致密油藏非达西渗流流态响应与极限井距研究
- 格式:pdf
- 大小:1.33 MB
- 文档页数:7
《低渗透非均质油藏渗流特征及反问题研究》篇一一、引言在油气藏的勘探与开发中,低渗透非均质油藏的渗流特征研究具有重要地位。
这类油藏因其独特的物理性质和复杂的渗流行为,对提高采收率、优化开发策略和保障油田长期稳定生产具有重要意义。
本文旨在深入探讨低渗透非均质油藏的渗流特征,并对其反问题进行研究,为油田开发提供理论依据和指导。
二、低渗透非均质油藏的渗流特征1. 物理性质与分类低渗透非均质油藏通常指渗透率较低、孔隙度变化较大的油藏。
根据地质条件和物理性质的不同,可将其分为多种类型,如微裂缝型、致密砂岩型等。
不同类型的油藏在渗流特征上存在明显差异。
2. 渗流机制低渗透非均质油藏的渗流机制复杂,主要受控于岩石的微观结构、流体性质及外部条件。
在渗流过程中,存在启动压力梯度、非线性渗流等现象,导致流体在油藏中的流动行为与常规油藏存在显著差异。
3. 渗流特征表现低渗透非均质油藏的渗流特征主要表现为渗透率低、启动压力高、非线性流动明显等。
这些特征使得油藏开发过程中存在较大的挑战,如开发成本高、采收率低等。
因此,准确掌握渗流特征对优化开发策略至关重要。
三、反问题研究1. 反问题概述反问题研究主要指通过对已知的流体流动数据进行处理和分析,反推出油藏的物理性质和参数。
在低渗透非均质油藏的开发中,反问题研究对于提高采收率、优化开发策略具有重要意义。
2. 反问题研究方法(1)数值模拟法:通过建立数学模型,对实际流体流动数据进行模拟和计算,反推出油藏的物理性质和参数。
(2)统计法:通过对大量实际生产数据的统计和分析,得出油藏的物理性质和参数。
(3)地球物理测井法:利用地球物理测井技术,获取油藏的物理性质和参数信息。
3. 反问题研究应用通过反问题研究,可以更加准确地掌握低渗透非均质油藏的物理性质和参数,为优化开发策略提供依据。
例如,通过反推出的渗透率数据,可以优化注水策略和采收策略,提高采收率;通过反推出的启动压力梯度数据,可以更好地预测流体在油藏中的流动行为等。
《特低渗透油藏非线性渗流数值模拟研究及应用》篇一摘要:本文针对特低渗透油藏的非线性渗流问题,采用数值模拟方法进行研究。
首先,介绍了特低渗透油藏的特点及非线性渗流的重要性;其次,详细阐述了非线性渗流数学模型的建立与求解方法;最后,通过实际案例分析,探讨了该模型在特低渗透油藏开发中的应用及效果。
一、引言随着油气资源的不断开发,特低渗透油藏逐渐成为重要的开采对象。
由于特低渗透油藏的渗透率低、非均质性强等特点,导致其渗流过程具有显著的非线性特征。
因此,对特低渗透油藏的非线性渗流进行研究,对于提高采收率、优化开发方案具有重要意义。
二、特低渗透油藏特点与非线性渗流特低渗透油藏是指地下岩石渗透率极低,导致油、气、水在储层中的流动受到很大限制的油藏。
其非线性渗流主要表现为:随着压力梯度的变化,流体在多孔介质中的流动呈现出非线性关系。
这种非线性渗流导致传统线性渗流理论在特低渗透油藏中难以适用,需要进行深入的研究和探讨。
三、非线性渗流数学模型的建立与求解针对特低渗透油藏的非线性渗流问题,本文建立了相应的数学模型。
该模型考虑了多孔介质的非均质性、流体与岩石的相互作用等因素,通过引入非线性流动方程和边界条件,描述了流体在储层中的运动规律。
为了求解该模型,本文采用了数值计算方法,如有限差分法、有限元法等,并结合计算机编程技术,实现了模型的数值求解。
四、案例分析为了验证非线性渗流数学模型在特低渗透油藏开发中的应用效果,本文选取了某特低渗透油田作为研究对象。
首先,根据该油田的实际情况,建立了相应的地质模型和数值模型;其次,利用数值模拟方法对不同开发方案下的渗流过程进行模拟计算;最后,通过对比分析,得出了不同开发方案下的采收率、经济效益等指标。
结果表明,本文所建立的非线性渗流数学模型在特低渗透油藏开发中具有良好的应用效果。
通过模拟计算,可以得出不同开发方案下的最佳开采时机、开采量等关键参数,为实际生产提供了重要的决策依据。
同时,该模型还可以用于预测储层压力变化、剩余油分布等关键信息,为油田的后期开发和调整提供了有力的支持。
致密油藏与常规油藏物性界限研究方法探讨及其应用白玉彬;赵靖舟;叶小闯【摘要】对于致密油藏与常规油藏物性界限的判定以往主要基于对典型致密油盆地的大量实测物性统计资料,缺少理论的依据.以鄂尔多斯盆地延长组长7致密油为例,从致密油藏、常规油藏成藏机理与成藏特征出发,通过石油质点受力状态分析、流体渗流特征的物理模拟实验及现今致密和常规油藏油水分布特征,探讨储层致密上限参数.基于浮力和毛管阻力相等时的力学平衡法、真实砂岩石油充注物理模拟实验、现今致密油与常规油藏物性分布特征及高压压汞排驱压力与储层物性关系等4种方法相互印证,确定的储层致密上限参数基本一致,综合得出储层致密上限渗透率约1×10-3 μm2,对应孔隙度上限约12%.%The determination of the tight oil reservoir physical property limits is generally based on the statistics of a lot of physical property measurement data of typical tight oil basins,but this lacks of theoretical basis.Taking Chang 7 tight oil reservoir in Ordos Basin as an example,based on the formation mechanism and characteristics of tight oil and normal oil reservoirs,the physical property limits of tight oil reservoirs are discussed through the analysis of oil particle stress state,the simulation experiment of fluid seepage characteristics and the current oil-water distribution characteristic analysis of tight and conventional oil reservoirs.The physical property limits of tight oil reservoir determined based on the mechanical equilibrium method,the physical simulation experiment for petroleum injecting sandstone,the current physical property distribution of tight and conventional oil reservoirs and the relationship between high pressure mercury dischargepressure and reservoir physical property are basically consistent:the upper limit of tight oil reservoir permeability is about 1 × 10-3? m2,and the upper limit of the porosity is about 12%.【期刊名称】《西安石油大学学报(自然科学版)》【年(卷),期】2017(032)004【总页数】7页(P32-38)【关键词】物性界限;成藏特征;油藏类型;非达西渗流;致密砂岩;鄂尔多斯盆地【作者】白玉彬;赵靖舟;叶小闯【作者单位】西安石油大学地球科学与工程学院,陕西西安710065;西安石油大学陕西省油气成藏地质学重点实验室,陕西西安710065;西安石油大学地球科学与工程学院,陕西西安710065;西安石油大学陕西省油气成藏地质学重点实验室,陕西西安710065;中国石油长庆油田分公司第三采气厂,内蒙古乌审旗017300【正文语种】中文【中图分类】TE122.1白玉彬,赵靖舟,叶小闯.致密油藏与常规油藏物性界限研究方法探讨及其应用[J].西安石油大学学报(自然科学版),2017,32(4):32-38.BAI Yubin,ZHAO Jingzhou,YE Xiaochuang.Discussion and application of research method of physical property limits of tight oil reservoir and conventional reservoir [J].Journal of Xi'an Shiyou University (Natural Science Edition),2017,32(4):32-38.致密油藏指必须采用大型压裂改造等技术措施才能获得经济产量的烃源岩外油藏[1],致密油为非常规油气的重要类型之一,主要包括致密砂岩油和致密碳酸盐岩油2大类型[2-3]。
