横向稳定杆设计计算
- 格式:pdf
- 大小:100.77 KB
- 文档页数:4
重型汽车稳定杆的计算和分析陈太荣;杨佳睿【摘要】横向稳定杆是汽车悬架的重要部件,稳定杆刚度的设计以及在前后悬架上的分配,对整车操纵稳定性能具有重要影响.本文针对某款牵引车横向稳定杆进行了刚度的设计和匹配,同时对稳定杆连接装置进行了有限元分析和试验验证,确保了结构的可靠性.【期刊名称】《汽车实用技术》【年(卷),期】2015(000)011【总页数】3页(P70-72)【关键词】横向稳定杆;侧倾角刚度;有限元分析【作者】陈太荣;杨佳睿【作者单位】南京徐工汽车制造有限公司,江苏南京210021;南京徐工汽车制造有限公司,江苏南京210021【正文语种】中文【中图分类】U461.7前言横向稳定杆在保证汽车行驶平顺性的前提下,能提高悬架的侧倾角刚度,减小汽车在不平路况或转弯时车身的侧倾角。
合理的调整前后悬架侧倾角刚度比值,能使车辆具有一定不足转向特性,提高整车操纵稳定性。
对于重型汽车,前后桥轴荷以及轮胎侧偏刚度相差大,前后桥横向稳定杆的刚度以及侧倾角刚度的分配过程比较复杂,它由整车的操纵稳定性和车身的受力情况两种因素决定的。
在稳定杆的设计过程中,可以从这两方面出发,推算出前后悬架的总侧倾角刚度及其在前后桥上的分配,进而求得前后桥稳定杆的侧倾角刚度;再结合整车布置的要求,进行横向稳定杆的结构设计。
本文针对某款牵引车进行横向稳定杆的刚度设计和匹配,以期对相关设计提供参考和帮助。
1 、稳定杆刚度的计算和匹配为了提高车辆行驶平顺性,板簧刚度一般适当降低,这会降低车辆侧倾稳定性,给车辆增加稳定杆可以解决这一矛盾。
商用车侧倾稳定性的一般要求是,车辆在0.4g的侧向加速度下,整车侧倾角小于6°。
车辆侧倾角和悬架侧倾角刚度可以用下式表示[1]:式中,φr为车辆侧倾角;Mφ为整车侧倾力矩,对于非独立悬架,该力矩包括由重力和离心力引起的力矩;Fs为车身离心力;h为簧载质心距离侧倾轴线的距离;Σk为总侧倾角刚度;kf为前悬侧倾角刚度;kr为后悬侧倾角刚度;kw为稳定杆侧倾角刚度;kφ为非独立悬架的侧倾角刚度;kl为一侧悬架的线刚度;B为板簧安装距;kwf为前稳定杆侧倾角刚度;kwr为后稳顶杆侧倾角刚度。
FSAE赛车瓦特连杆横向稳定杆设计与优化徐小康;张代胜;谭继锦【摘要】针对FSAE赛场上普遍使用的瓦特连杆式稳定杆(又称Z-bar),根据汽车侧倾特性进行横向稳定杆的设计和优化.基于瓦特连杆横向稳定的工作原理,计算了赛车侧倾角刚度及横向稳定杆刚度,分析了瓦特连杆结构以及受力情况,进行了尺寸设计及强度校核.通过ANSYS进行结构分析优化,并建立了ADAMS动力学模型,通过动力学仿真,说明了瓦特连杆对悬架参数变化的影响.【期刊名称】《农业装备与车辆工程》【年(卷),期】2019(057)002【总页数】5页(P72-75,80)【关键词】FSAE赛车;瓦特连杆;横向稳定杆;ANSYS分析;ADAMS仿真【作者】徐小康;张代胜;谭继锦【作者单位】230009 安徽省合肥市合肥工业大学汽车与交通工程学院;230009 安徽省合肥市合肥工业大学汽车与交通工程学院;230009 安徽省合肥市合肥工业大学汽车与交通工程学院【正文语种】中文【中图分类】U469.6+90 引言FSAE赛事从2011年进入中国,到现在已经成功举办了7届,参赛车队对整车操纵稳定性的要求越来越高,各车队对底盘悬架系统的设计日益娴熟,不仅要求满足最基本的功能,对整车的行驶平顺性以及操纵稳定性都有着很高的要求。
悬架的侧倾特性对整车的操纵稳定性有很大的影响,悬架侧倾中心、侧倾角刚度及其在前后轴的分配也是影响汽车转向时侧倾角大小的主要因素。
在汽车设计中,为了获得较低的固有频率以及良好的行驶平顺性,悬架一般设计得较软,故需要设计安装横向稳定杆以提高侧倾刚度[1]。
