当前位置:文档之家› 电机缺相的自检装置及其使用方法

电机缺相的自检装置及其使用方法

电机缺相的自检装置及其使用方法
电机缺相的自检装置及其使用方法

(10)申请公布号 (43)申请公布日 2013.06.26C N 103176126 A (21)申请号 201110441628.1

(22)申请日 2011.12.26

G01R 31/34(2006.01)

G01R 29/16(2006.01)

(71)申请人上海大郡动力控制技术有限公司

地址201114 上海市闵行区浦江镇新骏环路

188号1号楼

(72)发明人殷浩 雷小军 徐性怡

(74)专利代理机构上海天协和诚知识产权代理

事务所 31216

代理人

李彦

(54)发明名称

电机缺相的自检装置及其使用方法

(57)摘要

本发明涉及对过电流起反应的紧急保护电路

装置领域,具体为一种电机缺相的自检装置及其

使用方法。一种电机缺相的自检装置,包括电流传

感器(1),其特征是:还包括电机控制器(2)和角

度传感器(3),电流传感器(1)和角度传感器(3)

都通过信号线连接微处理器(21)。一种电机缺相

的自检装置的使用方法,其特征是:在电机(4)停

机后,按a.参数输入、b.参数处理、c.调制电压

和d.判断缺相步骤依次进行。本发明结构简单,

安装方便,反应灵敏,安全可靠,适用范围广。

(51)Int.Cl.

权利要求书1页 说明书3页 附图1页

(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书3页 附图1页(10)申请公布号CN 103176126 A

*CN103176126A*

1/1页

1. 一种电机缺相的自检装置,包括电流传感器(1),其特征是:还包括电机控制器(2)和角度传感器(3),电机控制器(2)由微处理器(21)和三相脉冲宽度调制整流器(22)组成,微处理器(21)内设有电流转换单元(211)和电压转换单元(212),微处理器(21)通过信号线连接三相脉冲宽度调制整流器(22),三相脉冲宽度调制整流器(22)将从直流输入端输入的直流电逆变成三相交流电输出,三相脉冲宽度调制整流器(22)的三相交流输出端通过导线连接电机(4),在其中任意两相的导线上各串联一个电流传感器(1),电机(4)的转子一侧设有角度传感器(3),电流传感器(1)和角度传感器(3)都通过信号线连接微处理器(21)。

2. 如权利要求1所述的电机缺相的自检装置,其特征是:微处理器(21)选用数字信号处理器或单片机。

3. 如权利要求1或2所述的电机缺相的自检装置的使用方法,其特征是:在电机(4)停机后,按如下步骤依次进行:

a. 参数输入:电流传感器(1)将输入电机(4)的三相交流电中两相的电流值输入微处理器(21),设两个电流分别为Ia 和Ib ,角度传感器(3)将电机(4)转子的初相位值输入微处理器,令初相位θ=0,

b. 参数处理:微处理器(21)的电流转换单元(211)根据Ia 、Ib 和θ计算出电机(4)此时的直轴电流和交轴电流,设计算所得的直轴电流为Id ,交轴电流为Iq ,同时微处理器

(21)对直轴电流和交轴电流分别设定一初始电流值,设直轴电流的初始电流值为Id0,交轴电流的初始电流值为Iq0,且有Id0≠0,Iq0=0,微处理器(21)的电压转换单元(212)对Id 、Iq 、Id0和Iq0作比例积分运算得出此时电机(4)所需的电压,

c. 调制电压:微处理器(21)控制三相脉冲宽度调制整流器(22)对电机(4)所需的电压作三相脉冲宽度调制,将电压信号调制成三相交流电并输入电机(4),若微处理器(21)处理的信号尚未收敛成稳态,则返回a 步骤,若已经收敛成稳态,则继续下一个d 步骤,

d. 判断缺相:当Ia 和Ib 的值符合下列(i)和(ii)两种情况中的任意一种时,微处理器(21)判断电机(4)存在缺相:(i) Ia 和Ib 中有一个值为零;(ii) Ia 和Ib 两者的绝对值中有一个值小于另一个值的1/10。权 利 要 求 书CN 103176126 A