㊀㊀收稿日期:20220529;改回日期:20230603㊀㊀基金项目:中国石油 十四五 前瞻性基础性科技重大项目 鄂尔多斯盆地西缘海相页岩气资源潜力与富集分布规律研究 (2021DJ1904)㊀㊀作者简介:赵辉(1982 ),男,高级工程师,2004年毕业于北京石油化工学院过程装备与控制工程专业,现主要从事精细油藏描述方面的工作㊂DOI :10.3969/j.issn.1006-6535.2023.05.005致密砂岩油藏测井响应特征及有利区评价赵㊀辉,齐怀彦,王㊀凯,蔡㊀涛,孟利华,周㊀兵(中国石油长庆油田分公司,宁夏㊀银川㊀750000)摘要:针对姬塬油田K39井区砂岩油藏测井响应特征复杂多变㊁有效储层识别较为困难等问题,基于测井原理和数据,建立储层参数测井解释模型,明确研究区测井相模式,对孔隙度㊁含油饱和度㊁渗透率等测井响应特征参数进行聚类分析,建立了致密砂岩储层流动单元识别标准㊂应用该测井模型重新解释油层91m /8层,油水同层108m /13层,含油水层77m /7层,新增石油地质储量23.8ˑ104t ㊂应用致密砂岩储层流动单元识别标准,明确了有利区分布,其中,Ⅰ㊁Ⅱ类流动单元石油地质储量共计202.5ˑ104t ,在实际应用中效果较好㊂该研究成果丰富了鄂尔多斯盆地有效储层识别方法及有利区优选评价,对该地区致密油藏开发调整和井位部署具有参考价值㊂关键词:致密砂岩;测井响应特征;有利区评价;解释模型;鄂尔多斯盆地中图分类号:TE122.2㊀㊀文献标识码:A ㊀㊀文章编号:1006-6535(2023)05-0035-07Characteristics of Well Logging Response and Evaluation of Favorable Zones in Tight Sandstone ReservoirsZhao Hui ,Qi Huaiyan ,Wang Kai ,Cai Tao ,Meng Lihua ,Zhou Bing(PetroChina Changqing Oilfield Company ,Yinchuan ,Ningxia 750000,China )Abstract :To address the difficult problem of complex and variable well logging response characteristics of sandstonereservoirs in Well K39Area of Jiyuan Oilfield and the difficulty of identifying effective reservoirs ,the well loggingprinciples and methods were applied to analyze well logging interpretation models of effective reservoir parameters ,clarify well logging phase patterns in the study area ,innovate and carry out cluster analysis of well logging responsecharacteristics parameters such as porosity ,oil content saturation and permeability ,and establish four types of flowunit identification criteria for dense sandstone reservoirs.The study results show that in Well K39area ,the estab-lished well logging model is used to reinterpret 8oil layers ,totaling 91m ,13oil -water layers ,totaling 108m ,and 7water with oil layers ,totaling 77m ,releasing a total of 23.8ˑ104t of reserves ,which is effective in practical ap-plication ,and evaluating the favorable Class I and II flowing unit reserves of Jiyuan Oilfield totaling 202.5ˑ104t.The research results enrich the study of effective reservoir identification and favorable zone preference in Ordos Ba-sin ,and have reference value for development adjustment and well deployment of tight reservoir in Ordos Basin.Key words :tight sandstone ;well logging response ;favorable zone evaluation ;interpretation model ;Ordos Basin0㊀引㊀言致密砂岩具有微观孔喉结构复杂㊁孔隙度与渗透率极低的特征,测井响应复杂多变㊂鄂尔多斯盆地姬塬油田K39井区三叠系致密砂岩低阻油层与常规油水层并存,隔㊁夹层变化大,有效储层测井识别难度极大,亟需建立致密砂岩储层测井模型,开展测井响应特征精细研究[1-3],重建致密砂岩油藏测井响应特征识别标准,明确鄂尔多斯盆地K39井区油藏有效储层的潜力㊂徐德龙等[4-6]认为在致密砂岩储层评价中,常规电阻率测井㊁自然伽马测井等测井资料处理结果往往很难达到要求㊂目前应用核磁共振测井㊁测井二次识别等新技术与测井响应特征模型相结合的聚类分析方法,具有更强的针对性与更高的分辨率,可直接获取地下信息,在致密砂岩勘探开发评价中优势明显㊂致密砂岩㊀36㊀特种油气藏第30卷㊀低阻油层与常规砂岩油层相比测井响应识别难度更大,因此,应用聚类分析方法,以测井解释的渗透率㊁孔隙度等为主要因子开展致密储层测井模型及响应特征分析,建立流动单元划分标准,为K39井区致密砂岩油藏新一轮的调整开发提供可靠的有利区评价结果㊂该研究对鄂尔多斯盆地三叠系致密油藏开发调整以及后期规划部署具有重要意义㊂1㊀研究区概况姬塬油田区域构造位于陕北斜坡中段西部,构造平缓,为一宽缓西倾斜坡,构造平均坡度小于1ʎ,平均坡降为6~7m /km㊂该油田的K39井区发育一个完整背斜,共发育延长组长6㊁长7㊁长8㊁长9等多套地层,其中,该区长8 