瓦特连杆早在18世纪就被发明出来,欧宝的工程师发现瓦特连杆在一定条件下能够提高汽车平顺性,瓦特连杆还可以应用到方程式赛车悬架的横向稳定杆设计中。
本文主要是以某电动方程式赛车为模型进行瓦特连杆横向稳定杆的设计,主要对整车的侧倾刚度以及横向稳定杆所能提供的扭转刚度进行杆件材料的选择、结构尺寸的设计、杆件的受力分析、稳定杆加载情况的应力与位移的计算,从而完成Z形横向稳定杆的尺寸设计与优化。
各种支撑压杆临界载荷的通用公式:()2cr 2EI P L πμ=此公式出自《机械设计手册》第四篇第219页,以下简称4—219。
式中:E ——材料的弹性模量 钢为210 GPa (4—55) I ——横截面对形心主惯性轴的惯性距单位cm 4可查样本得L ——压杆的计算长度 单位 cm μ——与支撑条件有关的长度系数。
一段自由,一端固定 μ=2.0 一段铰支,一端固定 μ=0.7 两端固定 μ=0.5 两端铰支 μ=1.0 计算: 第一步i 为截面的惯性半径i =I ——横截面对形心主惯性轴的惯性距单位cm 4可查样本得A ——横截面面积单位cm 2 可查样本得 第二步 λ为柔度L ——支撑压杆长度 单位cm μ——与支撑条件有关的长度系数。
第三步判断 λ>λp (细长杆)—— ——发生弹性屈曲λs <λ<λp (中长杆)—发生弹塑性屈曲 λ<λs (粗短杆)—不发生屈曲,而发生屈服λ=临界力计算细长杆E —————— A3钢为210 GPa 计算时,带入公式210×109Paδcr ——————— 临界应力 单位 MPa λ———————对应的柔度中长杆 δcr = a-b λ MPa 例:A3钢(Q235钢)a=304MPa b=1.12MPa λp =105 λs =61.6粗短杆 δcr =δsA3钢(Q235钢) δs=235MPa 第四步2cr 2Eπδλ=压杆的稳定校核:两种方法(1) 安全系数法MPa MPaP 为工作条件下所受力 单位kN (1吨=9.8kn )【n 】st 钢 1.8····3.0铸铁 5.0····5.5 木材 2.8····3.2 详见《机械设计手册》 4——225所有公式,数据均出自《机械手机手册》 4——219到4——228 惯性半径越大,柔度越小,承载能力越强。
安徽工程大学 ANHUI POLYTECHNIC UNIVERSITY课程设计(论文)设计课程题目:皮卡车悬架设计学生学号: 3092114330学生姓名:胡凯俊专业班级: 车辆2093班学院名称: 机电学院指导教师:时培成2012年9月10日摘要汽车悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。
典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。
弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。
汽车悬架性能是影响汽车行驶平顺性、操纵稳定性和行驶速度的重要因素。
因此,研究汽车振动,设计新型悬架系统,将振动控制到最低水平是提高现代汽车质量的重要措施。
关键词:弹性元件、钢板弹簧、缓冲块、麦弗逊独立悬架、导向机构、减震器、横向稳定杆ABSTRACTAutomotive vehicle suspension frame and axle or the wheel of all transmission between the general term for connecting devices, and its role is to transfer the role at the wheel and frame and between the torsional force, and uneven pavement from the buffer Biography to the frame or