为基础,建立了预测模型。
该模型不仅利用了资料控制点的实测数据,而且保障控制点间的内插外推值的精确度,在一定范围内对无资料点具有预测能力。
针对高凝油主要在潜山储层富集的特点,对潜山储层油藏进行了精细描述,利用地层研究技术、构造及断裂系统研究技术、井点储层描述技术、储集岩空间分布预测技术、构造裂缝空间分布预测技术和裂缝性油藏储层建模技术等对潜山储层进行了研究,利用确定性建模或随机模拟的方法,根据实际的区域地质背景、构造发育特征、岩心资料、野外露头资料、测井及动态测试等资料建立了裂缝型储层三维属性模型。
2 蒸汽吞吐注汽参数优化技术根据地质特点,应用产量特征趋势分析法及数值模拟研究方法,对影响吞吐效果的注汽强度、注汽压力、注汽速度及焖井时间等参数进行了优化。
尤其是对高轮次吞吐注汽参数的优化,解决了吞吐进入高周期后油汽比低的问题。
对吞吐8 周期以上的近800 井次实施优化,平均单井周期可以节约注汽量200 m3 ,周期油汽比提高0105 。
3 蒸汽驱开发技术经过多年的研究与试验,基本上形成了适合辽河油区中深层稠油油藏的蒸汽驱技术,并通过曙12725块和齐40 块的蒸汽驱试验的应用而得到进一步的发展和完善。
4 分层和选层注汽技术针对多油组互层状油藏吸汽不均、油层纵向动用差的问题,广泛采用了分层注汽及调剖工艺技术,包括:(1) 封隔器分层、选层注汽技术用封隔器封堵高吸汽层,动用吸汽差层或不吸汽的油层。
相继又开发出滑套式分层、选层注汽技术,一次可实现两层分注或多层选注,有效地提高了油层动用程度。
(2) 机械投球选注技术堵塞高吸汽层射孔孔眼,实现选择性注汽。
石油开采工艺技术石油是世界上最重要的能源资源之一,其开采工艺技术的发展对于确保全球能源供应安全具有重要意义。
随着石油开采技术的不断进步,石油储量的探明率不断提高,开采效率也得到大幅提升。
石油开采工艺技术主要包括地质勘探、钻井、油井完井和油藏开发等几个方面。
首先,地质勘探技术是寻找和确认石油藏区的重要手段。
通过地震勘探、重力勘探、电磁勘探和地球化学勘探等方法,可以了解地下的油气分布情况、储量以及油藏性质,为采油工艺的合理设计提供依据。
钻井技术是获取地下油气的关键环节。
在钻井过程中,首先需要选择合适的钻井设备和钻头,根据油藏深度和性质选择合适的钻井液,确保钻井作业的顺利进行。
然后,通过控制钻井参数和钻井方法,如钻进速度、钻进方向以及钻孔直径等,确保钻井质量和效率。
在钻井过程中,还需要进行地层分析,及时掌握钻井过程中的地质情况,以便做出合理决策。
油井完井是为了实现从油藏到地面的油气流动,以便进行后续的油气开采。
油井完井过程中,首先需选择合适的完井管材和完井液,根据油藏特征和开采需求确定完井方案。
然后,在井筒内安装完井管以及完井道具,包括油井泥浆、油管、套管、封隔器和声纳等。
最后,通过油井压裂、人工举升或其他方法,将地下油气引导至地面。
油藏开发是为了从地下储层中获取尽可能多的石油资源。
油藏开发包括常规油藏开发和非常规油藏开发。
常规油藏开发主要是通过自然压力将原油推到地面,非常规油藏开发则是需要借助增产技术,例如水驱、气驱、聚合物驱和化学驱等,促进原油流出。
此外,还可以利用注水、注气和注入化学剂等方法,提高油井产能和延长油田的寿命。
总体来说,石油开采工艺技术的发展不断提高了石油储量的探明率和开采效率,并为全球能源供应安全做出了重要贡献。
随着科技的不断进步,相信未来的石油开采工艺技术将会更加高效和环保,为全球能源产业的发展提供可靠支持。
采油工艺技术体系采油工艺技术体系是指在石油开采过程中,应用一系列工艺和技术手段,进行油藏开发和油井生产的过程。
它包含了各种采油工艺和技术的组合,可以有效地提高油田开发的效率和产能。
首先,采油工艺技术体系的核心是确定合适的采油方法。