电机缺相的自检装置及其使用方法

技术领域

[0001] 本发明涉及对过电流起反应的紧急保护电路装置领域,具体为一种电机缺相的自检装置及其使用方法。

背景技术

[0002] 目前新能源汽车正日益得到广泛应用,新能源汽车普遍采用同步电机驱动,由电池组输出的直流电经逆变器逆变成三相交流电后输入同步电机,同步电机驱动汽车行驶,同时再配以电机控制器以控制同步电机的运行。实际使用时,同步电机可能因为安装上的问题或者主回路损坏而导致电机运行时缺相,缺相运行不仅可能导致电机退磁,而且对安全带来隐患。现有缺相保护器大多采用在输出回路里加设专门用于监视逆变器输出状态的装置来判断是否缺相,需要在电机启动后再通过检测电流予以监视,存在一定的滞后,在对于低速以及力矩响应要求高的领域很难做到及时反应,而且增加设备导致结构复杂,同时还需进行对精度要求较高的输出电压检测,使得成本增加,安装困难。

发明内容

[0003] 为了克服现有技术的缺陷,提供一种结构简单、安装方便、反应灵敏、安全可靠的缺相检测方法,本发明公开了一种电机缺相的自检装置及其使用方法。

[0004] 本发明通过如下技术方案达到发明目的:

一种电机缺相的自检装置,包括电流传感器,其特征是:还包括电机控制器和角度传感器,电机控制器由微处理器和三相脉冲宽度调制整流器组成,微处理器内设有电流转换单元和电压转换单元,微处理器通过信号线连接三相脉冲宽度调制整流器,三相脉冲宽度调制整流器将从直流输入端输入的直流电逆变成三相交流电输出,三相脉冲宽度调制整流器的三相交流输出端通过导线连接电机,在其中任意两相的导线上各串联一个电流传感器,电机的转子一侧设有角度传感器,电流传感器和角度传感器都通过信号线连接微处理器。[0005] 所述的电机缺相的自检装置,其特征是:微处理器选用数字信号处理器或单片机。[0006] 所述的电机缺相的自检装置的使用方法,其特征是:在电机停机后,按如下步骤依次进行:

a. 参数输入:电流传感器将输入电机的三相交流电中两相的电流值输入微处理器,设两个电流分别为Ia和Ib,角度传感器将电机转子的初相位值输入微处理器,令初相位θ=0,

b. 参数处理:微处理器的电流转换单元根据Ia、Ib和θ计算出电机此时的直轴电流和交轴电流,设计算所得的直轴电流为Id,交轴电流为Iq,同时微处理器对直轴电流和交轴电流分别设定一初始电流值,设直轴电流的初始电流值为Id0,交轴电流的初始电流值为Iq0,且有Id0≠0,Iq0=0,微处理器的电压转换单元对Id、Iq、Id0和Iq0作比例积分(即proportion integration,简称PI)运算得出此时电机所需的电压,

c. 调制电压:微处理器控制三相脉冲宽度调制整流器对电机所需的电压作三相脉冲

宽度调制,将电压信号调制成三相交流电并输入电机,若微处理器处理的信号尚未收敛成稳态,则返回a步骤,若已经收敛成稳态,则继续下一个d步骤,

d. 判断缺相:当Ia和Ib的值符合下列(i)和(ii)两种情况中的任意一种时,微处理器判断电机存在缺相:(i) Ia和Ib中有一个值为零;(ii) Ia和Ib两者的绝对值中有一个值小于另一个值的1/10。

[0007] 本发明通过在电机处于静止状态时分别检测每一相的电流实现对电机缺相的检测,使得电机在静止状态下能够在1ms内快速检测是否存在缺相问题,增加了对电机缺相的保护功能,而不必专门增设缺相保护器、电压传感器等额外设备,可确保电机在没有缺相隐患的情况下启动,增加了使用电机的系统的可靠性,可广泛应用于电机驱动设备,如混合动力汽车、纯电动汽车等。本发明的有益效果是:结构简单,安装方便,反应灵敏,安全可靠,适用范围广。