body of the impact, and the attenuation caused by vibration, to ensure the vehicle can travel smoothly. A typical structure of a flexible suspension components, shock absorbers and other agencies, as well as orientation of the individual block structure is also a buffer, such as horizontal Stabilizer. Elastic components and leaf springs, air springs, coil spring, as well as the form of torsion bar spring, and the use of many modern cars suspension coil spring and torsion bar springs, individual car use advanced air springs. Suspension performance is the impact of motor vehicles to motor cars and ride comfort, handling and stability and an important factor in speed. Therefore, the research vehicle vibration, the design of the new suspension system to the minimum level of vibration control is to improve the quality of Hyundai Motor important measures.Key words:Elastic element、Leaf Spring、Block buff、Macpherson strut suspension、Guide mechanism、Shock absorber、Sway bar目录第1章绪论1.1皮卡车悬架概述 (6)1.2悬架的功用 (7)1.3悬架的组成 (7)1.4悬架的垂直弹性特性 (8)1.5悬架的分类 (8)1.6 辅助元件 (12)1.7皮卡悬架的要求和方案选定 (14)第2章麦弗逊独立悬架的设计和计算2.1悬架的总体布置方案 (15)2.2相关参数的计算 (16)2.3减震器的选型与设计 (22)2.4弹簧限位缓冲块的设计 (26)2.5横向稳定杆的设计计算 (27)2.6传力构件及导向机构 (28)第3章钢板弹簧非独立悬架的设计和计算3.1 钢板弹簧主要元件结构选取 (29)3.2钢板弹簧设计的已知数 (34)3.3钢板弹簧具体计算 (34)3.4缓冲块的选择 (43)3.5减震器的选择设计 (43)参考文献 (47)第1章绪论1.1皮卡车悬架概述皮卡汽车是汽车市场细分后的产物,它的主要使用者是一些非主流人群,所以皮卡汽车行驶的道路也有其特殊性,从城市道路到山区小道,无所不包,所以对皮卡车的悬架也提出了很高的适应性的要求。
67mm,k=94°。
上式中,E为材料的弹性模量,;
稳定杆的截面惯性矩,;d为稳定杆的直径;
为端点的垂直位移。
可计算得该前横向稳定杆刚度为
有限元模拟分析
在ANSYS软件中,提取前横向稳定杆的支反力,如图
4所示。
两端点支反力分别为3397.6N、-3397.6N,由此可计
算其线刚度,K=30.97/mm,数值计算其刚度值为30.6N/mm,
数值理论计算结果相对比差距较小。
根据经验可取前横向
稳定杆刚度值为K=31N/mm。
