不同形式的循环流化床生物质气化炉
- 格式:pdf
- 大小:321.27 KB
- 文档页数:5
生物质气化技术的工程应用研究在当今能源需求不断增长和环境问题日益严峻的背景下,寻找可持续、清洁的能源解决方案成为了全球关注的焦点。
生物质气化技术作为一种具有潜力的能源转换技术,正逐渐在工程应用领域展现出其独特的优势和广阔的发展前景。
生物质气化是指将生物质原料(如木材、农作物秸秆、林业废弃物等)在一定的温度、压力和气化剂(通常为空气、氧气或水蒸气)的作用下,转化为可燃气体的过程。
这些可燃气体主要包括一氧化碳、氢气、甲烷等,具有较高的能源利用价值。
一、生物质气化技术的原理与分类生物质气化的基本原理是通过热化学过程将生物质中的有机物质分解为小分子气体。
根据气化过程中所采用的气化剂和气化设备的不同,可以将生物质气化技术分为以下几种主要类型:1、空气气化空气作为气化剂,成本低但产生的气体热值相对较低,通常用于直接燃烧或发电等领域。
2、氧气气化使用氧气作为气化剂,能够提高气化反应的温度和气体热值,但氧气的制取成本较高。
3、水蒸气气化水蒸气与生物质反应,生成的气体中氢气含量较高,气体热值也相对较高,但工艺较为复杂。
4、复合气化将上述两种或多种气化剂结合使用,以达到优化气体组成和提高气体品质的目的。
二、生物质气化技术在能源领域的工程应用1、发电生物质气化产生的可燃气体可以直接用于内燃机或燃气轮机发电,或者通过净化后进入燃气蒸汽联合循环发电系统,提高发电效率。
在一些农村地区和偏远地区,小型生物质气化发电装置为当地提供了稳定的电力供应。
2、供热气化产生的气体可以用于工业或民用供热,替代传统的煤炭等化石燃料,减少环境污染。
3、合成燃料通过进一步的化学处理,将气化产生的气体合成液体燃料,如甲醇、二甲醚等,提高能源的储存和运输便利性。
三、生物质气化技术在工业生产中的应用1、生产化学品生物质气化产生的合成气可以作为化工原料,用于生产氨、尿素等化学品。
2、金属冶炼在一些金属冶炼过程中,生物质气化气可以作为还原剂,降低对传统煤炭还原剂的依赖,减少碳排放。
7.1.气化发电的工作原理及工艺流程7.1.1化发电工作原理生物质气化发电技术的基本原理是把生物质转化为可燃气,再利用可燃气推动燃气发电设备进行发电。
它既能解决生物质难于燃用而又分布分散的缺点,又可以充分发挥燃气发电技术设备紧凑而污染少的优点,所以是生物质能最有效最洁净的利用方法之一。
气化发电过程包括三个方面,一是生物质气化,把固体生物质转化为气体燃料;二是气体净化,气化出来的燃气都带有一定的杂质,包括灰份、焦炭和焦油等,需经过净化系统把杂质除去,以保证燃气发电设备的正常运行;三是燃气发电,利用燃气轮机或燃气内燃机进行发电,有的工艺为了提高发电效率,发电过程可以增加余热锅炉和蒸汽轮机。
生物质气化发电技术是生物质能利用中有别于其他可再生能源的独特方式,具有三个方面特点:一是技术有充分的灵活性,由于生物质气化发电可以采用内燃机,也可以采用燃气轮机,甚至结合余热锅炉和蒸汽发电系统,所以生物质气化发电可以根据规模的大小选用合适的发电设备,保证在任何规模下都有合理的发电效率。
这一技术的灵活性能很好地满足生物质分散利用的特点;二是具有较好的洁净性,生物质本身属可再生能源,可以有效地减少CO2、SO2等有害气体的排放。
而气化过程一般温度较低(大约在700-900o C),NO x的生成量很少,所以能有效控制NO x的排放;三是经济性,生物质气化发电技术的灵活性,可以保证该技术在小规模下有效好的经济性,同时燃气发电过程简单,设备紧凑,也使生物质气化发电技术比其他可再生能源发电技术投资更小,所以总的来说,生物质气化发电技术是所有可再生能源技术中最经济的发电技术,综合的发电成本已接近小型常规能源的发电水平。
典型的生物质气化发电工艺流程如图7-1所示。
生物质循环流化床气化发电装置主要由进料机构,燃气发生装置,燃气净化装置,燃气发电机组、控制装置及废水处理设备六部分组成:进料机构:进料机构采用螺旋加料器,动力设备是电磁调速电机。
北京凯明阳热能技术有限公司致力于燃烧技术20年,热能技术服务与产品包括燃烧器、生物质气化炉、燃烧系统改造、吹灰器、烤包器等。
以下是从供应商那获得凯明阳气化炉的特点,来之不易,希望大家能给多捐点赏金。
KMY-XQH2600气化炉体:采用三段式下出气结构,顶部安装有螺旋进料机密封进料。
炉体中部设有点火门,燃料在此处点燃,点火后关严,炉体的下部设有碳气分离,炉体的下部设施。
炉体一侧设有进风口,燃烧所需要的空气由此吹入炉内,采用鼓风机送风。
燃气出口在炉体的下部一侧,生成的燃气通过高温红碳层喷出,从而使产出气中的焦油大为减少,本气化炉采用独特的三段式下出气结构。