常见的采油方法包括自然流动采油、人工提升采油和辅助压力采油等。
根据不同油田的地质特征和油藏条件,选择最适合的采油方法,可以使油田的生产效益最大化。
在自然流动采油中,通过合理布置井口和采油井网,控制油井的产油率和控水率,以保持油井的稳定产能。
而在人工提升采油中,通过注水、注气、注聚等方式,提高油井的产油率,延长油井的寿命。
对于无法通过自然流动或人工提升来开采的重油、稠油等难采油藏,可以采用辅助压力采油方法,通过注水或注气增加油藏的驱替能力,提高采收率。
此外,采油工艺技术体系还包括油藏评价和勘探技术。
通过地质勘探和地质测试,确定油井的位置和开井方案。
而油藏评价则涉及到地质储量、储集层性质、油藏渗透率等参数的测定和计算,为后续的采油施工提供技术指导。
采油工艺技术体系还包括沉积岩物理、测井解释和油藏数值模拟等技术手段。
沉积岩物理可以通过实验室测试和数值模拟,研究岩石孔隙结构和流体流动规律,为油田的开发和管理提供科学依据。
测井解释则通过解读地层测井资料,确定储层性质和油藏的含油饱和度。
油藏数值模拟则可以模拟油藏的渗透性分布、油水分布和渗流规律,为油田开发提供方案和预测。
此外,采油工艺技术体系还包括井身钻完和完井工艺、人工枝状井施工技术以及井壁防塌、井壁固井和油管材料选用等。
井身钻完和完井工艺的目的是确保油井的完整性和稳定性,防止井壁塌方和井涌。
人工枝状井施工技术则可以增大油井的开采半径,提高油井的采油效果。
井壁防塌、井壁固井和油管材料选用则可以保证井壁的稳定和防止采油设备的损坏。
综上所述,采油工艺技术体系是一个综合性的体系,包含了很多方面的工艺和技术,旨在提高油田的开发效率和产能。
高凝稠油采油后期采油技术的探究高凝稠油作为油田企业开采过程中的工作难点,在开采过程中面对困难,与高凝稠油粘稠的特质存在联系。
因此,对高凝稠油进行降解较为重要。
本文探讨高凝稠油采油后期采油技术理论基础,提出采油车组配套设施及高凝稠油后期采集技术的实施方案,为高凝稠油开采提供帮助。
标签:高凝稠油;后期;采油技术针对目前的油田采油技术,我国部分油田在采油过程中依旧面对一定的困境,主要是发生石油开采质量不高及高凝油、稠油问题,此类问题的产生对后期采油工作具有直接影响。
因此,为提升油田产量,还需结合新型采油技术对现有采油方案进行调整,在获得应用点后降低高凝稠油的粘度,提升油田后期的开采率,但此项技术在当前形势下还需要进一步研究,明确具体的应用方法。
1.高凝稠油采油后期采油技术分型1.1 高凝稠油采油技术高凝稠油具有密度大的特征,油结构相对密集,难以有效分离,在油的流动过程中易发生流动缓慢或者粘連的情况,导致捞油过程较为困难,工具的作用无法有效发挥。
若依旧处于此条件展开工作,需及时将高凝稠油结构问题处理。
目前的油田开采技术,主要在高凝稠油油井中加入化学试剂或者对原油进行加热,通过以上两种方式对高凝稠油进行处理。
但加入化学添加剂方法存在一定的限制因素,在投入初期往往无法与原油结合,产生降低粘度的反应,在加入添加剂过程中,数量需要根据原油体积进行配置,投入添加剂并非降低高凝稠油的最佳方案。
在高凝稠油加热过程中,油温度持续升高,直接对原油进行加热方法有利于降低粘度,该方法见效快,费用支出相对理想,该方法在高凝稠油后期开采中的应用效率高。
1.2 油层升温处理技术油层升温处理方案所指是向油层传递热量,热量达到一定标准后,油层温度在介质传递温度下升高温度,原油具有流动性特点,温度达到固定标准后,流动性进一步提升,发生持续性的驱动力,油质粘度进一步降低,油层凝结问题得以解决。
此方案会降低开采设备的损耗,高凝稠油后期开采过程可顺利开展。
油田管理沈阳油田高凝油油泥调剖技术研究冷彪(中油辽河油田公司,辽宁新民110316)摘要:油泥调剖技术是一种油泥处理和利用并举的科学方法,它本着“来自地层,还于地层”的思路,由于含油污泥产于地层,与地层有良好的配伍性。