长9油层组为三角洲前缘分流河道沉积㊂受牵引流沉积作用影响,三角洲前缘分流河道发育沙纹层理㊁平行层理㊁波状层理㊁脉状层理㊁韵律层理,三角洲分流河道相多为致密遮挡,物性较差,砂岩十分致密㊂K39井区致密砂岩储层具有非均质性强㊁基质颗粒杂乱㊁孔喉结构复杂㊁渗透率极低的特征㊂该区致密砂岩储层岩性变化大,从长石砂岩演变到岩屑砂岩,具有较高含水饱和度以及较低可流动流体饱和度,且油水关系复杂,油水重力分异不明显㊂K39井区致密砂岩储层平均渗透率为0.27mD,平均孔隙度低于15.00%,属于低孔特低渗油藏㊂2㊀测井模型的建立及应用效果分析鄂尔多斯盆地晚三叠世延长组沉积早期,湖盆整体处于沉降阶段,湖盆快速下沉,研究区距物源较近,发育辫状河三角洲沉积体系㊂姬塬油田K39井区长8 长9油层组以三角洲前缘分流河道沉积为主,三角洲前缘水下分流河道发育,河口坝等其他微相不发育[7-9],多期河道叠置㊂通过岩心观察与测井响应的对比,形成研究区长8㊁长9油层组三角洲平原㊁三角洲前缘亚相各沉积微相的测井相模式:研究区水下分流河道微相测井曲线形态呈钟形及箱形;河口坝微相测井曲线呈漏斗状;分流间湾与前三角洲相似,测井曲线形态呈平缓齿化低值;多期次水下分流河道砂体叠置的测井曲线形态为箱形㊂2.1㊀孔隙模型的建立致密油藏的孔隙度㊁渗透率等参数复杂多变,因此,需要采用更加精细的测井解释模型进行有效识别和评价㊂按照矿物来源分类,来自地球上地幔及地壳深部矿物为第一成矿物质来源,如蒙脱石;来自硅铝层下部及有关部分矿物为第二成矿物质来源,其成矿物质主要来自硅铝㊂2种来源的成矿物质相关数据可以通过实验室测试得到㊂正确选择储层参数可以精确计算地层孔隙度㊂从储层岩性㊁物性㊁电性㊁含油性关系分析可知,致密砂岩储层声波㊁密度测井资料与孔隙度存在较好的对应关系㊂因此,在孔隙度分析计算时采用密度㊁声波测井曲线,可较准确地计算出孔隙度㊂建立测井响应方程组如下:ρb =ϕρf +V 1ρb1+V 2ρb2Φb =ϕΦbf +V 1Φb1+V 2Φb2Δt =ϕΔt f +V 1Δt 1+V 2Δt 2ϕ+V 1+V 2=1ìîíïïïïïï(1)式中:下标b 代表矿物,f 代表地层;ρb ㊁ρf ㊁ρb1㊁ρb2分别为矿物密度㊁地层密度㊁第一矿物地层密度㊁第二矿物地层密度,g /cm 3;Φb ㊁Φbf ㊁Φb1㊁Φb2分别为矿物中子测井值㊁地层矿物中子测井值㊁第一矿物中子测井值㊁第二矿物中子测井值,%;ϕ为地层孔隙度,%;V 1㊁V 2分别为第一矿物和第二矿物所占总矿物的体积分数,%;Δt ㊁Δt f ㊁Δt 1㊁Δt 2分别为矿物声波时差测井值㊁地层声波时差测井值㊁第一矿物声波时差测井值㊁第二矿物声波时差测井值,μs /m㊂2.2㊀饱和度模型参考经典的阿尔奇饱和度模型[10]:S wt =nadR w ϕm R t(2)式中:S wt 为含水饱和度,%;R t 为地层电阻率,Ω㊃m;R w 为地层水电阻率,Ω㊃m;m ㊁n ㊁a ㊁d 为与岩性及孔喉结构有关的岩电参数㊂2.3㊀渗透率模型在覆压的实验条件下,通过达西定律可以测得不同岩心的渗透率数据,在前文孔隙度计算模型基础上可绘制孔隙度与渗透率的关系曲线,如图1所示㊂由图1可拟合得到渗透率计算公式(3),由于姬塬地区长9储层的非均质性较强,拟合公式相对可靠㊂㊀第5期赵㊀辉等:致密砂岩油藏测井响应特征及有利区评价37㊀㊀K =0.0022e 0.491ϕ(3)式中:K 为渗透率,mD㊂图1㊀K39井区孔隙度与渗透率相关图Fig.1㊀The correlation of porosity andpermeability in the Well K39Area2.4㊀流体识别及测井响应特征致密砂岩储层与中高渗砂岩储层的测井响应存在较大差异,致密砂岩低阻油层与常规油水层并存[11-13],测井响应特征类似,难以区分㊂关于流体的测井识别方法较多,包括不同探测深度电阻率组合法㊁电阻率增大系数法㊁孔隙度-电阻率交会图法㊁三孔隙度测井重叠分析法㊁可动油气分析法㊁视地层水电阻率综合分析法等常规测井方法㊂不同的流体识别方法存在一定的局限性,要准确识别储层中流体特征必须组合各种方法及邻井测井资料㊁试油资料来综合考虑㊂致密砂岩低阻油层测井响应特征(图2):自然伽马值为60API,自然电位幅度差在30图2㊀K39井区油水识别图版Fig.2㊀The oil and water identification plate of Well K39Area较为明显,在9Ω㊃m 左右,深中感应差异明显;声波时差值为72μs /m;孔隙度在15%以上,含水饱和度在55%以下㊂在测井响应的基础上,建立了以孔隙度㊁含水饱和度㊁电阻率㊁自然伽马㊁声波时差等参数为界限的K39井区的油水识别标准(表1):油层孔隙度大于15.00%,含水饱和度小于55%,电阻率大于9Ω㊃m 等㊂并采用孔隙度㊁含水饱和度㊁电阻率等指标的交会识别图版(图2)来识别油水层㊂K39井区完钻井数较少,油水识别标准采用孔隙度与含水饱和度交会及孔隙度与电阻率的交会识别后,完成全区测井二次解释,共解释油层8层,累计厚度为91m;解释油水同层13层,累计厚度为108m;解释含油水层7层,累计厚度为77m㊂表1㊀K39井区长8—长9油层组油水层识别标准㊀38㊀特种油气藏第30卷㊀3㊀有利目标区评价在测井解释模型准确建立及应用效果较好的前提下,开展K39井区有利区评价㊂超低渗透油藏储层地质特征复杂,单井产量低,开采风险大,如何提高单井产量和增产稳产是该类油藏开发的瓶颈问题[14-16]㊂为此,客观描述和评价超低渗油藏有利区是认识储层的有效手段,通过对流动单元的合理划分,可以进一步认识油藏的特征㊂有利区评价原则如下:①选取参数具有合理性;②选取尽可能全面刻画流动单元的静㊁动态开发参数;③选取的参数易于求取和统计分析㊂3.1㊀流动单元划分聚类统计是以统计学为原理,因此,聚类分析又称为聚类统计分析㊂聚类分析方法应用于流动单元划分时,其核心是在相似原则的基础上,选择对致密储层流动单元划分有较大影响的相关参数进行统计分析㊂对于K39井区长8 长9油层组流动单元的划分,选取渗透率㊁孔隙度㊁泥质含量及含水饱和度等作为聚类分析的输入参数(300个样本),应用聚类分析方法,将流动单元划分为4类(表2)㊂Ⅰ类流动单元主要分布于河道叠置部位,平均渗透率为2.16mD,平均孔隙度为12.56%,平均泥质含量为10.97%,平均含水饱和度为49.77%;Ⅱ类流动单元主要分布于在河道内部,平均渗透率为0.79mD,平均孔隙度为9.82%,平均泥质含量为12.79%,平均含水饱和度为55.94%;Ⅲ类流动单元主要分布于河道边缘和各种坝体内,平均渗透率为0.42mD,平均孔隙度为8.29%,平均泥质含量为13.09%,平均含水饱和度为55.18%;Ⅳ类流动单元主要分布于分流间湾等内部,平均渗透率为0.17mD,平均孔隙度为7.49%,平均泥质含量为14.72%,平均含水饱和度为53.37%㊂在K39井区长8 长9油层组流动单元聚类分析的基础上完成对全区流动单元划分㊂表2㊀K39井区不同流动单元划分标准3.2㊀平面有利区评价利用聚类分析方法对整个姬塬油田流动单元进行划分,Ⅰ类和Ⅱ类流动单元主要发育于长9油层组,Ⅱ类和Ⅲ类流动单元主要发育于长8油层组,由于2个油层组中的每一小层在垂向上都可能存在多个流动单元,因此,根据流动单元的厚度,将每一小层单独划分为4类流动单元㊂姬塬油田长8油层组主要以Ⅱ类流动单元为主,厚度为1~2m,断续分布,Ⅲ类和Ⅳ类流动单元为辅,厚度以1m 以下为主,分布于三角洲前缘分流河道沉积微相中㊂长9油层组I 类流动单元厚度2~4m,主要以2m 以下为主,呈透镜状零星分布;Ⅱ类流动单元主要分布于叠置河道微相中,Ⅲ类和Ⅳ类流动单元分布于河道和河口坝微相中,呈透镜状,且厚度很薄㊂姬塬油田长9油层组剩余油也主要集中在Ⅰ㊁Ⅱ类流动单元,其中,有利的Ⅰ㊁Ⅱ类流动单元储量共计202.5ˑ104t,是鄂尔多斯盆地三叠系致密油藏图3㊀姬塬油田长9油层有利区分布Fig.3㊀The distribution of favorablezones for the Chang9oil layer in Jiyuan Oilfield3.3㊀纵向有利区评价选取渗透率㊁孔隙度㊁泥质含量等参数,采用聚㊀第5期赵㊀辉等:致密砂岩油藏测井响应特征及有利区评价39㊀㊀类分析方法对K39井区长8 长9油层组进行单井垂向流动单元划分(图4)㊂该划分标准综合考虑了研究区复杂的地质情况,能更准确地反映长类可以看出,沉积类型㊁储层物性及流动单元的垂向分布具有复杂性[17-18],同一沉积微相下可划分出多个类型的流动单元㊂由图4可知:长8油层组物性差㊁非均质性严Ia