图1前横向稳定杆示意图
图2前横向稳定杆应力计算示意图
图3横向稳定杆的应力云图
3应力分析
前横向稳定杆端部危险点A的应力计算,可简单的
认为只受弯曲作用,因此A点截面危险点的相当应力
为:
代入数值计算得A点应力值为713MPa。
前横向稳定杆固定点B也可能出现最大应力点,通
max
该截面最大剪切应力τ
应用变形能强度理论求弯扭的合成应力,
的相当应力为:
代入数值计算得B点应力值为650MPa。
前横向稳定杆危险点C的应力计算,考虑到稳定杆中部只有扭转作用,所以在CD段D点位置求出垂直于平。
可认为C点截面只受
点截面危险点的相当应力为:
代入数值计算得B点应力值为860MPa
综合对比A、B和C三点的应力值,发现
C点区域为弯曲部分,在疲劳寿命计算中需考虑稳定求斜线段方程,在N=106
据前横向稳定杆的S-N曲线,
将C点危险截面应力值代入上述方程,可得前横向
图4横向稳定杆支反力参数
图5材料和零件的S-N曲线。
车辆横向稳定杆总成性能分析与设计作者:文/ 刘艳菊来源:《时代汽车》 2020年第18期刘艳菊奇瑞汽车有限公司安徽省芜湖市 241009摘要:车辆的横向稳定杆对车身的侧倾控制起很大的作用,一个好的稳定杆设计,能最大程度的发挥它的效能、减轻它的重量及成本。
本论文基于ADAMS软件,采用广义非线形梁模型,通过分析稳定杆总成对悬架垂直刚度的贡献,来研究影响横向稳定杆性能的各种因素极其影响程度,从而达到指导稳定杆最优化设计的目的。
关键词:横向稳定杆非线形梁模型悬架优化设计垂直刚度Performance Analysis and Design of Vehicle Transverse Stabilizer Bar AssemblyLiu YanjuAbstract:The vehicle's lateral stabilizer bar plays a very important role in the roll control of the body. A good stabilizer bar design can maximize its effectiveness and reduce its weight and cost. This thesis is based on ADAMSsoftware and uses a generalized nonlinear beam model. By analyzing the contribution of the stabilizer bar assembly to the vertical stiffness of the suspension, various factors that affect the performance of the stabilizer bar and the degree ofinfluence are studied, so as to guide the optimal design of the stabilizer bar the goal of.Key words: transverse stabilizer bar, non-linear beam model, suspension, optimal design, vertical stiffness1 绪论稳定杆的主要作用,一是用来增加悬架侧倾角刚度,减小整车侧倾角度,改善车辆的侧向稳定性,增加乘员安全感;二是匹配前后悬架侧倾刚度的比值,调整车辆的转向特性;此外,在有些悬架系统中,横向稳定杆还兼起部分导向杆系的作用。
为了降低汽车的固有振动频率以改善行驶平顺性,现代轿车悬架的垂直刚度值都较小,从而使汽车的侧倾角刚度值也很小,结果使汽车转弯时车身侧倾严重,影响了汽车的行驶稳定性。
为此,现代汽车大多都装有横向稳定杆来加大悬架的侧倾角刚度以改善汽车的行驶稳定性。
