生物质循环流化床锅炉技术介绍
- 格式:pdf
- 大小:281.79 KB
- 文档页数:2
循环流化床锅炉原理
循环流化床锅炉是一种利用循环流化床燃烧技术的锅炉,其工作原理如下:
1. 燃料进料:燃料(如煤、生物质等)通过给料系统进入锅炉。
2. 燃烧反应:燃料在锅炉内被氧气气化和燃烧产生热能,生成的废气和灰分被释放到锅炉内。
3. 燃烧床层:锅炉内的燃料和空气混合物形成一个循环流化床,在床层中形成了固体燃料粒子的循环,同时也形成了气体和固体颗粒之间的循环流动。
4. 气固分离:床层中的气固两相分离,固体颗粒在床层循环,而燃烧生成的气体通过分离器进入锅炉的上部。
5. 固体回流:分离器中的固体颗粒被分离后,一部分被回流到床层继续燃烧,另一部分则通过排渣系统排出锅炉。
6. 热交换:燃烧生成的高温烟气在锅炉的热交换器中与水进行换热,产生蒸汽或热水。
7. 废气处理:通过合适的废气处理系统,对燃烧废气进行脱硫、脱硝和除尘等处理,降低废气对环境的污染。
总体来说,循环流化床锅炉通过循环流化床的形成,实现了燃料和空气的良好混合,提高了燃烧效率;同时通过固体的循环回流,在保持稳定燃烧的同时,降低了燃料的耗损和废渣产生量,提高了锅炉的可持续性和经济性。
循环流化床锅炉详细资料一、循环流化床锅炉的工作原理:循环流化床锅炉是利用空气和固体颗粒材料(如煤炭或生物质颗粒等)组成的床层,在高速气流和颗粒之间形成类似于流体的状态,称为“循环流化床”。
当燃料颗粒混合空气进入锅炉炉膛后,床层内的颗粒被悬浮并形成旋流,燃烧过程在床层内进行。
燃烧生成的热量通过床层内的固体颗粒和气流进行传递,使锅炉加热水或蒸汽。
二、循环流化床锅炉的特点:1.燃料适应性强:循环流化床锅炉能够燃烧各种固体燃料,包括煤炭、生物质、废弃物等,具有很强的燃料适应性。
2.高效能:循环流化床锅炉的热效率高,能够达到86%以上,利用燃料的能量更加充分。
3.环保节能:循环流化床锅炉能够减少排放,采用环保颗粒回收技术,可以降低废气中的污染物排放,符合环保要求。
4.综合利用:循环流化床锅炉不仅能够产生蒸汽和热水,还可以利用余热进行发电、供热等多种综合利用方式,提高能源的利用效率。
三、循环流化床锅炉的主要组成部分:1.炉膛:炉膛是循环流化床锅炉的主要燃烧区域,燃料在炉膛内被燃烧,并形成循环流化床。
2.分离器:分离器用于分离床层内的固体颗粒和气流,防止固体颗粒被带出炉膛。
3.固体循环系统:固体循环系统由循环器、床料存储器、引风机等组成,用于循环输送固体颗粒和调节床料混合气体温度。
4.气体循环系统:气体循环系统由引风机、沉降室、除尘器、脱硫装置等组成,用于循环输送空气、排除废气中的污染物。
5.蒸汽系统:蒸汽系统包括锅炉上部的过热器和冷凝器,用于产生高温高压蒸汽,供给工业生产或发电等用途。
四、循环流化床锅炉的应用领域:总结起来,循环流化床锅炉是一种高效能、环保节能的锅炉设备,适用于燃烧各种固体燃料,并具有多种综合利用方式。
其在工业生产和供热领域具有广泛的应用前景。
循环流化床锅炉技术循环流化床锅炉技术是一种高效、环保、节能的燃烧技术。
该技术利用循环流化床的高速气流把燃料物料悬浮在床层中,使其充分混合和燃烧,有效地保证了燃烧的充分程度和热能的利用率。
与传统锅炉相比,循环流化床锅炉具有热效率高、燃烧效率高、废气排放少、灰渣利用价值高等优点,因此在能源领域得到广泛应用。
一、循环流化床锅炉的基本原理循环流化床锅炉是一种利用循环流化床燃烧技术的锅炉,其基本原理是利用高速气流产生的快速搅拌作用,在床层中形成“气固两相流”,使燃料和空气充分混合并燃烧。
在循环流化床锅炉中,床层上方的空气被强制送入到床层中,形成了高速气流,使床层中的燃料物料悬浮在气流中并产生强烈的搅拌,从而形成了“气固两相流”。
床层下方设置有回料装置,将燃烧后的废渣回收到床层中,实现了废渣的循环利用。
二、循环流化床锅炉的优点1、热效率高:循环流化床锅炉可以利用燃料中的所有热能,强化了燃烧过程中的传热和传质,从而提高了锅炉的热效率。
2、燃烧效率高:循环流化床锅炉中燃烧完成度高,因为床料悬浮在气流中,使空气与燃料充分混合,从而实现了高效、充分的燃烧。