附图说明

[0008] 图1是本发明的结构示意图。

具体实施方式

[0009] 以下通过具体实施例进一步说明本发明。

[0010] 实施例1

一种电机缺相的自检装置,包括电流传感器1、电机控制器2和角度传感器3,如图1所示,具体结构是:电机控制器2由微处理器21和三相脉冲宽度调制整流器22组成,微处理器21内设有电流转换单元211和电压转换单元212,微处理器21通过信号线连接三相脉冲宽度调制整流器22,三相脉冲宽度调制整流器22将从直流输入端输入的直流电逆变成三相交流电输出,三相脉冲宽度调制整流器22的三相交流输出端通过导线连接电机4,在其中任意两相的导线上各串联一个电流传感器1,电机4的转子一侧设有角度传感器3,电流传感器1和角度传感器3都通过信号线连接微处理器21。微处理器21可以选用数字信号处理器或单片机,本实施例选用数字信号处理器。

[0011] 本实施例使用时,在电机4停机后,按如下步骤依次进行:

a. 参数输入:设输入电机4的三相交流电分别为A相、B相和C相,电流传感器1将A 相和B相的电流值输入微处理器21,设两个电流分别为Ia和Ib,角度传感器3将电机4转子的初相位值输入微处理器,令初相位θ=0,

b. 参数处理:微处理器21的电流转换单元211根据Ia、Ib和θ计算出电机4此时的直轴电流和交轴电流,设计算所得的直轴电流为Id,交轴电流为Iq,同时微处理器21对直轴电流和交轴电流分别设定一初始电流值,设直轴电流的初始电流值为Id0,交轴电流的初始电流值为Iq0,且有Id0≠0,Iq0=0,微处理器21的电压转换单元212对Id、Iq、Id0和Iq0作比例积分(即proportion integration,简称PI)运算得出此时电机4所需的三相电压信号,设所述的三相电压信号分别为U相、V相和W相,

c. 调制电压:微处理器21控制三相脉冲宽度调制整流器22对U相、V相和W相的电压信号作三相脉冲宽度调制(即pulse width modulation,简称PWM),将其调制成A相、B 相和C相的三相交流电并输入电机4,若微处理器21处理的信号尚未收敛成稳态,则返回a

步骤,若已经收敛成稳态,则继续下一个d步骤,

d. 判断缺相:设A相、B相和C相电流值的理论值分别为Ia0、Ib0和Ic0,则有Ia0=Id,Ib0=Ic0-Id/2,因此,当Ia和Ib的值符合下列(i)和(ii)两种情况中的任意一种时,微处理器21判断电机4存在缺相:(i) Ia和Ib中有一个值为零;(ii) Ia和Ib两者的绝对值中有一个值小于另一个值的1/10。

图1

接地电阻摇表使用方法及标准

接地电阻摇表使用方法 及标准 Revised as of 23 November 2020

接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。 以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。测量屏蔽体电阻时,应松开镀铬铜板,一个E接线柱接接地体,另一个E接线柱接屏蔽。 (2)P柱接随仪表配来的20m纯铜导线,导线另一端接插针。 (3)C柱接随仪表配来的40m纯铜导线,导线的另一端接插针2。 2 接地电阻测试仪设置的技术要求 (1)接地电阻测试仪应放置在离测试点1~3m处,放置应平稳,便于操作。 (2)每个接线头的接线柱都必须接触良好,连接牢固。 (3)两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置;如果用一直线将两插针连接,待测接地体应基本在这一直线上。 (4)不得用其他导线代替随仪表配置来的5m、20m、40m长的纯铜导线。 (5)如果以接地电阻测试仪为圆心,则两支插针与测试仪之间的夹角最小不得小于120°,更不可同方向设置。 (6)两插针设置的土质必须坚实,不能设置在泥地、回填土、树根旁、草丛等位置。 (7)雨后连续7个晴天后才能进行接地电阻的测试。 (8)待测接地体应先进行除锈等处理,以保证可靠的电气连接。 3 接地电阻测试仪的操作要领