M31746-98-图4㊀K39井区长8—长9油层组流动单元柱状图Fig.4㊀The histogram of flowing units of the Chang8to Chang9oil layer group in the Well K39Area重㊁微观孔隙结构复杂,以Ⅱ类和Ⅲ类流动单元为主;长9油层组物性好,非均质性中等,微观孔隙结构较好,以Ⅰ类和Ⅱ类流动单元为主;Ⅲ类和Ⅳ类流动单元比例较小,只占19%㊂K39区以较好的Ⅰ类和Ⅱ类流动单元为主,厚度适中,连续性较好㊂4㊀应用效果二次测井解释成果表明,姬塬地区含油饱和度有所增加,储层的含油性提高㊂以M104-101井为例(图5),原测井解释结论为油水同层,现解释结论为油层,试油结论分析表明,目前日产油为16t /d,不产水㊂结合周围油水井生产状况,择优实施4口井采取补孔措施(表3),均取得较好生产效果,表明所建测井解释模型比较可靠㊂原测井解释为油水同层的4口井,整体都属于没有新开发潜力的单井,经过流动单元评价后,该区域整体评价为属于Ⅰ类和Ⅱ类流动单元且油层较厚区域,共新增探明石油储量23.8ˑ104t,经过开发验证,区块日产量保持在480t /d,开发效果较好,表明流动单元评价直观有效㊂利用聚类分析方法对整个姬塬油田流动单元进行划分,经过流动单元整体分类评价后,目前姬塬油田K39井区评价结果为高产井的有利区域集中分布在姬塬油田K39井区东南方向,该区域整体㊀40㊀特种油气藏第30卷㊀图5㊀姬塬地区测井二次解释结果及补孔位置Fig.5㊀The secondary interpretation results of well logging in Jiyuan Area and the location of perforations adding表3㊀姬塬地区二次解释结果对比属于Ⅰ类和Ⅱ类流动单元且油层较厚,一般为10~25m㊂有利区8口见效井平均单井日产油为3.60t /d,产能提高了近10倍,平均动液面为1606m,高于区块平均动液面(1760m),均取得较好开发效果(表4)㊂该区域纵向上长9储层见效井多,见效井日产液量高㊁日产油量高,根据油井见效过程中产液量㊁产油量和含水率变化情况进行调整,保持油井整体上日产油量上升,含水率稳定㊂表4㊀K39井区油井见效前后结果对比Table 4㊀The comparison of results before and 5㊀结㊀论(1)K39井区致密砂岩储层共分为4类流动单元,以较好的Ⅰ类和Ⅱ类流动单元为主,厚度适中,连续性较好,具有较好的勘探开发潜力㊂(2)K39井区经过所建油层㊁油水同层㊁含水油层识别标准,总结识别标准解释油层8层,共计91m,油水同层13层,共计108m,含油水层7层,共计77m,新增探明储量23.8ˑ104t,取得较好的效果㊂(3)运用聚类分析方法将研究区划分出4类流动单元,Ⅰ类和Ⅱ类优质流动单元在长9发育,Ⅱ类和Ⅲ类流动单元在长8发育㊂其中,长9油层组纵向上和平面上都以较好的Ⅰ和Ⅱ类流动单元为主,其中有利的Ⅰ㊁Ⅱ类流动单元储量共计202.5ˑ104t,是鄂尔多斯盆地三叠系致密油藏未来有力的资源接替区域㊂参考文献:[1]余涛,王年明,田文涛,等.基于常规测井的致密储层弹性参数预测[J].断块油气田,2019,26(1):48-52.YU Tao,WANG Nianming,TIAN Wentao,et al.Prediction of e-lastic parameters of tight reservoirs based on conventional logs [J].Fault -Block Oil &Gas Field,2019,26(1):48-52.[2]王瑞,朱筱敏,王礼常.用数据挖掘方法识别碳酸盐岩岩性[J].测井技术,2012,36(2):197-201.WANG Rui,ZHU Xiaomin,WANG ing data mining toidentify carbonate lithology[J].Well Logging Technology,2012,36(2):197-201.[3]周海超,付广,王艳,等.测井资料交会图法在碎屑岩岩性识别中的应用 以十屋断陷为例[J].大庆石油地质与开发,2019,28(1):136-138.ZHOU Haichao,FU Guang,WANG Yan,et al.Application of thecrossplot method of well logging data in the lithology recognition ofclastic rock:taking Shiwu Fault Depression as example[J].Petro-leum Geology &Oilfield Development in Daqing,2019,28(1):㊀第5期赵㊀辉等:致密砂岩油藏测井响应特征及有利区评价41㊀㊀136-138.[4]徐德龙,李涛,黄宝华,等.利用交会图法识别国外M 油田岩性与流体类型的研究[J].地球物理学进展,2012,27(3):1123-1132.XU Delong,LI Tao,HUANG Baohua,et al.Research on the iden-tification of the lithology and fluid type of foreign M Oilfield by u-sing the crossplot method [J].Progress in Geophysics,2012,27(3):1123-1132.[5]王继平,张城玮,李建阳,等.苏里格气田致密砂岩气藏开发认识与稳产建议[J].天然气工业,2021,41(2):100-110.WANG Jiping,ZHANG Chengwei,LI Jianyang,et al.Tight sand-stone gas reservoirs in the Sulige Gasfield:development under-standings and stable -production proposals[J].Natural Gas Indus-try,2021,41(2):100-110.[6]杨双定,赵建武,唐文江,等.低孔隙度㊁低渗透率储层气层识别新方法[J].测井技术,2005,29(1):43-45.YANG Shuangding,ZHAO Jianwu,TANG Wenjiang,et al.Newmethod to identify gas zones in low porosity and permeability res-ervoir[J].Well Logging Technology,2005,29(1):43-45.[7]段长江,高计县,王凯芸,等.神府地区太1段沉积特征及对气藏的控制作用[J].石油地质与工程,2021,35(3):19-24.DUAN Changjiang,GAO Jixian,WANG Kaiyun,et al.Sedimentary characteristics of Tai 1Member and its control effect on gas reservoirs in Shenfu Area[J].Petroleum Geology &Engineering,2021,35(3):19-24.[8]康东雅,向芳,邹佐元,等.鄂尔多斯盆地上古生界砂岩岩石学特征及岩性差异[J].断块油气田,2019,26(3):299-303.KANG Dongya,XIANG Fang,ZOU Zuoyuan,et al.Petrologicalcharacteristics and lithological differences of Upper Paleozoic sandstone of Ordos Basin [J].Fault -Block Oil &Gas Field,2019,26(3):299-303.[9]杨华,付金华,刘新社,等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J].