3、废气排放少:循环流化床锅炉的废气排放量低,废气中的二氧化硫和氮氧化物排放量远低于其他锅炉,对环境的影响小。
4、燃料适应性强:循环流化床锅炉可使用各种燃料,如煤、燃气、油、生物质等,具有一定的燃料适应性。
5、灰渣利用价值高:循环流化床锅炉中的灰渣细化程度高,易于回收利用,在土地改良、水泥生产和道路建设等领域具有广泛的使用价值。
三、循环流化床锅炉的应用领域循环流化床锅炉技术广泛应用于各个领域,如煤炭、石油、天然气、化工、冶金、烟草、食品、纺织等。
在煤炭领域,循环流化床锅炉可用于煤的燃烧,实现高效、低排放、节能的目的。
在化工、冶金、烟草等行业,循环流化床锅炉可用于燃烧废弃物、废气等,实现废物资源化、减少污染的目的。
综上所述,循环流化床锅炉技术是一种高效、环保、节能的燃烧技术,具有热效率高、燃烧效率高、废气排放少、灰渣利用价值高等优点,广泛应用于煤炭、石油、天然气、化工、冶金、烟草、食品、纺织等不同领域。
循环流化床锅炉技术简介循环流化床锅炉是一种先进的燃烧技术,广泛应用于煤炭、石油焦等固体燃料的燃烧过程。
该技术利用床体内循环流化材料的高速运动和颗粒之间的相互碰撞,实现了燃料的高效燃烧和废气中污染物的低排放。
本文将介绍循环流化床锅炉技术的原理、特点以及在能源产业中的应用。
原理循环流化床锅炉利用气体或液体流经床体时的流态化现象来实现燃料燃烧过程。
床体内的流化材料通常是细小的颗粒,如沙子、石英砂等。
当气体或液体通过床体时,流化材料将跟随气体或液体的流动而不断携带燃料颗粒进行混合。
在这个过程中,燃料颗粒与氧气发生氧化反应,释放出热能。
同时,床体中的循环材料会吸收燃烧产生的热能,保持床体温度的稳定。
特点循环流化床锅炉技术具有以下几个主要特点:1. 高效燃烧循环流化床锅炉通过床体内循环流化材料的高速运动和颗粒之间的碰撞,实现了燃料颗粒的均匀混合,从而使燃料的燃烧效率大幅提高。
与传统的炉膛燃烧相比,循环流化床锅炉的燃烧效率可以提高20%以上。
2. 低排放循环流化床锅炉在燃烧过程中会生成大量废气。
然而,通过控制床体内材料的流速和流态化程度,可以有效地减少废气中的污染物排放。
例如,通过添加适量的石灰石到床体中,可以中和和吸附废气中的酸性物质,减少大气污染的程度。
3. 燃料适应性强循环流化床锅炉技术可以适用于多种固体燃料,包括煤炭、石油焦、木材等。
通过调整床体内循环材料的粒径和流态化程度,可以适应不同燃料的燃烧特性,从而实现燃料的高效利用。
4. 热负荷调节能力强循环流化床锅炉可以快速调节燃料供给和床体内循环材料的流量,以适应不同的热负荷需求。
这种灵活的调节性能使得循环流化床锅炉尤其适用于工业生产过程中的热能供应。
应用循环流化床锅炉技术在能源产业中有着广泛的应用,尤其是在煤炭和石油化工行业中。
1. 电力行业循环流化床锅炉技术可以广泛应用于燃煤电厂。
通过高效燃烧和低排放的特点,循环流化床锅炉可以提高燃煤电厂的发电效率,减少大气污染物的排放,并降低燃料成本。
生物质锅炉(低倍率差速流化床)燃烧调整方法1.生物质在锅炉主副床上的燃烧过程生物质的燃烧通常可以分为三个阶段,即预热起燃阶段、挥发分燃烧阶段、炭燃烧阶段。
生物质在锅炉主副床上的燃烧过程分为预热干燥区、燃烧区和燃尽区,这可以与差速流化床锅炉的主床密相区、稀相区相和付床相对应。
根据各区的燃烧特点,各区需要的风量有差别,预热干燥区的风量少一些,燃烧区的风量要大一些。
燃料颗粒在锅炉中燃烧可以分为两种类型:颗粒大的在流化床主床上密相区燃烧,在气力播撒的过程中,颗粒特别小的在流化床上部稀相区发生悬浮燃烧,未燃尽颗粒在流化床稀相区和流化床付床上燃烧。
2、生物质在流化床内完全燃烧的条件炉内良好燃烧的标志就是在炉内不结渣的前提下,尽可能接近完全燃烧,同时保证较快的燃烧速度,得到最高的燃烧效率。
(1)供应充足而有合适的空气量如果过量空气系数过小,即空气量供应不足,会增大固体不完全燃烧热损失q4和可燃气体不完全燃烧热损失q3,使燃烧效率降低;如果过量空气系数过大,则会降低炉膛温度,增加不完全燃烧热损失。
最佳的过量空气系数使q2+q3+q4之和为最小值。
(2)适当提高炉温根据阿累尼乌斯定律,燃烧反应速度与温度成指数关系。