电动机缺相运行的现象与原因

电动机缺相运行的现象与原因 1)电动机缺相现象 振动增大,有异常声响,温度升高,转速下降,电流增大,启动时有强烈的嗡嗡声无法启动。2)造成电动机缺相运行的原因有: ①保险丝选择不当或压合不好,使熔丝断一相。 ②开关发触器的触头接触不良。 ③导线接头松动或断一根线。 ④有一相绕组开路。 3)电动机缺相运行的电磁、转矩关系 电机缺相运行时,定子的旋转磁场严重不平衡,定子会产生负序电流,负序磁场和转子发生电磁感应出近100HZ的电势,使转子电流剧增,会引起转子严重发热,缺相时电机带载能力急剧下降,电机会吸收大量有功,导致定子电流急剧增加,发热由于磁场严重不均匀,会使电机震动严重增加,从而破坏轴承和机座,所以带额定负载的缺相运行电机会立马停下来,若保护不及时动作,电机就会被烧毁,一般电机都有缺相保护。 在运转时缺相,绕组产生的磁场也可分为两个大小相等\方向相反的旋转磁场.但与电动机转向相反的旋转磁场与转子间的相对转速很大,在转子中产生的感应电动势和电流的频率差不多是电源频率的几倍,转子的感抗很大,故决定转矩大小的电流有功分量很小,所以逆向转矩远小于正向转矩,因此,电动机能继续运行. 但是,应注意, 在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。电动机一相断线明确规定不能运行,因为电动机断线后定子线圈不会产生旋转磁场,只会产生脉动磁场,不会带动电动机旋转,但由于运行中还有惯性,所以会旋转,但由于负荷大使电动机旋转逐渐变慢,另外由于转子旋转慢造成转子切割磁力线增多,定子电流逐渐增大,时间长会烧毁电动机。 电动机运行中一相断线不能长期运行,因为电动机断线后定子线圈产生椭圆磁场,只会产生脉动磁势,由于转子旋转慢造成转子切割磁力线增多,定子电流逐渐增大,时间长会烧毁电动机。另外负序磁场将烧坏转子! 4)电动机缺相启动 如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。

接地电阻摇表使用方法及标准

接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。? 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。 以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。测量屏蔽体电阻时,应松开镀铬铜板,一个E接线柱接接地体,另一个E接线柱接屏蔽。 (2)P柱接随仪表配来的20m纯铜导线,导线另一端接插针。 (3)C柱接随仪表配来的40m纯铜导线,导线的另一端接插针2。 2 接地电阻测试仪设置的技术要求 (1)接地电阻测试仪应放置在离测试点1~3m处,放置应平稳,便于操作。 (2)每个接线头的接线柱都必须接触良好,连接牢固。 (3)两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置;如果用一直线将两插针连接,待测接地体应基本在这一直线上。 (4)不得用其他导线代替随仪表配置来的5m、20m、40m长的纯铜导线。 (5)如果以接地电阻测试仪为圆心,则两支插针与测试仪之间的夹角最小不得小于120°,更不可同方向设置。 (6)两插针设置的土质必须坚实,不能设置在泥地、回填土、树根旁、草丛等位置。 (7)雨后连续7个晴天后才能进行接地电阻的测试。 (8)待测接地体应先进行除锈等处理,以保证可靠的电气连接。