横向稳定杆在独立悬架中的典型安装方式如图4-39所示。
当左右车轮同向等幅跳动时,横向稳定杆不起作用;当左右车轮有垂向的相对位移时,稳定杆受扭,发挥弹性元件的作用。
横向稳定杆带来的好处除了可增加悬架的侧倾角刚度,从而减小汽车转向时车身的侧倾角外,如前所述,恰当地选择前、后悬架的侧倾角刚度比值,也有助于使汽车获得所需要的不足转向特性。
通常,在汽车的前、后悬架中都装有横向稳定杆,或者只在前悬架中安装。
若只在后悬架中安装,则会使汽车趋于过多转向。
横向稳定杆带来的不利因素有:当汽车在坑洼不平的路面行驶时,左右轮之间有垂向相对位移,由于横向稳定杆的作用,增加了车轮处的垂向刚度,会影响汽车的行驶平顺性。
在有些悬架中,横向稳定杆还兼起部分导向杆系的作用,其余情况下则在设计时应当注意避免与悬架的导向杆系发生运动干涉。
为了缓冲隔振和降低噪声,横向稳定杆与车轮及车架的连接处均有橡胶支承。
当横向稳定杆用于整体桥非独立悬架时,其侧倾角刚度与车轮处的等效侧倾角刚度相等。
当用于独立悬架时(参见图4-39),横向稳定杆的侧倾角刚度CØb与车轮处的等效侧倾角刚度CØw之间的换算关系可如下求出:设汽车左右车轮接地点处分别作用大小相等,方向相反的垂向力微量dF w,在该二力作用下左右车轮处的垂向位移为df w,相应的稳定杆端部受到的垂向力和位移分别为dF b和df b,由于此时要考察的是稳定杆在车轮处的等效侧倾角刚度,因而不考虑悬架中弹簧的作用力,则必然有dF w与dF b所做的功相等,即df w×dF w=df b×dF b (4-58)而作用在稳定杆上的弯矩和转角分别为dM b=dF b×L (4-59)dØb=2df b/L (4-60)式中L——横向稳定杆的角刚度CØb为CØb=dM b/dØb= dF b L2 / 2df b (4-61)同理可得在车轮的等效角刚度CØw为CØw= dF w B2 / 2df w (4-62)式中B——轮距。
大SUV项目设计参数
1.前横向稳定杆:
材料:60Si2MnA 杆直径:26mm 表面处理:喷塑(黑色)2.后横向稳定杆:
材料:60Si2MnA 杆直径:14mm 表面处理:喷塑(黑色)3.纵向拉杆组件:表面处理:喷塑(黑色)
3.1纵向拉杆组件接头:材料:4钢板Q235,
3.2纵向拉杆:杆直径18mm,材料:60Si2MnA
3.3衬套组件:材料:天然橡胶、20#无缝钢管
4.前、后稳定杆连接杆:
4.1连接杆中杆:材料20#圆钢,杆直径:10mm
4.2连接杆球销外壳:材料:20#圆钢
4.3连接杆防尘罩:材料:>CR<
4.4连接杆球销:材料:40Cr
5.前稳定杆支架:材料:3钢板Q235
6.前稳定杆衬套:天然橡胶
7.后稳定杆支架:材料:2钢板Q235
8.后稳定杆衬套:天然橡胶
9.调节连杆:属于外购件。
悬架系统设计计算悬架系统设计的输入条件1、悬架刚度、偏频和静挠度的计算1.1、前悬架刚度、偏频和静挠度的计算1、前悬架的刚度计算满载偏频前悬满载簧载质量前悬架的刚度n m K (N/mm)1.466.165 5.119695412、前悬架的偏频计算空载半载n Hz 1.643696318 1.4163481793、前悬架静挠度的计算空载半载前悬架垂向变形量(mm)91.88046599123.7446116 1.2、后悬架刚度、偏频和静挠度的计算1、后悬架的刚度计算满载偏频后悬满载簧载质量后悬架的刚度 N/mm1.564.835 5.7590621992、后悬架的偏频计算项目空载半载n Hz 2.102514762 1.7020831043、后悬架静挠度的计算空载半载前悬架垂向变形量(mm)56.1549760885.68500616 2、弹簧刚度计算2.1、前悬架弹簧刚度计算b n l 255.7255.73803.9弹簧与下摆臂垂线的夹角(空间)a 、 rad 