在保证炉膛不结渣的前提下,尽量提高炉膛温度。
(3)炉膛内良好的扰动和混合在着火和燃烧阶段,要保证空气和燃料的充分混合,在燃尽阶段,要加强扰动混合。
(4)燃料在炉排上和炉膛中有足够的停留时间(5)保持合理的火焰前沿位置。
火焰前沿应该位于高端炉排与中部炉排的之间区域,火焰在炉排上的充满度好。
3、差速流化床锅炉燃烧调整方法:(1)、入炉燃料掺配均匀,料质相对稳定,入炉燃料安全、稳定、连续均匀供应是锅炉燃烧稳定的前提和基础,所以如果要保持燃烧稳定,必须根据料仓内燃料料位的高低及时调整取料机转速,尽量使料仓内燃料同时均匀向前推进,尽量减少蓬料次数。
(2)、尽量控制流化床床温稳定1)、若出现床温降低时,可适当减少一次风量,增加给料量,但应注意过热器出口温度,调节减温水量,床温上升时应及时调整。
循环流化床锅炉的工作原理
循环流化床锅炉是一种利用循环流化床技术进行燃烧和热能转化的热力设备。
其工作原理可以简述如下:
1. 准备燃料:将燃料(如煤、生物质等)送入锅炉的燃料仓,经过预处理后,将燃料颗粒化并保持一定湿度。
2. 引风:启动引风机,引入足够的气流,使燃料在炉膛内燃烧时得到充分氧化。
3. 循环流化床:燃料和一定量的惰性物料(如矿石颗粒)一起投入到炉内的循环流化床中。
床内通过风机供气,使床层内的颗粒保持悬浮的状态,形成循环流化床。
床内气体与颗粒之间的剧烈混合增加了传热和物质传递的效率。
4. 燃烧:燃料进入炉膛后,在较高温度下进行氧化反应,释放出热能。
同时,床内的惰性物料的作用有助于抑制燃料的剧烈燃烧,使炉膛内的温度保持在合适的范围。
5. 煤渣排除:燃料在炉内燃烧后,生成的煤渣会随着循环床内的气流一起进入锅炉后部的分离设备。
在这里,煤渣和床内颗粒会通过离心力的作用分离开来。
床内颗粒会返回床内进行循环利用,而煤渣则被排出锅炉。
6. 余热回收:废气由引风机抽出,经过余热回收系统后,将烟气中的热能回收,提高整个系统的热效率。
总之,循环流化床锅炉通过床内颗粒的循环流动,实现了燃料的高效燃烧和热能转化。
相较传统的锅炉技术,循环流化床锅炉具有热效率高、燃烧效果好、抑制氮氧化物排放等优点,广泛应用于工业生产和供热领域。
循环流化床锅炉技术循环流化床锅炉技术是一种先进的燃煤热能利用技术,在能源行业中有着广泛的应用。
它以其高效能、低排放、安全可靠等特点,成为目前最为重要的火力发电技术之一。
本文将从循环流化床锅炉的工作原理、优点和应用前景等方面展开探讨。
循环流化床锅炉是一种以循环流化床为核心的锅炉系统,它通过将燃料与一定量的石灰岩混合,在高温下进行燃烧。
循环流化床锅炉的工作原理是利用床层内的气体作为流化介质,在床层中形成固体颗粒的悬浮状态,燃料在床层内燃烧产生的热能通过床层悬浮颗粒传递给水冷壁,然后转化为蒸汽,最终驱动汽轮机发电。
循环流化床锅炉技术具有多方面的优点。
首先,循环流化床锅炉具有燃烧效率高的特点。
由于床层内的燃料与空气均匀混合,并且形成悬浮状态,使得燃烧过程更加充分,能够大幅度提高燃烧效率,减少燃料的消耗和排放的废气。
其次,循环流化床锅炉燃烧过程中产生的灰渣可作为其它材料的原料,进一步提高了资源的利用效率。
再次,这种锅炉技术具有适应性强的特点,可燃烧多种不同种类的燃料,如燃煤、燃油、燃气等。
此外,循环流化床锅炉在燃烧过程中产生的废渣也比较易于处理,减少了对环境的污染。
循环流化床锅炉技术的应用前景非常广阔。
在能源行业中,循环流化床锅炉已经成为主流的火力发电技术,并且取得了良好的经济和环境效益。
循环流化床锅炉不仅适用于大型火力发电厂,也可应用于工业生产中的热能供应,如钢铁、化工、建材等行业。
此外,随着环保意识的普及和对清洁能源的需求增加,循环流化床锅炉技术有望在未来得到更广泛的应用,并成为实现能源可持续发展的重要手段。
总之,循环流化床锅炉技术是一种高效能、低排放的火力发电技术,它的工作原理和优点使其成为目前最为重要的火力发电技术之一。
在应用方面,循环流化床锅炉已经得到了广泛的应用,并取得了良好的经济和环境效益。
未来,循环流化床锅炉技术有望在能源行业和工业生产中得到更广泛的应用,为实现能源可持续发展作出更大的贡献。
循环流化床锅炉简介循环流化床锅炉是一种以煤粉为燃料,使用炉膛内高速流化床的燃烧技术。