电动机缺相运行故障与保护分析

电动机缺相运行故障与 保护分析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电动机缺相运行故障与保护分析三相异步电动机两相运行,是引起电动机损坏的常见原因。为什么电动机安装了熔断器保护、磁力启动器附加的热继电器保护、断路器过流保护,都不能很好地对电动机两相运行起有效保护作用呢? 首先,根据电机学原理,其如接至两相电源,其定子绕组不可能产生旋转磁场,旋转力矩为零,电动机只震动而不转动。电动机在进入两相电源起动时,实际上处于短路状态,其短路电流为三相启动时启动电流的0.866倍,而一般异步电动机启动电流为额定电流的4~7倍,故电动机在进入两相电源起动时,相当于两相短路时的电流为额定电流的 3.464~6.062倍,所以上述电流,即比启动电流小,比电动机额定电流大得多。电动机两相启动时,电动机不运转,运行人员会立即发现,而且熔断器也会熔断,因为熔断器的熔断电流一般按下面两种原则选定:对于启动次数少及启动时间较短的电动机,按IH=IZ/2.5选定;对于反复起动及加速慢的电动机,按IH=IZ/(1.6~2)选定。上述两式中,IH是熔断器的额定电流;IZ为电动机三相启动电流。对于运转中的电动机,突然断掉一相电源后,在机械惯性作用下,在某些特定条件下尚可滞速旋转。由于电动机过电流倍数与电动机实际负荷和电动机本身最大力矩倍数K有关。当最大力矩倍数大于2时,电动机将维持两相运行,但转

速大大降低,K愈大电动机两相运行时的过负荷倍数愈大。当最大力矩倍数K等于2时,电动机带额定负荷并发生两相运行情况下,电动机的过电流大约为额定电流的3.5倍,此时电动机如果按规定选用的熔断器作保护,熔断器可以熔断,并起保护作用。但是,当电动机只带50%的额定负荷时,两相运行电流大致与额定电流相等。而当电动机负荷在50%额定负荷以上,又在额定负荷以下两相运行时,熔断器就不能可靠地起到保护作用了。正常电动机的启动电流为电动机额定电流的4~7倍。由此可以看出熔断器不可能可靠的保护电动机两相运行。第三种情况是电动机最大力矩倍数K小于2时,电动机将减速停车,直至熔断熔丝。除了熔断器保护,在三相低压电动机保护中,还采用热继电器,作电动机过负荷保护。其动作电流一般选用1.1倍额定电流,考虑备用裕度,以防止电动机的电压变动及环境温度变化而误切电动机,一般是按1.2~1.3倍额定电流选择热元件,依靠热力保护热惯性产生的延时,躲开起动电流。所以由热元件构成的过负荷保护,也不可能可靠保护电动机两相运行。同样对于断路器过流保护,一般按躲开电动机启动电流整定,显而易见,按这样整定值也不能正确的保护电动机两相运行。 关于电动机两相运行的保护问题,近年来各地提出很多方案,基本上可以归纳为两大类:一类是安装电动机一相熔断的信号指示,另一类是利用晶体管构成的负序保护。采用这些方法,也有一定效果,但仍不

三相异步电动机缺相的原因及处理方法

三相异步电动机缺相的原因及处理方法 摘要:根据三相异步电动机因缺相运行导致烧坏的实例,详细分析了缺相运行时的现象及产生原因。提出了合理的解决方法,取得了良好的效果。 关键词:三相异步电动机;缺相;缺相保护;额定电流;过载三相异步电动机在运行过程中最常见的故障就是缺相运行,例如断一根火线或断一相绕组。此时,如果轴上负载没有改变,则电动机处于严重过载状态,定子电流将大大超过额定值,时间稍长电动机就会烧毁。 1 电动机缺相运行时的现象及原因分析 1.1 缺相运行时的现象 对于三相异步电动机,正常运行时必须采用三相供电,而缺相是电动机正常运行的大忌。缺相时,原来停止的电动机,将无法启动,且发出“嗡嗡”的声音,此时,若用手拨动电机转子轴,也许能慢慢转动;原来旋转的电动机缺相时,转速下降且变慢,电流明显增大,电机温度上升,外壳烫手,并且发出异常声音,若长时间缺相运行必然导致电机过热而烧毁。 1.2 造成缺相运行的原因 造成电动机缺相运行的原因,通常分为外部原因和内部原因。外部原因主要是外网供电质量问题,其一是电源缺相,由于供电线路故障,电源在到达电动机保护线路前,就已经少了一相或