13.20.230383457弹簧的刚度 N/mm5.7319910045.731991004考虑在悬架系统中衬套的刚度约为悬架刚度的15%~30%;共有衬套2个; 这里取值为15%所以前弹簧的刚度Csf N/mm4.8721923534.872192353前悬架弹簧钢丝直径计算根据刘惟信主编的《汽车设计》P489,弹簧的刚度计算公式:——弹簧材料的剪切弹性模量,这里由于弹簧的材料为合金弹簧钢丝,所以,取为80000 MPa ; ——弹簧工作圈数,初取6.0圈;——弹簧中径,初取130mm ; ——弹簧钢丝直径,mm 。
由公式(5)可以得的计算公式如下吉大仿真 前弹簧的刚度 N/mm 800006iD Gd C m s ∙=348G G i m D d 438GC D i d sm ∙∙∙=d Gi1308.952131093弹簧钢丝直径为:10.mm2.2、后悬架弹簧刚度计算bn l327.2350.5350.5弹簧与与下摆臂垂线的夹角(空间)a rad 1.60.027925268弹簧的刚度 N/mm6.6098573946.609857394考虑在悬架系统中衬套的刚度约为悬架刚度的15%~30%; 这里取值为15%所以后弹簧的刚度Csr N/mm4.9573930464.957393046后悬架弹簧钢丝直径计算同样根据下面的公式吉大仿真 后弹簧的刚度 N/mm 80000m D dd G438GC D i d s m∙∙∙=61107.932236692弹簧钢丝直径为:8.0mm3、侧倾计算3.1、整车侧倾角刚度侧倾刚度是指在侧倾角不大的饿情况下,车身倾斜单位角度所必需的力矩,根据汽车工程手册P79加速度为0.5g 时,车身的侧向角为2.5o 来计算悬架的刚度。
工程与技术横向稳定杆的侧倾角刚度仿真与试验研究郭耀华(宇通客车技术研究院,河南郑州450061)摘要:横向稳定杆是提供悬架侧倾角刚度的常用部件,其侧倾角刚度也有多种计算方法。
为此,对某越野 车的前后横向稳定杆,使用两种不同的方法求取其侧倾角刚度:(1)建立前后稳定杆的有限元仿真模型,使用H ypermesh软件模拟稳定杆的受力状态并计算侧倾角 刚度;(2) 利用 整车跌落试验,结合七自由度整车动力学模型以 及参数识别方法对比了有无横向稳定杆的实验数据,得到横向稳定杆的侧倾角刚度。
对两种方法所得结果进行 对比分析,得到横向稳定杆侧倾刚度有限元计算方法和试验计算方法各自的特点和不足,作为工程应用参考6关键词:横向稳定杆;侧倾角刚度;有限元分析;跌落试验中图分类号:T B文献标识码:A doi:10. 19311/ki. 1672-3198. 2016. 25. 100〇前言 _车身倾斜时,横向稳定杆就产生一个弹性恢复目前市场上的汽车基本都装配了横向稳定杆,其 作为汽车底盘悬架系统中的重要零部件,可以提高悬 架的侧倾角刚度,使汽车在不平或者转弯时能减少车 身侧倾,降低车辆侧翻事故的发生。
据统计,在路况 差,急转弯时,装有稳定杆的车辆翻车概率可降低60%〜80%Q因此,横向稳定杆的设计计算尤为重要。
3深基坑支护施工技术管理方法3.1针对深基坑工程施工深基坑支护较为复杂,涉及到防水、挡土、挖土和 围护。
必须重视任何一个环节。
施工单位要按照实际情 况制定方案,按照技术规范、施工规程等合理施工&膨 胀土地区不能在雨季开挖,对特殊土质地区精心组织 施工,分析好地质勘测报告、地下设施等信息。
针对软 土地K分层开挖不能太深,如果进度过快或者开挖高 差较大,容易降低土体抗剪强度,改变土体原有平衡状 态,导致土体水平方向滑移甚至直接坍塌。
3.2控制深基坑附近土体止水问题深基坑如果地下水位较高,容易受到水体影响。
减振器机构类型及主要参数的选择计算先根据整车的输入和设计要求,设定相对阻尼系数。
根据相对阻尼系数悬架杠杆比得出减震器阻尼系数。
由此选择阀片系列缸筒直径活塞杆直径,并由减震器配合的悬架结构选择合适的油封。