KMY生物质燃料气化炉具有以下特点:¾制成的生物质燃气中焦油含量极低,气化炉中产生的焦油在通过红碳层时被裂解成生物质气,使生物质气提高了热值;¾生物质燃料不需要挤压成颗粒,含水量可控制在30%以内,水分高温气化后通过红碳层时产生水煤气的反应,提高了生物质燃气的产气量,气化效率高;C+H2O=CO+H2CO2+C=2COC+2H2=CH4¾停止产气待炉状态一周内重新起用时,可在5分钟内产生可燃气;¾配置料位检测,设高低位报警;¾可以连续供料、连续生产;¾设炉体上、中、下位置及出气口温度检测,实时监测气化炉的工况;¾设气压平衡设施,防止可燃气体外泄;¾安装双检测门及人孔;¾出口设有燃气热值检验口;¾燃气出口管路上设有三通转阀,燃气达到可燃后进入燃烧器燃烧。
2012-1-17 cao_ring|四级给您+100分这你都可以弄来,哈哈,果断收藏。
给您+100分2012-2-7 守护紫星泪|四级他们家的气化系统主要由气化炉、物料输送系统、控制系统组成,气化原料为木屑或木块、秸秆等,可燃气体发热值约1250kcal/Nm3 350℃左右。
是气化炉里比较有保证的制造商吧,不过谢谢楼主啦,收藏。
一、概述煤气化技术的开发与应用大约经历了200年的发展历史。
煤气化技术按固体和气体的接触方式可分为固定床、流化床、气流床和熔融床4种,其中熔融床技术还没有实际应用开发,各种煤气化炉的模式见图1。
图1 各种煤气化炉模式图1. 固定床。
固定床气化炉是最早开发出的气化炉,如图1(a)所示,炉子下部为炉排,用以支撑上面的煤层。
通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。
特点是单位容积的煤处理量小,大型化困难。
目前,运转中的固定床气化炉主要有鲁奇气化炉和BGC- 鲁奇炉两种。
2.流化床。
流化床气化炉如图1(b)所示,在分散板上供给粉煤,在分散板下送入气化剂(氧、水蒸气),使煤在悬浮状下进行气化。
流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。
3.气流床。
气流床气化炉如图1(c)所示,粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。
特点是不副产焦油,生成气中甲烷含量少。
气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。
气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。
前者以德士古气化炉为代表,还有国内开发的多元料浆加压气化炉、多喷嘴(四烧嘴)水煤浆加压气化炉;后者以壳牌气化炉为代表,还有GSP炉以及国内开发的航天炉、两段炉、清华炉、四喷嘴干粉煤炉。
二、三种先进的煤气化工艺我国引进并被广泛采用的三种先进煤气化工艺——鲁奇气化炉、壳牌气化炉、德士古气化炉。
1.鲁奇气化炉(结构见图2)属于固定床气化炉的一种。
鲁奇气化炉是1939年由德国鲁奇公司设计,经不断的研究改进已推出了第五代炉型,目前在各种气化炉中实绩最好。
德国SVZ Schwarze Pumpe公司已将这种炉型应用于各种废弃物气化的商业化装置。
我国在20世纪60年代就引进了捷克制造的早期鲁奇炉并在云南投产。
1987年建成投产的天脊煤化工集团公司从德国引进的4台直径3800mm的Ⅳ型鲁奇炉,先后采用阳泉煤、晋城煤和西山官地煤等煤种进行试验,经过10多年的探索,基本掌握了鲁奇炉气化贫瘦煤生产合成氨的技术,现建成的第五台鲁奇炉已投产,形成了年产45万吨合成氨的能力。
生物质气化发电技术(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--生物质气化发电技术阳永富,孙龙,樊俊杰(胜利油田胜利动力机械有限公司,山东东营 257032)摘要:随着人们对能源需求的日益增长,作为人类目前主要能源来源的化石燃料却迅速减少,而生物质能是一种重要的可再生能源,它分布广泛,数量巨大。
但由于它能量密度低,又分散,收集和运输困难,所以难以大规模集中处理。
另一方面随着经济的发展,我国电力供应日益紧张,对电力需求很大,电价居高不下,在这种环境下,通过气化发电技术,把生物质转化为电力,既能大规模处理生物质废料,又能为生产提供电力,具有明显的社会和经济效益。
本文主要讲述生物质的气化技术,生物质气净化处理技术及生物质气用于内燃机的发电技术。