在循环流化床锅炉的炉膛内,燃料与气体混合后在高速气流的作用下形成悬浮状态,使燃料粒子充分接触,燃烧效率高。
在锅炉炉膛上部设置了分离器,通过分离器将煤粉和燃烧产物分离,燃烧产物通过锅炉排放,而煤粉经过循环系统再次进入炉膛燃烧。
循环流化床锅炉的燃烧效率相较于传统的锅炉有较大的提高。
首先,在循环流化床锅炉中,煤粉可以充分混合、燃烧,燃烧效果好。
此外,废气中的一氧化碳(CO)和二氧化碳(CO2)等有害物质得到有效控制,减少了对环境的污染。
另外,循环流化床锅炉利用炉内高温气体的再循环,使得燃烧产热效率得到提高。
因此,循环流化床锅炉具有热效率高、燃烧效果好、污染物排放少的特点。
循环流化床锅炉的应用领域非常广泛。
首先,在电力行业,循环流化床锅炉可以广泛应用于热电厂,供应热水和蒸汽等能源。
其次,在钢铁、化工等行业,循环流化床锅炉可以作为工业锅炉使用,提供生产过程中需要的热能。
此外,在城市供热行业,循环流化床锅炉可以用于供暖和生活热水等领域。
因此,循环流化床锅炉的应用场景非常多样化。
随着环保意识的提高以及国家对污染物排放的要求越来越严格,循环流化床锅炉在未来的发展前景非常广阔。
传统的锅炉技术由于燃烧不完全、污染物排放过高,逐渐被淘汰。
而循环流化床锅炉凭借其高效、低污染的优势,成为了锅炉行业的发展方向。
未来,循环流化床锅炉将继续推广应用于电力、化工、石油、钢铁等行业,同时技术将不断进步,使得循环流化床锅炉更加高效、低耗、低污染。
总结起来,循环流化床锅炉是一种高效、低污染的燃煤锅炉技术。
它利用炉膛内高速气流形成悬浮状态的燃料粒子,提高了燃烧效率,减少污染物排放。
循环流化床锅炉在电力、工业、供热等领域应用广泛,未来有着良好的发展前景。
生物质循环流化床锅炉尾部烟气NOx排放控制预防技术1. 引言1.1 生物质循环流化床锅炉尾部烟气NOx排放控制预防技术概述生物质循环流化床锅炉尾部烟气NOx排放控制预防技术是环保领域的重要课题,随着生物质燃烧技术的广泛应用,对烟气中NOx排放的控制越来越受到关注。
NOx是造成大气污染和酸雨的主要元凶之一,因此有效控制生物质循环流化床锅炉尾部烟气NOx排放是保护环境、维护人类健康的重要举措。
生物质循环流化床锅炉是利用生物质作为燃料进行燃烧,通过气流的循环作用实现热能的高效利用。
在燃烧过程中,生物质中的氮氧化物会在高温条件下与氧气发生反应,生成NOx。
而这些NOx排放到大气中后,会与其他污染物相互作用,形成臭氧和颗粒物,对人类健康和环境造成危害。
为了有效控制生物质循环流化床锅炉尾部烟气中NOx的排放,需要采取一系列预防技术。
这些技术包括调整燃烧参数、使用NOx还原剂、优化废气处理装置等。
通过综合运用这些技术,可以有效降低生物质循环流化床锅炉尾部烟气中NOx的排放浓度,保护环境和人类健康。
预防技术的应用和效果将在本文正文部分进行详细探讨,并通过对不同预防技术效果的对比,分析其优缺点,为生物质循环流化床锅炉尾部烟气NOx排放控制提供参考和指导。
2. 正文2.1 生物质循环流化床锅炉工作原理生物质循环流化床锅炉是一种专门用于生物质燃烧的锅炉设备,其工作原理主要包括燃烧系统、循环系统和废气处理系统。
燃烧系统是生物质循环流化床锅炉的核心部分,通过将生物质燃料送入炉膛,并在高温氧气的作用下进行燃烧,释放出热量和废气。
循环系统则主要包括循环气体的流动控制,通过循环风机将废气进行循环利用,提高热效率和降低排放。
废气处理系统是非常重要的组成部分,通过预处理设备和净化装置将烟气中的有害物质去除,保证烟气排放符合环保标准。
生物质循环流化床锅炉的工作原理具有高效、低排放、节能的特点,可以有效利用生物质资源,减少对传统化石燃料的依赖,对环境保护和可持续发展具有重要意义。
生物质循环流化床锅炉技术介绍摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。