可调减震器在高档车中用的多。
一般轿车还是普通减震器多。
这只是初步的计算设计。
其实最终确定阻尼力大小还要看整车调试阶段的结果。
4.7.1分类悬架中用得最多的减振器是内部充有液体的液力式减振器。
汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦和液体的粘性摩擦形成了振动阻力,将振动能量转变为热能,并散发到周围空气中去,达到迅速衰减振动的目的。
如果能量的耗散仅仅是在压缩行程或者是在伸张行程进行,则把这种减振器称之为单向作用式减振器,反之称之为双向作用式减振器。
后者因减振作用比前者好而得到广泛应用。
根据结构形式不同,减振器分为摇臂式和筒式两种。
虽然摇臂式减振器能够在比较大的工作压力(10—20MPa)条件下工作,但由于它的工作特性受活塞磨损和工作温度变化的影响大而遭淘汰。
筒式减振器工作压力虽然仅为2.5~5MPa,但是因为工作性能稳定而在现代汽车上得到广泛应用。
筒式减振器又分为单筒式、双筒式和充气筒式三种。
双筒充气液力减振器具有工作性能稳定、干摩擦阻力小、噪声低、总长度短等优点,在轿车上得到越来越多的应用。
设计减振器时应当满足的基本要求是,在使用期间保证汽车行驶平顺性的性能稳定。
4.7.2相对阻尼系数减振器在卸荷阀打开前,减振器中的阻力F与减振器振动速度v之间有如下关系Fv(4-51)式中,为减振器阻尼系数。
图4—37b示出减振器的阻力-速度特性图。
该图具有如下特点:阻力-速度特性由四段近似直线线段组成,其中压缩行程和伸张行程的阻力-速度特性各占两段;各段特性线的斜率是减振器的阻尼系数F/v,所以减振器有四个阻尼系数。
在没有特别指明时,减振器的阻尼系数是指卸荷阀开启前的阻尼系数而言。
通常压缩行程的阻尼系数YFY/vY与伸张行程的阻尼系数SFS/vS不等。
汽车横向稳定杆连接杆总成设计与制造研究摘要:汽车行驶在不平道路上或在转弯行驶时,左右两侧车轮处在不同高度,车身会发生横向侧倾,为防止车身横向侧倾增加横向稳定杆。
横向稳定杆是用弹簧钢制成的扭杆弹簧,杆身的中部,用套筒与车架铰接,杆的两端通过连接杆总成分别固定在左右悬挂的下托臂或减震器滑柱上。
因稳定杆和托臂或减震器运动轨迹不同,故连接杆总成是一个重要的连接组件,因此本文对此结构设计及制造进行研究。
关键词:横向侧倾;横向稳定杆;扭杆弹簧;铰接;连接杆总成1现状1.1连接杆总成结构由防尘套、卡簧、球销、衬套、连杆球销座、压盖等部件组成。
1.2制造工艺机加工艺:球销座,原料→冷挤→车削;球销,原料→车削→探伤→滚丝→滚光;焊接工艺:利用电阻焊设备将连杆与球销座焊接在一起;装配工艺为:清洁球头→组装封口→连杆球销脖部位注脂→安装防尘套和卡簧→清除连接杆总成表面油脂。
1.3现存问题a球销座须由原料冷挤成毛坯后再机加,工序多生产效率较低且成本较高;b连接杆总成组装封口时,连杆球销与衬套组合体放置球销座中,球销座止口边翻卷压紧压盖,压盖压紧衬套,衬套微观形变抱紧球头从而产生力矩。
由于球销座自身尺寸偏差,衬套变形大,导致总成两端力矩变差大或力矩超差,影响整车舒适性或报废;c球销座止口边翻卷压紧压盖实现密封的方式,因压盖平面度低、球销座止口边翻卷不到位,导致密封早期失效,连接杆总成产品使用寿命降低;d防尘套下唇口依靠卡簧箍紧至球销座卡槽中实现总成密封,卡簧装配过程中需扩大内孔,易产生永久变形,卡簧箍紧力降低,防尘套下唇口与球销座卡槽产生空隙,导致密封早期失效,连接杆总成产品使用寿命降低;e连接杆总成装配时,连杆球销从球销座内孔穿出,连杆球销圆台平面积小,与稳定杆、摆臂等接触面积小,无法提供足够摩擦力,导致连接杆总成无法装配或拆卸;f球销座卡槽部位上端面易与连杆接触,导致连接杆总成摆动范围狭小。
2新结构连杆总成针对现结构连杆总成在制造和使用过程中存在的问题进行结构优化。