关键词:生物质;气化;净化;内燃机;发电Biomass Gasification and Generation TechnologyYang YongFu,Sun Long,Fan JunJie(Shengli Oil Field Shengli Power Machinery Co., Ltd, DongyingShandong 257032)Abstract:Energy demand is increasing and the fossil fuel is decreasing, which is the important energy source. Biomass is an important regenerative energy. It distributes widely and with high amount. Because it features low concentration and distribute dispersedly, so it is difficult for transportation and treatment in scale. With rapid economic development, electricity is in great demand gradually, its price is high. Under this condition, biomass is converted into electricity by gasification technology. Supported with this technology, massive waste biomass is treated and electricity is produced to supply for production resulting in significantly social and economical benefits. The paper introduces biomass gasification, biogas treatment and electricity generation by fueling biogas on internal combustion engine.Key Words: Biomass;Gasification;purification;Internal Combustion Engine; Electricity Generation1 生物质气化技术简单地讲,气化是以氧气(空气、富氧或纯氧)、水蒸气或氢气等作为气化剂,在高温的条件下通过热化学反应将生物质中可燃部分转化为可燃气(主要为一氧化碳、氢气和甲烷等)的热化学反应。
黄台炉循环流化床气化技术全文共四篇示例,供读者参考第一篇示例:黄台炉循环流化床气化技术是一种先进的生物质能源利用技术,通过在高温、高压和氧气不足的条件下将生物质材料进行气化,将其转化为合成气,进而产生燃烧或发电所需的能源。
这项技术不仅可以有效利用生物质资源,减少环境污染,还有助于实现能源的可持续利用。
流化床气化技术是指在一定的流化速度下,通过对气化床中的颗粒物料进行搅拌和混合,使之形成类似于流体的状态,从而提高反应速率和热传导效果。
而黄台炉循环流化床气化技术则在这一基础上进一步实现了气化床内部气态组分的混合均匀和循环往复运动,从而提高了气化效率和产气质量。
黄台炉循环流化床气化技术具有以下几个显著特点:一、高效节能:循环流化床技术可以有效地减少废气和废热的排放,实现废热再利用,提高能源利用效率。
而且由于气化反应在高温、高压和氧气不足条件下进行,可以最大化地保留生物质原料中的碳元素,减少能源消耗。
二、资源综合利用:循环流化床气化技术可以利用多种生物质资源进行气化,如秸秆、木屑、废弃物等,实现资源的综合利用。
废弃物气化后可以产生高温热能、合成气等多种产品,实现废物资源化的目的。
三、环保节能:流化床气化技术采用循环流化床反应器,反应温度高、气氛调控好,能减少有害气体和颗粒物的排放,减轻对大气和环境的污染。
废热回收和再利用也有助于节能减排。
四、灵活可控:黄台炉循环流化床气化技术具有较强的操作灵活性和反应可控性,可以根据不同的生物质原料和气化条件,来调节反应器内的气气、气溶胶和颗粒物的混合均匀,以及产气量和气化效率。
五、成本优势:循环流化床气化技术相对于传统燃煤气化技术而言,设备投资、运行成本和维护费用都更低廉,利用寿命更长,更经济实用。
因此在生物质能源产业中有着广泛的应用前景。
黄台炉循环流化床气化技术是一项具有巨大潜力和发展前景的能源转化技术,可以有效推动生物质资源的利用,减少环境污染,实现绿色和可持续发展。