生物质锅炉供热具有清洁环保经济适用的特点,一是技术比较成熟,工艺简单;二是大气污染物排放较少,生物质燃料锅炉燃烧排放SO2浓度较低,安装除尘设施后锅炉烟尘、氮氧化物排放可达到轻油排放标准,以林业剩余物为主的生物质燃料锅炉大气污染物排放可达到天然气标准;三是经济可行,生物质燃料价格较低,生物质锅炉供热有着较为明显的成本优势;四是分布式供热,直接在终端消费侧替代燃煤供热,分散布局,运行灵活,适应性强,满足多元化用热需求。
目前国内生物质燃烧的锅炉有往复式炉排炉、水冷振动式炉排炉、循环流化床锅炉、联合炉排锅、链条炉等等。
其中链条炉和循环流化床运行较为广泛。
本文对循环流化床锅炉和链条炉进行分析比较,为生物质锅炉选型提供依据。
关键词:生物质;循环流化床锅炉;链条炉;技术性能比较;经济性比较引言生物质是清洁、稳定、分布广泛的可再生资源,生物质的利用符合能源转型、碳减排、清洁环保及治理雾霾的能源发展战略。
随着国家对环境保护的要求不断提高,生物质等可再生能源的重要性逐渐增加,国家先后发布多个文件,大力支持生物质发电技术应用推广。
生物质发电技术包括生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电等。
生物质直接燃烧技术生产过程比较简单,设备和运行的成本相对较低,是现行的可以大规模推广利用的技术。
而循环流化床燃烧方式因其强烈的传热、传质、低温燃烧、燃料适应性广,负荷调整范围宽、燃烧效率高等特点,被广泛的应用于生物质发电。
本文从生物质燃料的特点出发,介绍生物质直燃流化床锅炉的技术特点及相关技术问题。
1生物质燃料特性1.1几种典型的生物质燃料固体生物质燃料取材广泛,主要包括木本原料,即树木和各种采伐、加工的残余物质;草本原料,如农作物秸杆、草类及加工残余物;果壳类原料,如花生壳、板栗壳等;其他混杂燃料,如生活垃圾、造纸污泥等。
生物质流化床锅炉作业指导书摘要:一、生物质流化床锅炉概述二、生物质流化床锅炉工作原理三、生物质流化床锅炉作业流程四、生物质流化床锅炉操作与维护五、安全注意事项正文:一、生物质流化床锅炉概述生物质流化床锅炉是一种利用生物质燃料进行燃烧,产生蒸汽驱动发电机发电的设备。
生物质燃料具有可再生、低碳排放、环保等特点,符合当前绿色能源的发展趋势。
生物质流化床锅炉具有高效、节能、环保等优点,广泛应用于农村、企事业单位、酒店等场所。
二、生物质流化床锅炉工作原理生物质流化床锅炉采用流化床燃烧技术,使生物质燃料在锅炉内充分燃烧,释放热量。
燃料经过破碎、干燥、燃烧等过程,转化为高温高压的蒸汽。
蒸汽通过管道输送至发电机组,驱动发电机发电。
同时,锅炉产生的废气经过净化处理,达到环保排放标准。
三、生物质流化床锅炉作业流程1.准备燃料:选用干燥、破碎的生物质燃料,保证燃烧效果和设备运行稳定性。
2.燃料输送:将生物质燃料送入锅炉燃烧室。
3.燃烧过程:在燃烧室内,生物质燃料在高温下充分燃烧,产生热量。
4.蒸汽生成:燃烧产生的热量使锅炉水蒸发,形成蒸汽。
5.蒸汽输送:蒸汽通过管道输送至发电机组。
6.发电过程:蒸汽驱动发电机组旋转,产生电能。
7.废气处理:锅炉产生的废气经过净化设备处理,达到环保排放标准。
四、生物质流化床锅炉操作与维护1.操作注意事项:(1)确保燃料准备充分,燃料仓内保持一定数量的生物质燃料。
(2)定期检查锅炉设备,确保设备运行正常。
(3)定期清理锅炉内积灰,提高锅炉热效率。
(4)定期检查蒸汽管道、阀门等,确保管道畅通。
2.维护注意事项:(1)定期对锅炉本体、燃烧设备、蒸汽管道等进行检查、维修。
(2)定期更换锅炉水位计、压力表等仪表的密封件。
(3)定期检查锅炉安全阀,确保其正常开启和回座压力。
(4)定期对燃烧设备进行校准,保证燃烧效果。
五、安全注意事项1.严格遵守操作规程,确保设备安全运行。
2.作业过程中,严禁无关人员靠近锅炉设备。
高温高压生物质循环流化床锅炉高温高压循环流化床锅炉是一种新型的生物质能源利用设备,在能源领域具有重要的意义。
它通过将生物质颗粒在高温高压下进行燃烧和气化,实现了生物质的高效利用和清洁能源的开发。
本文将从原理、结构、特点和应用等方面对高温高压生物质循环流化床锅炉进行详细介绍。
高温高压循环流化床锅炉是以生物质为燃料,通过高温高压循环流化床锅炉的燃烧和气化过程,将生物质中的碳、氢、氧等元素转化为热能和可再生的生物质气体燃料。