结合沈阳油田高凝油油泥的独特性,开展了高凝油油泥调剖技术研究与改进,通过创新开展油泥组分研究、油泥调剖配方体系研究以及油泥调剖工艺研究,实现了高凝油油泥深部调剖,改善吸水剖面,提高注入水波及体积以及驱油效率,成功探索沈阳油田高凝油油泥调剖技术在潜山裂缝性油藏增产的可行性,实现了对高凝油油泥资源的再利用,减少环境污染,实现变“废”为“宝”。
关键词:高凝油油泥;配方体系;调剖工艺油泥的处理不但成本较高且易造成环境污染,如何有效利用油泥,实现变“废”为“宝”显得尤为重要。
沈阳油田联合站产生的油泥除含有常规的浮渣等杂质外,还含有一定量的高凝油,成分复杂,流动性差,油品性质及沉降物成分具有独特性,需要开展油泥调剖技术研究与改进,实现高凝油油泥深部调剖,实现对高凝油油泥资源的再利用,减少环境污染,实现降本增效。
1油泥组分研究1.1含量分析取一定量的油泥样品,用油泥含油、含水及机质测定方法,测其样品各组分基本含量情况。
结果表明,沈阳油田泥质成分主要集中在中下部,含量占45%左右。
1.2粒径分析将油泥样品经脱油、脱水后分离出来的泥质组分,采COULTER激光粒度分析仪测其粒度分布情况,见表2。
实验结果表明,沈一联、沈二联和沈四联油泥样品粒径主要分布在5um 以下,占53.41-58.29%,沈三联油泥样品粒径相对较小,同时分布较为集中,粒径在5um以下的占到86.24%。
2调剖配方体系研究2.1油泥颗粒调剖剂该体系是以油泥为基本原料,加入不同粒径、不同浓度的固相颗粒和悬浮剂,在地层环境下体积膨胀1-2倍,产生桥架作用,对地层孔道进行封堵,从而改善地层非均质性,提高开发效果。
依据地层孔喉、注水压力、吸收能力等参数合理选择适当的粒径范围,达到堵而不死的目的。
稠油开采技术第一篇:稠油开采技术稠油开采技术如何降低成本,最大限度地把稠油、超稠油开采出来,是世界石油界面临的共同课题。
稠油由于粘度高,给开采、集输和加工带来很大困难,国内外学者做了大量研究工作来降低稠油的粘度。
我国稠油开采90%以上依靠蒸汽吞吐或蒸汽驱,采收率能达到30%左右。
深化热采稠油油藏井网优化调整和水平井整体开发的技术经济研究,配套全过程油层保护技术、水平井均匀注汽、热化学辅助吞吐、高效井筒降粘举升等工艺技术驱动,保障了热采稠油产量的持续增长。
目前提高稠油油藏产量的思路主要是降低稠油粘度、提高油藏渗透率、增大生产压差,主要成熟技术是注蒸汽热采、火烧油层、热水+化学吞吐、携砂冷采,等等。
1、热采技术注蒸汽热采的开采机理主要是通过加热降粘改善流变性,高温改善油相渗透率以及热膨胀作用、蒸汽(热水)动力驱油作用、溶解气驱作用。
关于稠油的蒸馏、热裂解和混相驱作用,原油和水的蒸汽压随温度升高而升高,当油、水总蒸汽压等于或高于系统压力时,混合物将沸腾,使原油中轻组分分离,即为蒸馏作用。
蒸馏作用引起混合液沸腾产生的扰动效应能使死孔隙中的原油向连通孔隙中转移,从而提高驱油效率。
高温水蒸气对稠油的重组分有热裂解作用,即产生分子量较小的烃类。
在蒸汽驱过程中,从稠油中馏出的烃馏分和热裂解产生的轻烃进入热水前沿温度较低的地带时,又重新冷凝并与油层中原始油混合将其稀释,降低了原始油的密度和粘度,形成了对原始油的混相驱。
注蒸汽热采的乳化驱作用同样很有意义,蒸汽驱过程中,蒸汽前沿的蒸馏馏分凝析后与水发生乳化作用,形成水包油或油包水乳化液,这种乳化液比水的粘度高得多。
在非均质储层中,这种高粘度的乳状液会降低蒸汽和热水的指进,提高驱油的波及体积。
热采井完井时的主要问题是,360℃高温蒸汽会导致套管发生断裂和损坏。
为此,采用特超稠油HDCS技术,将胶质、沥青质团状结构分解分散,形成以胶质沥青质为分散相、原油轻质组分为连续相的分散体系。