横向稳定杆的设计
- 格式:doc
- 大小:2.25 MB
- 文档页数:3
7 横向稳定杆为了降低偏频和改善行驶平顺性,乘用车悬架的垂直刚度和侧倾角刚度设计得较低,在转弯时可能产生较大侧倾,影响行驶稳定性。
为同时获得较大的静挠度和侧倾角刚度,在汽车中广泛地采用了横向稳定杆,如图8。
53所示。
另外,在前、后悬架上采用横向稳定杆,还可以调整前、后悬架的侧倾角刚度之比,获得需要的转向特性。
但是当汽车在坑洼不平的路面上行驶时,左、右车轮垂直位移不同,横向稳定杆被扭转,加强了左、右车轮之间的运动联系,对行驶平顺性不利。
图8。
53 横向稳定杆的安装示意图为了缓冲、隔振、降低噪音,横向稳定杆与悬架和车身(车架)的连接处均有橡胶支承(图8.53中A、T、C处)。
由于布置上的原因,横向稳定杆通常做成比较复杂的形状,但为简化计算,一般认为横向稳定杆是等臂梯形,同时假定在车身侧倾时力臂的变化可忽略不计。
如图8。
54所示,设在车身侧倾时,在横向稳定杆的一个端点作用力F,在其另一个端点作用有大小相等、方向相反的力。
下面推导在F作用下横向稳定杆端点的位移f。
c汽车设计·228· ·228·(a ) 横向稳定杆尺寸示意图 (b ) 车轮位移与横向稳定杆位移图图8。
54 横向稳定杆安装尺寸及位移图图8。
55为横向稳定杆半边的弯矩图。
在力F 作用下横向稳定杆发生弹性变形,F 作的功与横向稳定杆中总的变形位能相等。
图8.55 横向稳定杆半边弯矩图横向稳定杆变形位能的计算公式如下: (1) T l 段的扭转位能.2T1p=4F l U GJ (8—110) 式中,p J 为横向稳定杆的截面极惯性矩;G 为材料剪切弹性模量;T l 为横向稳定杆直线段长度。
(2) 1l 段的弯曲位能.2312 =6F l U EJ(8—111)式中,J 为横向稳定杆的截面惯性矩;E 为材料弹性模量.(3) 0l 段的弯曲位能。
002222322233200002()()1=d d ()2212l l F l l x M x F U x x l l l EJ EJl EJ ⎡⎤⋅+==⋅+⋅⎢⎥⎣⎦⎰⎰ (8-112) 其中,x 轴的原点在横向稳定杆的对称中心。
1悬架设计本车参数:偏频 , 杠杆比簧下质量 9 7kg 整车质量 280kg 簧上质量估算240kg 轴距L 1580mm 前轮距 1240mm 后轮距 1200mm 质心到前轴距a 869mm 质心到后轴距b 711mm 质心高度h 300mm 质心到侧倾轴线距离H 242mm 前悬静态侧倾中心高度R FZ 54mm 后悬静态侧倾中心高度R RZ57mm 侧倾增益度/Ay φ1 10.5/0.5*711*240/158054smlf smrf sm m m bm l Kg ==== (3 3) 后轴左右车轮簧上质量:0.5/0.5*869*240/158066smlr smrr sm m m am l Kg ==== (3 4) 乘适刚度是指轮胎接地点相对车架或车身单位垂直位移时所受到的垂向力。
前轴单侧悬架乘适刚度:2222244*3.5*5426114.97/RF F smlf K f m N m ===ππ (3 5) 后轴单侧悬架乘适刚度:m N m f K smlr R RR /18.2345066*0.3*442222===ππ (3 6)由TW R K K K111+= (3 7) 式中:R K :乘适刚度WK :悬架刚度(车轮中心刚度)T K :轮胎刚度车轮中心刚度是指车轮中心相对车架或车身单位垂直位移时所受到的垂向力。