其核心原理是通过循环流化床技术,将锅炉中的燃料和气体物质进行充分的混合和燃烧,从而实现高效、清洁的能源转化。
高温高压循环流化床锅炉的结构主要包括锅炉本体、循环装置、燃烧装置和控制系统。
锅炉本体由炉膛、换热面以及烟气排放系统等组成;循环装置包括循环风机、循环器和循环物料输送装置等;燃烧装置由燃烧室、燃烧器和点火装置等构成;控制系统则负责对整个设备进行监控和控制。
高温高压循环流化床锅炉有几个重要的特点。
首先,它可以实现生物质的高效利用,将生物质资源转化为热能和电能,实现了生物质能源的可持续利用。
其次,由于循环流化床的特性,燃烧和气化过程中的反应速度快,燃烧效率高,同时废气中的污染物排放更少,从而实现了清洁能源的生产。
再次,高温高压循环流化床锅炉还具有调节能力强、负荷范围广以及快速启动等特点,可以适应各种工况变化,并且具有较低的运行成本。
高温高压循环流化床锅炉在能源领域应用广泛。
首先,它可以作为工业生产的热能设备,广泛应用于化工、制药、纺织等行业,满足其对热能的需求。
其次,高温高压循环流化床锅炉可以与蒸汽发生器结合,形成联合循环系统,提高能源利用效率,并可应用于电力行业的发电设备。
此外,高温高压循环流化床锅炉也可用于城市供热系统,为居民提供清洁、可再生的热能资源。
总之,高温高压循环流化床锅炉是一种高效、清洁的生物质能源利用设备。
它通过循环流化床技术,实现了生物质的高效利用,并具有调节能力强、负荷范围广、污染物排放少等特点。
生物质流化床锅炉工作原理1. 什么是生物质流化床锅炉?嘿,大家好!今天我们来聊聊生物质流化床锅炉,这个名字听上去有点儿高大上,其实就是把一些植物的残渣、废料变成能量的神奇机器。
想象一下,你在厨房里处理那些多余的蔬菜皮,居然能把它们变成热量,这可是环保又省钱的好办法!生物质锅炉的工作原理就像是把这些废物变成了“燃料黄金”,不仅能减少垃圾,还能发电、供热,真是一举两得,划算得不得了。
1.1 生物质是什么?说到生物质,咱们得先明白它是什么。
简单来说,生物质就是来自于植物和动物的有机物。
比如说,稻草、木屑、动物粪便等等,都是典型的生物质。
这些东西本来就被我们丢弃,结果在生物质锅炉里,它们竟然摇身一变,变成了宝贵的能量。
就像是“废物利用”,让我们在环保的同时,顺便发个小财。
1.2 流化床的秘密那么,什么是“流化床”呢?这可不是个难懂的概念。
流化床就像是一场热闹的舞会,颗粒物在锅炉里随着气流的冲击“舞动”起来。
想象一下,在锅炉的底部,燃烧空气被强烈地吹上来,这些颗粒物就会在空气的推动下,像在跳舞一样,漂浮起来。
这种状态就叫流化,流化床锅炉正是利用这种原理,使得燃料能充分燃烧,效率高得不得了。
2. 生物质流化床锅炉的工作过程好啦,接下来我们来聊聊生物质流化床锅炉的工作过程。
其实,这个过程也不复杂,咱们可以一步一步来。
2.1 加载燃料首先,得把生物质燃料准备好,比如说木屑、稻壳、甚至是秸秆。
然后,把这些燃料放进锅炉的储料箱,像是在装点心,越丰富越好!接着,打开阀门,燃料就会被送入流化床。
此时,锅炉的底部已经开始加热,空气也被强力送入。
2.2 燃烧过程接下来,咱们进入了最精彩的环节——燃烧!当这些生物质在热空气的吹动下,开始剧烈燃烧的时候,整锅炉就像是点燃了的烟花,光芒四射。
燃烧过程中,释放出来的热量不仅让锅炉内部温度蹭蹭往上涨,还能把水加热,产生蒸汽,给我们带来温暖和动力。
就好像是给锅炉加了“能量饮料”,让它充满活力。
生物质流化床锅炉作业指导书摘要:一、生物质流化床锅炉概述二、生物质流化床锅炉的运行原理三、生物质流化床锅炉的安装与维护四、生物质流化床锅炉的安全操作规程五、生物质流化床锅炉的常见问题及解决方法正文:生物质流化床锅炉作业指导书生物质流化床锅炉是一种新型的锅炉设备,它采用生物质作为燃料,通过燃烧生物质来加热水。
与传统的燃煤锅炉相比,生物质流化床锅炉具有环保、节能、低碳等优点,越来越受到大家的欢迎。
一、生物质流化床锅炉概述生物质流化床锅炉采用生物质作为燃料,其燃料来源广泛,包括稻壳、玉米秸秆、豆秸秆等。
生物质流化床锅炉的结构主要由锅炉本体、燃烧器、风机、除尘器等组成。