石油勘探与开发,2012,39(3):295-303.YANG Hua,FU Jinhua,LIU Xinshe,et al.Accumulation condi-tions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J].Petroleum Exploration and De-velopment,2012,39(3):295-303.[10]王贵文,郭荣坤.测井地质学[M].北京:石油工业出版社,2000:200-214.WANG Guiwen,GUO Rongkun.Well logging geology [M].Bei-jing:Petroleum Industry Press,2000:200-214.[11]陈刚,丁超,徐黎明,等.鄂尔多斯盆地东缘紫金山侵入岩热演化史与隆升过程分析[J].地球物理学报,2012,55(11):3731-3741.CHEN Gang,DING Chao,XU Liming,et al.Analysis on the ther-mal history and uplift process of Zijinshan intrusive complex in the eastern Ordos Basin [J ].Chinese Journal of Geophysics,2012,55(11):3731-3741.[12]REINHART E G,BLENKINSOP J,PARTERSON R T.Assessmentof a Sr isotope vital effect in marine taxa from Lee Stocking Island,Bahamas[J].Geo -Marine Letters,1998,18(3):241-246.[13]姜烨,李宝芳,王绍昌.鄂尔多斯陆表海层序地层中的低位域沉积 以太原组上段桥头砂岩为例[J].现代地质,2001,15(4):425-430.JIANG Ye,LI Baofang,WANG Shaochang.Low stand system tractsandstone in the sequence of Epicontinental sea in Ordos:a case of Qiaotou sandstone of upper Taiyuan Formation [J].Geosci-ence,2001,15(4):425-430.[14]伏海蛟,汤达祯,许浩,等.致密砂岩储层特征及气藏成藏过程[J].断块油气田,2012,19(1):47-50.FU Haijiao,TANG Dazhen,XU Hao,et al.Characteristics of tightsandstone reservoir and accumulation process of gas pool [J].Fault -Block Oil &Gas Field,2012,19(1):47-50.[15]罗东明,谭学群,游瑜春,等.沉积环境复杂地区地层划分对比方法 以鄂尔多斯盆地大牛地气田为例[J].石油与天然气地质,2008,29(1):38-44.LUO Dongming,TAN Xuequn,YOU Yuchun,et al.Stratigraphicdivision and correlation in areas with complicated sedimentary en-vironment:a case study of Daniudi Gas Field in the Ordos Basin [J].Oil &Gas Geology,2008,29(1):38-44.[16]贾承造,邹才能,李建忠,等.中国致密油评价标准㊁主要类型㊁基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment cri-teria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-350.[17]沈玉林,郭英海,李壮福,等.鄂尔多斯盆地东缘本溪组-太原组层序地层特征[J].地球学报,2009,30(2):187-193.SHEN Yulin,GUO Yinghai,LI Zhuangfu,et al.Sequence stratig-raphy of Benxi -Taiyuan Formation in eastern Ordos Basin [J].Acta Geoscientia Sinica,2009,30(2):187-193.[18]喻建,杨亚娟,杜金良.鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征[J].石油勘探与开发,2010,37(2):181-187.YU Jian,YANG Yajuan,DU Jinliang.Sedimentation during the transgression period in Late Triassic Yanchang Formation,Ordos Basin [J ].Petroleum Exploration and Development,2010,37(2):181-187.编辑㊀王㊀琳。
《低渗透非均质油藏渗流特征及反问题研究》篇一一、引言在油气藏的勘探与开发中,低渗透非均质油藏的渗流特性对于有效开发具有重要影响。
这类油藏因其内部复杂的孔隙结构、非均质性和低渗透性,使得其渗流规律与常规油藏存在显著差异。
本文旨在研究低渗透非均质油藏的渗流特征,并对其反问题进行研究,以期为实际开发提供理论依据和指导。
二、低渗透非均质油藏的渗流特征1. 孔隙结构特征低渗透非均质油藏的孔隙结构复杂,孔喉大小不一,连通性差。
这种结构特点导致流体在油藏中的流动受到阻碍,表现为低渗透性。
2. 渗流规律由于孔隙结构的复杂性,低渗透非均质油藏的渗流规律表现出非达西流特征。
在低压差下,流体流动表现出较强的非线性特征,随着压力差的增大,渗流逐渐接近达西流。
3. 影响因素影响低渗透非均质油藏渗流特性的因素包括:岩石类型、孔隙结构、流体性质、温度和压力等。
这些因素的综合作用决定了油藏的渗流特性。
三、反问题研究反问题研究主要是指利用实际生产数据,反推油藏的参数和性质。
在低渗透非均质油藏中,反问题研究对于优化开发策略、提高采收率具有重要意义。
1. 反问题模型的建立根据实际生产数据,建立油藏的反问题模型。
该模型应综合考虑地质、工程和经济等多方面因素,以实现最优化目标。
2. 参数反演利用反问题模型,对油藏的渗透性、孔隙度、饱和度等参数进行反演。
通过不断优化算法和模型,提高参数反演的精度和可靠性。
3. 优化开发策略根据反问题研究结果,对低渗透非均质油藏的开发策略进行优化。
通过调整井网密度、注入参数、采收策略等,实现最佳的经济效益和采收率。
四、实例分析以某低渗透非均质油藏为例,通过实际应用本文所述的反问题研究方法,分析其渗流特征和开发策略。
通过对比优化前后的开发效果,验证反问题研究的可行性和有效性。
五、结论通过对低渗透非均质油藏的渗流特征及反问题研究,我们得到了以下结论:1. 低渗透非均质油藏的渗流特性复杂,受多种因素影响。
在实际开发中,应充分考虑这些因素,制定合理的开发策略。
《低渗-致密油藏分段压裂水平井补充能量研究》篇一低渗-致密油藏分段压裂水平井补充能量研究一、引言在油气开发过程中,低渗和致密油藏因其特殊的储层特性,常常面临开发难度大、采收率低等问题。
为了有效开发这类油藏,分段压裂水平井技术应运而生。
本文将探讨如何通过分段压裂水平井的方式为低渗/致密油藏补充能量,旨在为油气田开发提供新的技术方法和理论依据。
二、低渗/致密油藏的特殊性低渗/致密油藏指的是具有低渗透率和致密结构的储层。
其特性主要表现在储层物性差、油品黏度高、流动性差、采收率低等方面。
这些特性使得传统的垂直井开发方式难以有效开发这类油藏,因此需要寻求新的技术手段。
三、分段压裂水平井技术概述分段压裂水平井技术是一种针对低渗/致密油藏的开采技术。
该技术通过在水平井段进行分段压裂,形成多条裂缝,扩大储层的接触面积,从而提高采收率。
该技术具有以下优点:一是能够显著提高油藏的开采效率;二是可以降低开发成本;三是能够适应各种复杂的储层条件。