已知轮胎刚度T K =100719 36N/m 前悬架车轮中心刚度: 100719.36*26114.9735256.4/100719.3626114.97T RF WF T RF K K K N m K K ===-- (3 8)后悬架车轮中心刚度: m N K K K K K RR T RR T WR /00.3056718.2345036.10071918.23450*36.100719=-=-=(3 9)弹簧刚度SK 与悬架刚度WK 的关系如下:2*MR K K W S = (3 10) 式中:MR :杠杆比;前悬架的弹簧刚度:1 ibs/in=175 4N/m(3 11)后悬架的弹簧刚度:3(3 12)侧倾角刚度是指车架或车身侧倾单位转角时悬架系统给车架或车身总的弹性恢复力矩。
Science and Technology &Innovation ┃科技与创新2020年第08期·5·文章编号:2095-6835(2020)08-0005-03巴哈赛车横向稳定杆的设计与性能验证侯小舸,杨云珍,王琦(武汉理工大学汽车工程学院,湖北武汉430070)摘要:设计了一套匹配巴哈赛车底盘特性的横向稳定杆,通过提高悬架系统的侧倾角刚度提高整车的抗侧倾能力,从而增强赛车的横向稳定性。
建立横向稳定杆的数学模型;分析稳定杆的各参数对横向稳定杆所能提供的侧倾角刚度的影响;对悬架系统进行仿真分析,得出横向稳定杆的特性曲线;并进行实车的稳态回转试验与跑动测试,进一步验证了横向稳定杆的抗侧倾性能。
关键词:横向稳定杆;巴哈赛车;悬架;侧倾角刚度中图分类号:U463.33文献标识码:ADOI :10.15913/ki.kjycx.2020.08.003大学生巴哈赛车是一种发动机中置、后驱的小型全地形车,具有独特的防滚架结构和与之相匹配的斜置单纵臂后悬架系统,独特的悬架布置导致其在高速入弯时,会产生较大的侧倾和横向振动,导致轮胎侧偏严重,影响赛车的操控稳定性及平顺性[1]。
因此设计出一款匹配巴哈赛车底盘布置的横向稳定系统,建立出横向稳定杆的理论模型;并对悬架系统进行运动仿真分析;最后通过实车跑动测试,更为真实地验证了横向稳定杆的性能。
1建立横向稳定杆的数学模型1.1横向稳定杆的布置横向稳定杆的布置如图1所示。
图1横向稳定杆的布置示意图当整车发生侧倾时,一侧轮胎相对于车架有一段垂向位移量∆1,车轮处的跳动量传递到稳定杆臂末端的跳动量为∆2,设∆2与∆1的比值为横向稳定杆的传动比ε,两轮间距为D 。
稳定杆的抗侧倾性能的评价指标并不是稳定杆自身的侧倾角刚度,而是稳定杆传递到车轮处的等效侧倾角刚度。
1.2横向稳定杆侧倾刚度的计算设稳定杆长度为n ,稳定杆臂的长度为a ,稳定杆直径为d ,稳定杆与稳定杆臂的夹角为θ,稳定杆臂末端端点的距离为L ,稳定杆与稳定杆臂通过螺栓连接,稳定杆上有两处橡胶衬套用以固定稳定杆。
大SUV项目设计参数
1.前横向稳定杆:
材料:60Si2MnA 杆直径:26mm 表面处理:喷塑(黑色)2.后横向稳定杆:
材料:60Si2MnA 杆直径:14mm 表面处理:喷塑(黑色)3.纵向拉杆组件:表面处理:喷塑(黑色)
3.1纵向拉杆组件接头:材料:4钢板Q235,
3.2纵向拉杆:杆直径18mm,材料:60Si2MnA
3.3衬套组件:材料:天然橡胶、20#无缝钢管
4.前、后稳定杆连接杆:
4.1连接杆中杆:材料20#圆钢,杆直径:10mm
4.2连接杆球销外壳:材料:20#圆钢
4.3连接杆防尘罩:材料:>CR<
4.4连接杆球销:材料:40Cr
5.前稳定杆支架:材料:3钢板Q235
6.前稳定杆衬套:天然橡胶
7.后稳定杆支架:材料:2钢板Q235
8.后稳定杆衬套:天然橡胶
9.调节连杆:属于外购件。
横向稳定杆设计课程设计一、课程目标知识目标:1. 学生能够理解并掌握横向稳定杆的基本结构及其在汽车中的作用;2. 学生能够运用物理知识,分析并计算横向稳定杆对汽车稳定性的影响;3. 学生能够了解并描述不同设计参数对横向稳定杆性能的影响。
技能目标:1. 学生能够运用CAD软件进行简单的横向稳定杆设计;2. 学生能够通过实验方法,验证横向稳定杆设计的效果;3. 学生能够运用数据分析方法,评价不同设计方案的优劣。