二、生物质流化床锅炉的运行原理生物质流化床锅炉运行时,首先将生物质燃料放入燃烧器中,然后通过风机将空气送入燃烧器,使生物质燃料燃烧。
燃烧产生的热量传递给锅炉本体中的水,使水温度升高,从而加热水。
三、生物质流化床锅炉的安装与维护生物质流化床锅炉的安装需要专业人员进行,安装时需要保证锅炉本体、燃烧器、风机、除尘器等设备的正常运行。
在锅炉运行过程中,需要定期进行维护,包括清洗除尘器、检查燃烧器等。
四、生物质流化床锅炉的安全操作规程生物质流化床锅炉的安全操作规程包括:确保锅炉本体、燃烧器、风机、除尘器等设备的安全运行;定期进行安全检查,及时发现并解决问题;操作人员应经过专业培训,熟悉锅炉的操作流程。
五、生物质流化床锅炉的常见问题及解决方法生物质流化床锅炉运行过程中,可能会出现燃烧不充分、除尘器堵塞等问题。
针对这些问题,可以采取增加燃料、清洗除尘器等措施来解决。
总之,生物质流化床锅炉是一种新型的锅炉设备,具有环保、节能、低碳等优点。
生物质循环流化床锅炉技术介绍
发表时间:2019-09-21T22:55:42.280Z 来源:《基层建设》2019年第19期作者:刘曼
[导读] 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。
中国能源建设集团山西电力建设有限公司山西太原 030012
摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。
生物质锅炉供热具有清洁环保经济适用的特点,一是技术比较成熟,工艺简单;二是大气污染物排放较少,生物质燃料锅炉燃烧排放SO2浓度较低,安装除尘设施后锅炉烟尘、氮氧化物排放可达到轻油排放标准,以林业剩余物为主的生物质燃料锅炉大气污染物排放可达到天然气标准;三是经济可行,生物质燃料价格较低,生物质锅炉供热有着较为明显的成本优势;四是分布式供热,直接在终端消费侧替代燃煤供热,分散布局,运行灵活,适应性强,满足多元化用热需求。
目前国内生物质燃烧的锅炉有往复式炉排炉、水冷振动式炉排炉、循环流化床锅炉、联合炉排锅、链条炉等等。
其中链条炉和循环流化床运行较为广泛。
本文对循环流化床锅炉和链条炉进行分析比较,为生物质锅炉选型提供依据。
关键词:生物质;循环流化床锅炉;链条炉;技术性能比较;经济性比较
引言
生物质是清洁、稳定、分布广泛的可再生资源,生物质的利用符合能源转型、碳减排、清洁环保及治理雾霾的能源发展战略。
随着国家对环境保护的要求不断提高,生物质等可再生能源的重要性逐渐增加,国家先后发布多个文件,大力支持生物质发电技术应用推广。
生物质发电技术包括生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电等。
生物质直接燃烧技术生产过程比较简单,设备和运行的成本相对较低,是现行的可以大规模推广利用的技术。
而循环流化床燃烧方式因其强烈的传热、传质、低温燃烧、燃料适应性广,负荷调整范围宽、燃烧效率高等特点,被广泛的应用于生物质发电。
本文从生物质燃料的特点出发,介绍生物质直燃流化床锅炉的技术特点及相关技术问题。
1生物质燃料特性
1.1几种典型的生物质燃料
固体生物质燃料取材广泛,主要包括木本原料,即树木和各种采伐、加工的残余物质;草本原料,如农作物秸杆、草类及加工残余物;果壳类原料,如花生壳、板栗壳等;其他混杂燃料,如生活垃圾、造纸污泥等。
1.2生物质燃料灰分特性
生物质灰中含有丰富的无机矿物质成分,如:硅酸盐、碳酸盐、硫酸盐与磷酸盐等,灰的组成对生物质的热解特性有着重要的影响,且硅酸盐、碱金属及碱土金属的存在易引起管路系统的结渣、堵塞。
为了安全、高效地运行,需对生物质灰的主要矿物质及微量元素的组成进行全面的分析。
2生物质CFB锅炉技术开发
2.1国内外生物质发电技术应用
我国生物质能目前主要以农林废弃物为主,农业废弃物主要是农作物秸秆。
生物质发电产业通常包括生物质直燃发电、生物质混燃发电和生物质气化发电。
国外烧秸秆及其它生物质的新建机组一般都采用了炉排燃烧的小型锅炉。
秸秆通常被打成标准尺寸的大捆,应用专用设备打捆、装卸和运输。
秸秆通过螺旋送料机,送进炉膛,在炉排上燃烧。
2.2生物质CFB锅炉技术介绍