四、分段压裂水平井的补充能量机制为低渗/致密油藏采用分段压裂水平井技术进行补充能量的机制主要包括以下几个方面:1. 扩大储层接触面积:通过分段压裂形成多条裂缝,增加储层与井筒的接触面积,提高储层的开发效率。
2. 降低流体流动阻力:裂缝的形成降低了流体在储层中的流动阻力,提高了油气的采收率。
3. 补充地层能量:通过分段压裂,可以沟通更多的地层能量,使油气藏保持较高的压力,有利于油气的开采。
五、研究方法与实验结果本研究采用数值模拟和实验室模拟相结合的方法,对低渗/致密油藏分段压裂水平井的补充能量效果进行研究。
数值模拟主要关注分段压裂过程中裂缝的形成与扩展、流体的流动规律等方面;实验室模拟则通过模拟实际油藏条件下的实验,验证数值模拟结果的准确性。
实验结果表明,采用分段压裂水平井技术能够有效提高低渗/致密油藏的采收率,并显著降低开发成本。
六、结论与展望本研究表明,低渗/致密油藏采用分段压裂水平井技术进行补充能量是可行的,且具有显著的效果。
《火山岩油藏水平井开采渗流理论与应用研究》篇一一、引言火山岩油藏作为一种重要油气资源,具有复杂的孔隙结构和高渗透率的特点。
在油田开发中,水平井技术已经成为火山岩油藏开发的关键技术之一。
而其成功与否关键在于理解并运用火山岩油藏的渗流理论。
本文将对火山岩油藏水平井开采的渗流理论进行研究,旨在深入探讨其机理和影响因素,并为实际应用提供理论基础。
二、火山岩油藏特征火山岩油藏的独特地质特性是其复杂性和开发难度的关键所在。
首先,火山岩具有高孔隙度和高渗透率的特点,导致油藏内流体的运动具有极强的非均质性和动态变化性。
其次,火山岩中多含裂隙和气孔,使得其内部流体的流动规律与常规油藏有所不同。
这些特性使得火山岩油藏的开采过程具有极大的挑战性。
三、水平井开采渗流理论水平井技术是火山岩油藏开发的重要手段,其成功与否与渗流理论的应用密不可分。
火山岩油藏的水平井开采过程中,涉及到的渗流理论包括水平井筒的流态、岩石物理参数的描述以及地下流体动态模型等。
在流体通过井筒时,我们需要关注层流、湍流和混流等多种流态对生产的影响,并根据不同的岩石物理参数和流体性质,建立合理的渗流模型。
四、火山岩油藏水平井开采的影响因素火山岩油藏水平井开采的效果受多种因素影响。
首先,地应力对渗流具有显著影响,地应力的变化会导致岩石的变形和破裂,从而改变油藏的渗透性。
其次,岩石的物理性质如孔隙度、渗透率等也会对渗流产生重要影响。
此外,地下流体动态模型和水平井筒的流态也是影响开采效果的重要因素。
在实际生产中,我们还需要考虑诸如设备技术、工作制度以及经济效益等实际问题。
五、火山岩油藏水平井开采的优化策略针对火山岩油藏的特点和开采过程中遇到的难题,我们可以从多个方面进行优化。
首先,我们可以通过精确的地质调查和储层评价来更准确地描述火山岩的物理参数和流体性质。
其次,优化水平井的布局和轨迹,以提高井筒的穿透能力和覆盖范围。
此外,根据地应力和岩石物理参数的变化,调整地下流体动态模型,使之更加符合实际情况。
致密砂岩气藏渗流机理研究现状及展望杨朝蓬;高树生;刘广道;熊伟;胡志明;叶礼友;杨发荣【摘要】致密砂岩气藏渗流机理是开发致密气的理论基础.通过对致密砂岩气藏渗流机理研究进展进行调研,总结了目前致密气渗流机理的研究现状.并对苏里格致密砂岩气田的岩样进行应力敏感性实验研究.结合目前低渗砂岩气藏的研究现状,提出了致密砂岩气藏渗流机理研究的展望.致密气的有效应力表达式、压裂气井的高速非达西渗流、含水致密气藏的启动压力梯度和水膜厚度对气藏开采的影响,致密气的储层物性分析是今后研究的方向.%The percolation mechanism of tight gas reservoir is the basic theory of development. The research status of tight gas reservoir was surveyed. The stress sensitivity of core samples in Sulige gas field was studied through experiment. In the meantime, the progress of percolation mechanism of tight gas reservoir was presented associated with the research status of the low permeability gas reservoir. The expression of effective stress of the tight gas reservoir, the non-darcy seepage flow of the fractured gas well, the threshold pressure gradient, the water film thickness and the petrophysical analysis of the tight gas reservoir need are will studied in future.【期刊名称】《科学技术与工程》【年(卷),期】2012(012)032【总页数】8页(P8606-8613)【关键词】致密砂岩气藏;有效应力;滑脱效应;高速非达西;启动压力梯度;水膜厚度【作者】杨朝蓬;高树生;刘广道;熊伟;胡志明;叶礼友;杨发荣【作者单位】中国科学院渗流流体力学研究所,廊坊065007;中国科学院渗流流体力学研究所,廊坊065007;中国石油勘探开发研究院廊坊分院,廊坊065007;大庆钻探钻井四公司,松原138000;中国科学院渗流流体力学研究所,廊坊065007;中国石油勘探开发研究院廊坊分院,廊坊065007;中国科学院渗流流体力学研究所,廊坊065007;中国石油勘探开发研究院廊坊分院,廊坊065007;中国科学院渗流流体力学研究所,廊坊065007;中国石油勘探开发研究院廊坊分院,廊坊065007;大港油田勘探开发研究院实验中心,天津300280【正文语种】中文【中图分类】TE372伴随着全球对油气资源需求的持续增长以及油气勘探开发的不断深入,致密气作为具有较大资源潜力的非常规油气受到了各个国家和石油公司的越来越多的重视。
四川盆地公山庙油田中侏罗统沙溪庙组一段致密油藏流体渗流特征周克明;袁小玲;刘婷芝;余华洁;缪海燕;张琳羚;王艳;何家欢;肖红林;宋林珂;张容【期刊名称】《天然气勘探与开发》【年(卷),期】2024(47)1【摘要】针对致密油藏岩石孔隙结构复杂、流体渗流阻力大、油气产量低、开发效益较差等问题,以四川盆地中部地区(简称“川中地区”)公山庙油田中侏罗统沙溪庙组一段低渗透、特低渗透致密砂岩油藏为例,在储层岩石润湿性实验基础上,开展了流体低速渗流实验、恒速水驱油实验和自发渗吸实验等多项研究。
研究结果表明:①川中地区公山庙油田沙一段致密油藏的储层岩石总体上呈弱亲水性特征,在完全饱和地层水条件下的水相渗流曲线为一条直线,且经过坐标原点,地层水单相渗流符合达西定律且不存在启动压力或启动压力梯度。
②在通过油驱水建立束缚水饱和度的条件下,岩石孔隙表面吸附的水膜降低了油相渗流通道,两相渗流存在贾敏效应,增加了油相渗流的附加阻力。
油相低速渗流曲线不过坐标原点,存在启动压力或启动压力梯度;储层岩石的渗透率越低,启动压力或启动压力梯度越大。
③驱替速度和岩石渗透率对水驱油效果有较大影响,在较高的驱替速度下,注入水在大孔道中发生指进和沿裂缝发生水窜是造成水驱油效率降低的主要原因。
④岩石渗透率对渗吸驱油效果有显著影响,且裂缝样品的渗吸驱油效率大于基质样品的渗吸驱油效率。
⑤对致密油藏实施大规模压裂改造,所形成的高渗透缝网可有效降低流体渗流的启动压力或启动压力梯度,再辅以单井吞吐(水油渗吸交换)的开采方式,这种组合是保证致密油藏长期稳产的重要技术措施。
研究成果对致密油藏以及页岩油的开发具有重要的借鉴意义。