情感态度价值观目标:1. 学生能够培养对汽车工程技术的兴趣,增强对工程设计的热情;2. 学生能够通过团队协作,培养沟通、协作能力和集体荣誉感;3. 学生能够认识到工程设计在实际生活中的应用,提高对科技创新的认识。
课程性质分析:本课程为汽车工程领域的一门实践性课程,旨在让学生了解横向稳定杆在汽车稳定性中的作用,培养学生的工程设计能力和实际操作技能。
学生特点分析:学生处于高中阶段,已具备一定的物理知识和实验技能,对汽车工程技术有一定的好奇心,但可能缺乏实际操作经验。
教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力;2. 采用项目式教学,培养学生的团队合作精神和创新能力;3. 注重过程评价,关注学生在课程中的学习表现和成果。
二、教学内容1. 基本概念与原理:- 横向稳定杆的定义及其在汽车中的作用;- 汽车稳定性原理及横向稳定杆的工作机理;- 教材第二章第一、二节内容。
2. 横向稳定杆设计参数:- 横向稳定杆的结构参数及其对性能的影响;- 材料选择对横向稳定杆性能的影响;- 教材第二章第三节内容。
3. 设计与仿真:- CAD软件在横向稳定杆设计中的应用;- 横向稳定杆设计的基本步骤和注意事项;- 教材第三章第一、二节内容。
4. 实验与验证:- 横向稳定杆性能测试实验方法;- 实验数据采集与处理;- 教材第三章第三节内容。
5. 数据分析与评价:- 横向稳定杆设计方案的评估方法;- 数据分析在横向稳定杆设计中的应用;- 教材第四章第一、二节内容。
汽车横向稳定杆连接杆总成设计与制造研究摘要:汽车行驶在不平道路上或在转弯行驶时,左右两侧车轮处在不同高度,车身会发生横向侧倾,为防止车身横向侧倾增加横向稳定杆。
横向稳定杆是用弹簧钢制成的扭杆弹簧,杆身的中部,用套筒与车架铰接,杆的两端通过连接杆总成分别固定在左右悬挂的下托臂或减震器滑柱上。
因稳定杆和托臂或减震器运动轨迹不同,故连接杆总成是一个重要的连接组件,因此本文对此结构设计及制造进行研究。
关键词:横向侧倾;横向稳定杆;扭杆弹簧;铰接;连接杆总成1现状1.1连接杆总成结构由防尘套、卡簧、球销、衬套、连杆球销座、压盖等部件组成。
1.2制造工艺机加工艺:球销座,原料→冷挤→车削;球销,原料→车削→探伤→滚丝→滚光;焊接工艺:利用电阻焊设备将连杆与球销座焊接在一起;装配工艺为:清洁球头→组装封口→连杆球销脖部位注脂→安装防尘套和卡簧→清除连接杆总成表面油脂。
1.3现存问题a球销座须由原料冷挤成毛坯后再机加,工序多生产效率较低且成本较高;b连接杆总成组装封口时,连杆球销与衬套组合体放置球销座中,球销座止口边翻卷压紧压盖,压盖压紧衬套,衬套微观形变抱紧球头从而产生力矩。
由于球销座自身尺寸偏差,衬套变形大,导致总成两端力矩变差大或力矩超差,影响整车舒适性或报废;c球销座止口边翻卷压紧压盖实现密封的方式,因压盖平面度低、球销座止口边翻卷不到位,导致密封早期失效,连接杆总成产品使用寿命降低;d防尘套下唇口依靠卡簧箍紧至球销座卡槽中实现总成密封,卡簧装配过程中需扩大内孔,易产生永久变形,卡簧箍紧力降低,防尘套下唇口与球销座卡槽产生空隙,导致密封早期失效,连接杆总成产品使用寿命降低;e连接杆总成装配时,连杆球销从球销座内孔穿出,连杆球销圆台平面积小,与稳定杆、摆臂等接触面积小,无法提供足够摩擦力,导致连接杆总成无法装配或拆卸;f球销座卡槽部位上端面易与连杆接触,导致连接杆总成摆动范围狭小。
2新结构连杆总成针对现结构连杆总成在制造和使用过程中存在的问题进行结构优化。
第2期(总期81期)2017年3月Fluid Power Transmission and ControlNo.2(Serial No.81)Mar.,2017在汽车行驶过程中,车身侧倾运动会对车辆的侧向稳定性、操纵稳定性、平顺性等产生恶性影响,过度的侧倾甚至会导致侧翻事故。