生物质气化技术周劲松浙江大学能源工程学院主要内容•生物质气化原理•生物质气化技术与工艺•生物质燃气净化•生物质气化应用及研究生物质气化(Biomass gasification)是以生物质为原料,以氧气(空气、富氧或纯氧)、水蒸气或氢气等作为气化剂(或称气化介质),在高温条件下通过热化学反应将生物质中可燃的部分转化为可燃气的过程。
生物质气化时产生的气体,主要有效成分为C0、H 2和CH 4等,称为生物质燃气。
•Why gasification?–Gasification provides a competitive way to convert diverse, highly distributed and low-valuelignocellulosic biomass to syngas for combinedheat and power generation, synthesis of liquidfuels and production of hydrogen (H2).–A number of gasifier configurations have beendeveloped. Biomass integrated gasificationcombined cycles (BIGCC) using black-liquor arealready in use.–Gasification can also co-produce liquid fuels andsuch advanced technologies are currently beinginvestigated in research and pilot plants.生物质气化原理•氧化Oxidation:C+O2→CO2+392.5kJ2C+O2→2CO+221.34kJ2CO+O2→2CO2+565.94kJ2H2+O2→2H2O+483.68kJCH4+2O2→CO2+2H2O+890.36kJ •碳气化Boudouard:C+CO2→2CO-172.43kJ•水煤气Water gas reaction: C+H2O(g)→CO+H2-131.72kJC+2H2O(g) →CO2+2H2-90.17kJ•水煤气变换Water-gas shift reaction: CO+H2O(g) →CO2+H2+41.13kJ•水蒸气重整Steam reforming:CH4+H2O(g) →CO+3H2-205.9kJCH4+2H2O(g) →CO2+4H2-164.7kJ •CO2重整CO2reforming:CH4+CO2→2CO+2H2-247.0kJ•加氢重整H2 reforming:CO+3H2→CH4+H2O+205.9kJ•甲烷化Methanation:C+2H2→CH4+74.6kJ气化过程•Process of gasification热解过程反应动力学温度对热解产物分布的影响气体产量与气相滞留时间的关系氧化(燃烧)过程受燃烧温度和燃烧时间、颗粒大小控制还原过程气固反应增加温度与减少压力有利于反应向右进行以C+H2O(g)→CO+H2-131.72kJ;C+2H2O(g) →CO2+2H2-90.17kJ为例400℃几乎不反应,反应速率低于700℃缓慢,800℃以上明显增加温度低于700℃有利于CO2的生成温度越高有利于CO和H2的生成三个过程对比平衡分析•化学反应平衡常数–与反应温度和反应压力有关反应平衡状态随温度变化趋势C+CO2→2CO-172.43kJ当反应温度小于850°C时,其逆反应速度很快,因此二氧化碳很难还原为一氧化碳;当反应温度高于850°C时,则还原反应生成的一氧化碳迅速增加;当温度升高到1200°C以上时,相比之下逆反应速度极为缓慢,二氧化碳则可基本上全部还原为一氧化碳。
流化床气化炉性能介绍
本气化炉属于流化床小型试验装置,分为送风部分、水蒸气生成部分、反应器主体、旋风分离装置、气体冷却部分和尾部烟道等几部分组成。
1)送风部分和反应器主体带有加热装置,2)炉体配有测温和测压装置,以便观测炉内各反应区的温度和炉膛内压力的变化。
3)给料部分采用有变频电机带动的螺旋加料机直接送料。
试验台可实现生物质单独气化及生物质和煤共气化,气化剂可采用空气气化和空气--水蒸气混合气化两种气化方式。
实验台简图如下:
1--鼓风机2--转子流量计3--涡街流量计4--蒸汽发生器5--空气-蒸汽预热混合器6--螺旋排渣机7--流化床反应器8--螺旋给料机9--加热装置10--灰仓11--截止阀12--旋风分离器13—取样口14--冷却装置15--煤气表16--引风机
1.试验台的技术指标值:
气化效率>75%,生物质气体热值>10MJ/Nm3,气体中CO含量<20%,焦油含量<10mg/Nm3。
2.试验台具有如下特点
1)尖端技术