【总页数】10页(P73-82)【作者】周克明;袁小玲;刘婷芝;余华洁;缪海燕;张琳羚;王艳;何家欢;肖红林;宋林珂;张容【作者单位】中国石油西南油气田公司勘探开发研究院;中国石油西南油气田公司致密油气勘探开发项目部;中国石油川庆钻探工程有限公司地质勘探开发研究院【正文语种】中文【中图分类】TE3【相关文献】1.川中公山庙油田中侏罗统沙溪庙组一段储层特征及控制因素2.新场气田中侏罗统沙溪庙组一段的储集特征3.隐蔽河道砂体地震识别关键技术——以四川盆地中江气田中侏罗统沙溪庙组为例4.“双源”控制的窄河道致密砂岩气富集高产模式——以四川盆地金秋气田中侏罗统沙溪庙组为例因版权原因,仅展示原文概要,查看原文内容请购买。
低渗透油藏非达西渗流数值模拟研究X常铁龙,张 允(中国石油化工份有限公司石油勘探开发研究院,北京 100083) 摘 要:低渗透油藏中存在启动压力梯度,采用达西渗流已经无法准确描述油藏中流体的流动,为此提出了低渗透油藏启动压力梯度数学表征方法,建立了考虑启动压力梯度非线性渗流模型以及相应的数学数值模型,在现有数值模拟软件的基础上编制了非线性渗流数值模拟插件,并将其应用到油田模型中,计算表明,初步模拟结果与现场实际数据基本吻合,验证了方法的正确性。
关键词:低渗透油藏;非达西渗流;启动压力梯度;油藏数值模拟 中图分类号:T E348 文献标识码:A 文章编号:1006—7981(2012)02—0001—02 低渗透油藏开发已成为中石化乃至全球石油资源产量接替的重要组成部分,其流体流动为非线性渗流,早在1924年前苏联学者布兹列夫斯基就指出在某些情况下,多孔介质中只有超过某个起始压力梯度时才能发生液体的渗流,后来很多学者研究证明了低渗透油藏中存在启动压力梯度并开展了相关研究工作[1-3],研究认为低渗透油藏孔径很小,原油边界层的影响显著,宏观表现出来的启动压力梯度就很明显。
而目前的低渗透油藏开发理论与技术还不完善,在数值模拟时仍然忽略了启动压力梯度的影响,因此用现有的数值模拟软件进行模拟将无法反映非达西流的特征,使计算结果有较大的偏差,不能有效地指导实际生产,为此开展了非线性渗流数值模拟理论与应用研究。
1 低渗透油藏非达西渗流描述方法在低渗透油藏中,达西定律已不能满足对低渗透油藏渗流规律的精确描述,需要进行修正。
目前很多学者[4-8]对低渗透油藏的非线性渗流描述方法进行了研究并提出了自己的模型,归纳起来包括:图1 低渗透油藏非线性渗流特征曲线幂律关系,精确,模型用统一的函数对渗流曲线进行描述,克服了常规连续模型不能描述渗流存在最小启动压力梯度的问题,但数学处理困难;分段模型将渗流曲线分为非线性段和线性段,并用不同的函数进行拟合,但在应用过程中需要对临界点进行判断,应用难度较大。
一、低渗致密油藏概述在我国低渗透油藏是指基质渗透率小于0.1mD的油藏。
而致密油藏一般是指在各种类型致密储集层中形成的石油,与石油岩层系的关系主要有吸附、共生或者游离等。
除此之外,致密油藏处于地层中,流动性较差,不能依据常规技术进行勘察和开发。
所以低渗致密油藏的基本概念为处于碳酸盐岩、致密砂岩或是致密灰岩中,且基质渗透率低于0.1mD的油藏。
低渗致密油藏的致密油一般集中在致密储集空间中,该空间多由各种微孔隙构成,同时这些微孔隙的微观形态和连通性影响着致密油的分布及储存状态。
与常规油藏相比低渗致密油藏的孔隙度小于0.1,同时单井产能低,不具备自然工业产能,所以开采方式主要是水平钻井、多段水力压裂等技术。
二、渗流理论与常规油田相比,低渗致密油藏的储层物性以及流体性质差异极大,所以决定着二者间的渗流机理与渗流规律大不相同,这种不同一般体现在低速非线性渗流中。
从渗流机理层面来说,低渗致密油藏的储层渗透率低于常规油藏,这是由其内部结构和环境决定的。
低渗致密油藏内部环境复杂且孔喉狭窄,使得石油经过的通道口径十分细微,所以在流动时液固界面互作用力以及渗流阻力较大。
从渗流规律层面上出发,低渗透多孔介质物性的参数由上覆有效应力控制,从因此低渗致密油藏的渗流规律会出现低速非线性渗流现象,与达西定律不相符。
根据上述分析,低渗致密油藏狭窄的孔喉直径使得该类油藏脆性矿物体积分数高于4/5,因此在开采时储集层很容易被压裂,同时与天然裂缝沟通形成网缝,所以自然产能较低。
在对低渗致密油藏的开采方式进行研究时,经验和理论来源多为低渗--超低渗透油藏,这是因为二者之间在开发时都会损失大量的地层能量。
经过借鉴同时结合大量的实际开采经验,目前我国开采低渗致密油藏时为扩大渗流面积,基本上使用的开发模式为水平多段压裂、体积压裂以及水汽注入补充地层能量等,可以大规模且高效地动用地质储量。
根据理论计算表明,水平井体积压裂前期产量可以大于10倍的直井单井产量,因此是最有效的开采手段。
低渗油藏非线性渗流影响因素与工艺对策摘要:近年来低渗透油气藏已成为增储的基础资源,然而低渗透油藏的非线性渗流的影响因素、渗流规律的研究是目前低渗油藏的开发的关键。
本文从微观角度出发描述渗流规律,建立数学模型,同时根据低渗油藏渗流特征,对注水时机、合理井距、压裂技术、气驱技术等低渗油藏的开发技术政策进行了研究。
关键词:低渗;渗透率;渗流规律;注水;压裂前言由于低渗透油藏的特异性,使得低渗油藏的开发具有一定的难度,许多专家和研究人员对低渗的渗流机理和开发做了大量的实验和实际研究。
油藏岩石和流体的物性参数是油藏开发研究的基础,对于低渗油藏具有物性复杂、渗流规律异常的特点,且低渗油气藏的开发没有同一固定的标准,可靠性得不到保证,且大量低渗油藏开发的疑难问题尚未解决。
本文通过调研总结了油藏渗流特性,结合开发实际,提出了一系列技术方案。
1低渗油气藏非线性渗流的影响因素1.1 孔隙喉道狭窄、物性差。
连续液流通过岩石孔隙喉道时由于低渗透层喉道半径很小,毛管力急剧增大,当驱动压力不足以抵消毛管力效应时,连续的液流变为分散的液滴导致渗流阻力的增大,降低渗透率。
在低渗流速度下,渗流曲线呈现非线性关系,随着渗流速度的提高,曲线的非线性关系段向线性段过渡。
这种同一液体在不同多孔介质中表现出不同的渗流特征,充分地说明了多孔介质的孔隙结构特征起着决定作用。
1.2各相间的表面性质与作用。
在任何一个不可混相的二相体系中,相间都存在着界面。
界面张力是源于分子间的相互作用力,并构成界面两相的性质差异。
利用毛细管模型和单分子层作用模型,推导固液界面分子力作用与多孔介质的渗透率和孔隙半径的近似关系式表明,固液界面分子力作用随多孔介质的渗透率或孔隙半径增大而单调递减。
1.3有效压应力对岩石产生的影响。
低渗透岩石孔隙系统大部分是由小孔道组成的,比表面大,孔道内的边界层流体影响很大,在受到较大的应力情况下,渗流的孔道变小,最小的孔道失去流通能力,有效应力对低渗透砂岩的非达西渗流产生较大影响。
第 46 卷第 5 期 中南大学学报(自然科学版) Vol.46 No.5 2015 年 5 月 Journal of Central South University (Science and Technology) May2015 DOI: 10.11817/j.issn.16727207.2015.05.022
致密油藏非达西渗流流态响应与极限井距研究
任龙 1 ,苏玉亮 1 ,赵广渊 2 (1. 中国石油大学(华东) 石油工程学院,山东 青岛,266580; 2. 中海油田服务股份有限公司,天津 塘沽,300452)
摘要:基于实际岩心流动实验,利用典型非线性渗流数学模型,对致密油藏非达西渗流流态响应和极限注采井距 进行研究,并结合实例,计算不同渗透率级别下采油井的极限布井轨迹,揭示注采井间压力及压力梯度分布特征。 研究结果表明:致密油藏单相流体渗流可分为不流动区域、非线性渗流区域和拟线性渗流区域3个渗流流态响应 区域;考虑压裂时,不同渗透率级别下采油井的极限布井轨迹相似(一条直线和一段 1/4 圆弧组成);随着距水井 距离的增加,注采井间压力及压力梯度分布的3条近似直线段依次对应注水井附近的径向流、裂缝附近的拟径向 流和裂缝内的线性流3种渗流流态,且渗透率越小,最小启动压力梯度越明显,注水井与裂缝端点之间的压力损 失越严重。 关键词:致密油藏;非达西渗流;流态;极限井距 中图分类号:TE348 文献标志码:A 文章编号:1672−7207(2015)05−1732−07
NonDarcy flow pattern response and critical well spacing in tight oil reservoirs