因此,汽车的主动侧倾控制是一个亟待解决的问题[1-2]。
作为主动侧倾控制的有效手段之一,主动式稳定杆系统成为近年来研究的热点[3]。
与电动式稳定杆相比,液压式主动稳定杆系统具有输出力矩大、动作稳定等优点[4]有望成为今后重型货车主动稳定系统发展的主流。
本文以液压式主动稳定杆为研究对象,对液压式主动稳定杆硬件在环仿真实验台架的液压系统做了进一步设计。
1液压系统的设计要求液压式稳定杆实验台架有输出动力和模拟路况两个作用,液压缸的工作压力初步定为7MPa ,液压系统的设计要求如下:1)能够提供稳定的压力和流量;2)能够满足进退动作循环和停留在任意位置;3)保证主动横向稳定杆能承受预期的极限载荷;4)保证整个系统响应的快速性和准确性;5)能够模拟各种工况的路面不平度;6)可以达到有效抑制车辆侧倾的目的。
收稿日期:2016-12-28基金项目:国家自然科学基金(51205204;51205209),江苏省六大人才高峰资助项目(2014-JXQC-003),中央高校基本科研业务费专项资金资助(30915118832)。
作者简介:龚建石(1966-),男,工程师,学士,主要从事机械设计及制造方面的研究。
2液压系统的设计方案主动稳定杆实验台架的液压系统,包括液压泵站、控制阀、执行器等,主要功能是为主动稳定杆提供液压动力并根据ECU 控制指令调整液压缸的动作。
图1为ARC 实验台架液压原理简图(包含后轴主动稳定杆和对应激励发生器),为更有效地模拟路面不平度对主动稳定杆的影响,本文中设计了液压式路面激励模拟系统,其由激励发生器(液压缸2)和工控机组成。
汽车横向稳定杆的热处理r——技术要求及工艺控制要点王海宝【摘要】横向稳定杆是汽车悬架中的一种辅助弹性元件.横向稳定杆起到增加悬架刚度的作用.装有横向稳定杆的车辆行驶较稳定、舒适,且翻车几率大大降低.稳定杆的设计与校核一直是人们研究的重点.现在基本都采用有限元计算方法;稳定杆的设计应力不能太高,还必须用淬火+回火的热处理方式来进行强化处理.热处理是保证稳定杆的使用性能与可靠性的最关键的工艺过程.金相组织是决定稳定杆疲劳寿命的关键因素,稳定杆热处理就是为了获得良好的金相组织.组织粗大及含有游离铁素体等非马氏体组织都会降低稳定杆的疲劳寿命.加强热处理过程控制并采取针对性的监控措施可以防止稳定杆产生不良的金相组织.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)011【总页数】4页(P37-40)【关键词】横向稳定杆;疲劳寿命;热处理;金相组织【作者】王海宝【作者单位】安徽江淮汽车集团股份有限公司,安徽合肥 230601【正文语种】中文【中图分类】U466CLC NO.: U466 Document Code: A Article ID: 1671-7988 (2017)11-37-04 横向稳定杆又称防倾杆,是汽车悬架中的一种辅助弹性元件。
它的作用是提高汽车悬架侧倾角刚度。
减少车身倾角,使汽车在路况不平或转弯时能够行驶平稳。
与扭杆弹簧不同之处是有4点固定安装在悬架上,其中两端头通过侧臂端部的橡胶垫或球头连杆与悬架导向臂连接,杆的中部用橡胶衬套与车身相连,见图 1。
车辆在行驶中,如果左、右车轮同时上下跳动。
那么横向稳定杆起不了作用:当左、右车轮垂直方向产生相对位移时,横向稳定杆中间部分受扭转侧臂受弯,起到增加悬架刚度的作用。
装有横向稳定杆的车辆行驶较稳定、舒适,且翻车几率大大降低。
近来,由于对汽车产品的节能、环保特性的要求越来越高,多数汽车企业对零部件的轻量化也提出更高的要求,对稳定杆的设计、制造过程的严格要求导致其可靠性受到挑战,使寿命试验不易过关,使用中的早期失效的事故也有发生。