CFB锅炉的燃烧方式、高温床料、特殊的物料循环系统,低温燃烧、燃料的适应性广等特性,使其更适合生物质燃料的复杂多变及低氮排放要求。
锅炉采用单汽包、自然循环、单段蒸发系统,炉膛蒸发受热面采用膜式壁,炉膛内内置屏式三级过热器和水冷屏,以提高整个过热器系统的辐射传热特性,使锅炉过热汽温具有良好的调节特性。
旋风分离器采用汽冷结构,回料阀为非机械型,回料为自平衡式。
炉膛、分离器、回料阀组成了物料的热循环回路,分离后的烟气进入尾部烟道。
尾部烟道采用三烟道型式,下行的一烟道内布置低温过热器、上行的二烟道内布置中温过热器和高温省煤器,下行的三烟道内布置低温省煤器和空气预热器。
一、二烟道为膜式壁的包墙过热器,三烟道采用护板结构。
低NOx燃烧技术和炉内脱硫,可有效控制NOx和SOx的排放,满足环保要求。
同时为进一步超低排放,在分离器入口烟道预留SNCR.接口。
2.3相关配套设备
由于生物质燃料堆积密度小、比重轻,自密封性差,给料设备的选型尤为重要。
可以采用两级螺旋给料系统或两级挡板给料系统。
生物质锅炉沾污问题较重,一整套性能良好、质量可靠、数量足够的吹灰设备能在锅炉运行时保持尾部烟道内的过热器、再热器、省煤器和空气预热器受热面的清洁。
由于生物质燃料灰分低、成灰特性差,可以考虑增加在线加料系统,以补充循环灰量的不足并能稀释碱金属浓度,降低结焦的风险,提高运行的安全性。
3流化床锅炉尾部排放NOx生成原理
3.1热力型和快速型
通过资料得知,1500℃是热力型NOx生成临界点。
当温度<1500℃时,NOx不易生成;当温度>1500℃时,NOx生成量猛增。
由于实际生产中本厂炉膛温度处于600-850℃,因此热力型不是本厂NOx的生成原因。
另外快速型NOx由于其产生特点,实际生产中通常也不作为控制方向。
3.2燃料型
燃料型NOx是由燃料中的氮元素在燃烧时形成的。
炉膛温度约为600℃-800℃时,燃料型NOx就能生成。
研究发现空气系数是最重要的原因,转化率随空气系数增加而增大。
结合本厂的实际情况得知,燃料型NOx是主要元凶,也是最主要的控制方向。
在曲线中可以清晰的看到,当两侧空气系数升高时,NOx的生成量快速升高;当两侧空气系数降低时,NOx的生成量快速下降。
因此控制合适的空气系数是重中之重。
4生物质锅炉生产中
NOx的控制方法(1)加强上配料精细化管理,燃运分部制定好当天的上配料方案,并按上配料方案提前做好干湿燃料的混合工作。
上
料车要加强对入炉燃料的杂物检查,发现燃料中的杂质及时清理。
锅炉发生堵塞故障时必须加快处理速度,减少堵料造成空气系数过量引起的NOx波动。
(2)正常运行中,保证流化的前提下,适当降低一次风量,维护在7-7.5万km3/h之间运行。
在NOx指标超标时,运行人员应优先降低一次风量来控制NOx的升高。
(3)正常运行中,运行人员对NOx指标的控制必须预先判断,提前调整,从一开始就尽量将NOx 指标控制至最低值。
二次风量根据锅炉氧量来调整,正常运行中,在确保锅炉排放SO2指标正常的情况下,控制锅炉氧量在1%以下。
(4)正常运行中,锅炉两侧给料机转速要均匀,杜绝两侧氧量偏差大于5%的情况。
正常运行中,加强对锅炉氧量的监视,根据锅炉氧量的变化,提前干预增减燃料。
在调整锅炉燃烧时,尽量用小幅增减给料机转速的办法,杜绝使用大幅度停运或投运给料机的方法调整燃烧。
(5)正常运行中,应维持机组负荷稳定,杜绝出现机组负荷大幅度波动。
在锅炉NOx基准值偏高(长时间平均值超过180mg/m3)时,果断锅炉降负荷运行。
结语
了解生物质循环流化床锅炉的燃料特性,燃烧特性,针对技术关键点解决磨损、结焦、腐蚀、堵塞等问题,选用合理的设计方案,成熟的配套设备,有利于生物质CFB锅炉的发展和应用。
参考文献
[1]程乐鸣,周强等.链条炉改造为循环流化床锅炉的设计与运行[J].热力发电,2005,34(3):25-27.
[2]中国电力科学研究生物质能研究室.生物质能及其发电技术[M].中国电力出版社,2008.
[3]杨勇平,董长青,张俊姣.生物质发电技术[M].北京:中国水利水电出版社,2007.
[4]张殿军,陈之航.生物质燃烧技术的应用[J].能源研究与信息1999,15(3).。