REN Long 1 , SU Yuliang 1 , ZHAO Guangyuan 2 (1. School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao 266580, China; 2.China National Offshore Oil Corporation (CNOOC)Oilfield Service Limited, Tianjin 300452, China)
Abstract: Based on the experiment results of actual cores and the typical nonlinear flow mathematical model, the nonDarcy flow pattern response and critical well spacing in tight oil reservoirs were investigated. Based on a case, the critical well spacing in different permeability reservoirs was calculated, which reveals the pressure and gradient pressure distributing regularity between injection well and production well. The results indicate that during the singlephase flow in tight oil reservoir, there are three flow pattern response regions: a nonflow area, a nonlinear flow area and a quasilinear flow area. For fractured well, the track of production well about the injection well (i.e.,a line and a quarter of a circle)is similar. As further away from the injection well, three pressure or gradientpressuredistribution lines can show three flow patterns: radical flow near the injection well, pseudo radical flow around the fracture and linear flow in the fracture. The tighter reservoir is, the greater minimum startup pressure gradient will be, and the more pressure loss between injection well and the tip point of fracture. Key words:tight oil reservoirs; nonDarcy flows; flow pattern; critical well spacing
收稿日期:2014−05−26;修回日期:2014−08−20 基金项目(Foundation item): 国家科技重大专项(2011ZX05051); 长江学者和创新团队发展计划项目(IRT1294) (Project(2011ZX05051) supported bythe National Science and Technology Major Project; Project(IRT1294) supported by the Program for Changjiang Scholars and Innovative Research Team in University) 通信作者:任龙,博士研究生,从事油气渗流理论与应用方面的研究;Email: dragon_rmb@163.com第 5 期 任龙,等:致密油藏非达西渗流流态响应与极限井距研究 1733 致密储层的物性界限一般定义为地面空气渗透率 小于 1.0×10 −3 μm 2 、地下覆压渗透率小于 0.1×10 −3 μm 2 [1] 。致密油藏具有与常规油藏不同的地质特征, 主要表现为储层致密、资源丰度低和物性差等 [2−4] ,普 遍存在压力异常及改造后初期产量高、递减快和生产 周期较长等特点。流体在致密储层多孔介质流动过程 中,由于流体流动状态、多孔介质的结构以及两者之 间的相互作用等影响,流体的流动不再符合线性达西 公式,表现为流动存在启动压力梯度,在流速−压差 关系图上存在明显的非线性段,而这个非线性流动段 对油藏中各点的流态分布和开发指标的计算具有重要 影响 [5−8] 。目前,描述低渗油藏渗流规律的模型大多为 拟线性模型,即引入拟启动压力梯度的概念,利用不 同渗透率与拟启动压力梯度的关系,对低渗透油藏中 的流态分布进行研究。吕成远等 [9] 通过二次函数曲线 描述了岩心渗透率和启动压力梯度的变化,并根据最 小驱替压力梯度和最大驱替压力梯度绘制了流态判定 应用图版;王端平等 [10] 根据渗流流量方程和流速方 程,结合室内实验和现场资料,提出了技术极限井距 计算公式;燕良东等 [5] 利用非线性数学模型,从理论 上给出了低渗透油藏中流态分布的计算方法,指出了 流体在低渗透油藏中以特低速度流动时压力分布的特 点;卢丽等 [11] 运用达西径向渗流模型、一维条带状渗 流模型和拟线性渗流模型相结合的方法,求解了注采 压力分布;王胜华等 [12] 以低渗透油藏渗流规律的连续 数学模型为基础,分析了低渗透油藏压裂后注采井间 的渗流特点、压力及压力梯度变化规律。上述研究主 要针对低渗透油藏存在非线性渗流现象,分析了拟启 动压力梯度对注采井距的影响,但对致密油藏非线性 渗流流态研究较少,没有考虑到不同启动压力梯度对 渗流流态及注采井距的影响。为此,本文作者在前人 研究的基础上,基于典型非线性渗流数学模型,通过 致密油藏实际岩心流动实验,对岩心渗透率与 3 种启 动压力梯度进行了拟合,研究了致密油藏非达西渗流 流态响应及极限注采井距,并结合实例计算,分析了 不同渗透率级别下以注水井为中心、考虑压裂的采油 井的极限布井轨迹,揭示了注采井间压力及压力梯度 分布特征。 1 非达西渗流数学模型 致密油藏由于储层微孔隙结构复杂,油气水赖以 流动的通道非常细微,渗流阻力很大,流体在渗流过 程中受到的固壁作用影响较大,渗流规律已经不再符 合经典达西定律,形成低速非线性渗流,其重要特征 就是渗流过程中存在着启动压力梯度。流体在致密油 藏中的流动最本质也是最明显的一点,就是其流动规 律不再符合经典的渗流规律——Darcy 定律, “流速− 压差”曲线表现为 1条曲线段和1 条不过原点的拟直 线段的组合 [13−16] 。 典型非达西渗流规律曲线如图 1所示,其渗流数 学方程为: OA不流动阶段, v=0 (1) AD非达西渗流阶段,
2 012 () vApApA =Ñ+×Ñ+ (2)
DE达西渗流阶段,vkpb =×Ñ+ (3) 式中: v为渗流速度, cm/s; p Ñ 为压力梯度, MPa/cm; A0,A1,A2,k和b为拟合系数。式(1)~(3)为各渗流阶 段的渗流速度与压力梯度的变化关系式。A,B和C 3 个点的驱替压力梯度分别对应最小启动压力梯度 Gmin(GA)、拟启动压力梯度G 拟 (GB)和最大启动压力梯 度Gmax(GC),其中,最小启动压力梯度Gmin 和拟启动 压力梯度G 拟 分别可由式(2)和(3)求得。
图1 典型非达西渗流规律曲线 Fig. 1 Typical nonDarcy flow law curve
在非达西渗流阶段,渗流速度为0 cm/s时对应的 驱替压力梯度为最小启动压力梯度Gmin,即式(2)的正 根:
min 2 1102
0
4 2 AAAA G A -+-×
= (4)
通常定义拟启动压力梯度 Gf 为线性段反向延长 线与驱替压力梯度坐标轴的交点,即
f b G k =- (5)