采用先进的“流化床及循环流化床锅炉高温空气床下点火系统(专利)”实现流化床点火;
2)适用原料范围广泛
本试验装置适用原料广泛,如:烟煤、褐煤及谷壳、玉米秆、稻秆、麦秆、芝麻秆、花生壳、树枝、锯末、杂草等一切生物质可燃性农、林废弃物;
3)对反应条件要求低
可实现常温常压下气化,无需加入催化剂;
4)洁净环保
添加煤共气化可更大提高反应器内气化温度,使焦油能够充分裂解,实现接近无焦油排放。
3.适用范围
本气化试验台中试装置可实现200户村级规模的农村地区集中供气、集中供热。
前言生物质能是指由光合作用而产生的各种有机体,光合作用利用空气中的二氧化碳和土壤中的水,将吸收的太阳能转换为碳水化合物和氧气。
生物质通常包括农业废弃物、木材及森林工业废弃物、禽畜粪便、城镇生活垃圾以及能源作物等几种类型。
生物质能具有以下特点[1]:(1)属于可再生能源,可保证能源的永续利用;(2)种类多而分布广,便于就地利用,利用形式多样;(3)相关技术已经成熟,可贮存性好;(4)节能、环保效果好。
1生物质气化技术1.1生物质气化技术的原理生物质气化是利用空气中的氧气或含氧物作气化剂,在高温条件下将生物质燃料中的可燃部分转化为可燃气(主要是氢气、一氧化碳和甲烷)的热化学反应。
20世纪70年代,Ghaly[2]首次提出了将气化技术应用于生物质这种含能密度低的燃料。
生物质的挥发分含量一般在76%~86%[3],生物质受热后在相对较低的温度下就能使大量的挥发分物质析出。
几种常见生物质燃料的工业分析成分如表1所示:生物质气化技术原理及应用分析福建省电力勘测设计院郑昀济南锅炉集团有限公司邵岩李斌【摘要】生物质能是一种理想的可再生能源。
由于分布广泛、有利于环保等特点,因而越来越受到世界各国的关注。
生物质气化技术是利用生物质能的一种方式。
本文介绍了生物质气化技术的原理,生物质气化工艺及气化设备。
目前应用较多的气化技术是生物质气化供气和生物质气化发电技术。
文中提出了应用过程中存在的问题,提高效率、降低焦油含量等是今后利用生物质气化技术的发展方向。
【关键词】生物质气化原理气化技术应用种类工业分析成分水分(%)挥发分(%)固定碳(%)灰分(%)低位热值(MJ/kg)杂草豆秸稻草麦秸玉米秸玉米芯棉秸5.435.104.974.394.8715.06.7868.7774.6565.1167.3671.4576.6068.5416.417.1216.0619.3517.757.0020.719.463.1313.868.905.931.403.9716.19216.14613.97015.36315.45014.39515.991表1几种生物质的工业分析成分为了提供反应的热力学条件,气化过程需要供给空气或氧气,使原料发生部分燃烧。
生物质气化技术简介1、生物质能概述生物质能源是绿色植物将太阳能转化为化学能而贮存在生物质内的能量,通常包括: 木材及森林工业废弃物"农业废弃物"生活有机废弃物"水生植物"油料植物等。
世界能源消费中仅次于三大化石能源位列第四,占比达14%。
据统计资料介绍,2009年,欧盟生物质能源的消费量约占欧盟能源消费总量的6%,美国的生物质能源利用占全国能源消费总量的4%,瑞典为32%。
我国是个农业大国,生物质资源丰富,生物质能占能源消耗总量的20%,农村总能耗的65%以上为生物质能,其中薪材消耗量约占总能耗的29%。
生物质能源是一种理想的可再生能源,具有以下特点:(1)可再生性;(2)低污染性(生物质硫含量、氮含量低,燃烧过程中产生的SO2、NO2较低,生物质作为燃料时,二氧化碳净排放量近似于零,可有效地减少温室效应);(3)广泛的分布性。
缺乏煤炭的地域可充分利用生物质能。
典型生物质的密度为400~900kg/m3,热值为17600~22600kJ/kg。
表1分别是几种典型生物质燃料的元素分析和工业分析。
表1 几种典型生物质燃料元素分析和工业分析生物质能的研究开发,主要有物理转换、化学转换和生物转换3大类。
涉及到气化、液化、热解、固化和直接燃烧等技术。
生物质能转换技术及产品如图1所示。
图1 生物质能转换技术及产品2 、生物质气化生物质气化是一种热化学转换技术,利用空气、氧气或水蒸气作为气化剂,将生物质转化成可燃气体的的过程。
生物质气化可将低品位的固态生物质转换成高品位的可燃气体,可应用于集中供气、供热、发电以及作为化成化工品和原料气等。
2.1 气化原理(以上吸式固定床为例)图2是上吸式固定床气化炉的原理图,生物质从上部加入,气化剂从底部吹入,生成的气体从上部离开气化炉。
气化炉中参加反应的生物质自上而下分为干燥层、热分解层、还原层和氧化层。
从上面加入的湿物料在干燥层同下面反应层生成的热气体进行换热变成干物料落入热分解层,产生的水蒸气排出气化炉。