两相,造成电动机无法启动或启动运转异常;其二是配电变压器高端侧或低端侧一相断电造成电动机缺相运行,在这种情况下,由该变压器供电的所有电动机都会缺相运行。 内部原因主要有保护线路中的控制开关、接触器、继电器的触点氧化、烧伤、松动、接触不良等造成缺相。某相熔断器的熔体接触不良,或熔丝拧得过紧而几乎压断,或熔体电流选择过小,造成通过的电流稍大就会熔断。尤其是在电动机启动电流的冲击下,更容易发生熔体非故障性熔断。有时电动机负荷线路断线,一般是安装不当引起的断线,特别是单芯导线放线时产生的小圈扭结,接头受损等都可能使导线在运行过程中发生断线。由于电动机长期使用,使绕组的内部接头或引线松脱或局部过热将绕组烧断,导致电动机出现缺相运行。

水泵电机保护器

JL-200型水泵电机保护器 一、概述 JL-200系列水泵电机保护器是我公司在多年研制电机保护器产品的基础上开发出的新一代高科技产品。此产品以微电脑控制器(MCU)为核心元件,通过高精度CT检测电流,电机保护器具有自动线性修正功能,在宽电流范围内仍具有较高的测量精度,对过载、短路、堵转、欠载、缺相、三相电流不平衡、过压、欠压、相序、接触器故障等具有可靠的保护作用;并可实现报警和事件记录。本产品具有性价比高、功能齐全、工作稳定可靠、精度高、保护动作准确、安装、参数设定简单方便等特点。可广泛适用于机械、冶金、建材、化工、纺织行业等工业三相电动机及其它电器的保护与监测。 二、产品主要特点 系统采用宽温、低功耗工业级芯片,更适合于工业现场使用。 软件、硬件及电磁兼容性三个方面协同设计,产品具有很强的抗干扰能力和很高的可靠性,特别适合于工业现场使用。 电流互感器变比可设置(5A规格),用户可直接查看一次回路的电力参数,使得采样数据更直观,使用更灵活。 采用交流同步采样和先进的数字信号处理算法,实现了实时数据处理和高精密性,有着卓越的可靠性,具有响应速度快、测量准确、精度高,事件记录等优点。 具有自学习过程,能自动检测电机起动过程与时间,生成起动曲线,优化保护参数;并能根据故障前电机负载率和运行时间自动调整过载保护动作时间。 事件记录功能:当保护动作时,记录保护类型、采样电流等参数,形成事件追忆数据,在失电或复位后可长久保存,便于事后分析。 采用模块化设计结构,产品体积小,结构紧凑,安装方便,在低压控制终端柜和1/4模数及以上各种抽屉柜中可直接安装使用,提高了控制线路的可靠性和自动化水平。 结构紧凑、华丽、精湛优美的外观和卓越的设计体现了高雅、精致、紧凑的产品。 完善的事故记录及自检功能,友好的人机界面,所有测量值和参数、保护信息等由面板液晶显示器实时显示。 三、技术参数 1、电动机保护功能 ●过载保护●欠载保护●堵转保护●阻塞保护●温度保护●相序保护●欠压保护●过压保护●起动超时保护 ●断相保护●不平衡保护●接触器故障保护(选增功能,无此功能时仅有故障提示,无信号输出)

电动机缺相运行故障与保护分析

电动机缺相运行故障与保护分析 姓名:XXX 部门:XXX 日期:XXX

电动机缺相运行故障与保护分析 三相异步电动机两相运行,是引起电动机损坏的常见原因。为什么电动机安装了熔断器保护、磁力启动器附加的热继电器保护、断路器过流保护,都不能很好地对电动机两相运行起有效保护作用呢? 首先,根据电机学原理,其如接至两相电源,其定子绕组不可能产生旋转磁场,旋转力矩为零,电动机只震动而不转动。电动机在进入两相电源起动时,实际上处于短路状态,其短路电流为三相启动时启动电流的0.866倍,而一般异步电动机启动电流为额定电流的4~7倍,故电动机在进入两相电源起动时,相当于两相短路时的电流为额定电流的3.464~6.062倍,所以上述电流,即比启动电流小,比电动机额定电流大得多。电动机两相启动时,电动机不运转,运行人员会立即发现,而且熔断器也会熔断,因为熔断器的熔断电流一般按下面两种原则选定:对于启动次数少及启动时间较短的电动机,按IH=IZ/2.5选定;对于反复起动及加速慢的电动机,按IH=IZ/(1.6~2)选定。上述两式中,IH 是熔断器的额定电流;IZ为电动机三相启动电流。对于运转中的电动机,突然断掉一相电源后,在机械惯性作用下,在某些特定条件下尚可滞速旋转。由于电动机过电流倍数与电动机实际负荷和电动机本身最大力矩倍数K有关。当最大力矩倍数大于2时,电动机将维持两相运行,但转速大大降低,K愈大电动机两相运行时的过负荷倍数愈大。当最大力矩倍数K等于2时,电动机带额定负荷并发生两相运行情况下,电动机的过电流大约为额定电流的3.5倍,此时电动机如果按规定选用的熔断器作保护,熔断器可以熔断,并起保护作用。但是,当电动机只带50%的额定负荷时,两相运行电流大致与额定电流相等。而当电动机负荷在50% 第 2 页共 4 页

电机过流保护及三相电缺相保护完整版

电机过流保护及三相电 缺相保护 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

目录

电机过流保护及三相电缺相保护 一、方案论证 随着各行业现代化步伐加快,煤矿企业如今也慢慢步入电气化时代,尤其是近几年煤矿企业加大了对矿井的设备投入,这就为保障井下的各种电器设备安全正常的运行提出了更高的要求。电器设备的正常运行直接关系到煤矿的生产和井下工人的生命安全!为此,我们提出设计相关电器设备的保护电路。 而在井下常发生的电器事故中,设备的过载运行和三相电机的缺相运行是最常见的电器事故,且井下的大部分由外因素引起的火灾都是由上述两个因素造成的。特别是缺相运行的检测,因三相负载在缺相时仍能工作,且不易被发现,例如三相电动机。如果不及时发现故障电路采取相应的措施,会严重影响井下设备的正常运行,更严重着则会引发火灾,设备永久损坏! 所以,我们设计与这两个方面相关的电路保护——“过流保护”、“三相电缺相保护”。这两个保护电路在井下对电器设备的安全运行是必不可少的,具有很强的实用性! 二、方案设计 1.过流保护 过流保护首先要检测井下供电电缆的电流,而检测电流有多种方案——电阻分压、电流互感器、电流继电器。然后经采集的信号进行处理,若信号本身是直流则直接接相应的保护动作电路,若是交流则要多加一级交流有效值转换电路。而后就是实现电路的电器自锁,保证电路稳定可靠工作。流程图如下: 2.缺相保护 缺相保护首先要实现的是相位缺失的检测,这里同样有多种方案可供选择,主要的常用类型为:电容中性点检测法、电阻中性点检测法(只适用于三相四线制)、二极管整流法、互感器+二极管整流法。它们都是为了实现一个开关信号的检测去实现驱动开关元件动作。流程图如下:

摇表的使用方法和注意事项

图解电工摇表使用方法 用于测量高值电阻和绝缘电阻的仪表叫做摇表,现在新型产品通常称为绝缘电阻测试仪或者绝缘电阻表,有时也称为兆欧表。其中老款摇表的外形如下右图所示: 摇表(绝缘电阻表)主要结构是由手摇发电机、电磁式无机械反作用的表头组成,对外有接线柱(L:线路段、E:接地端、G:屏蔽端)。新型的绝缘电阻测试仪通常和数字万用表差不多的外形。 摇表(绝缘电阻表)的工作原理如下图所示,它的磁电式表头有两个互成一定角度的可动线圈,装在一个有缺口的圆柱铁芯外面,并与指针一起固定在一转轴上,构成表头的可动部分,被置于永久磁铁中,磁铁的磁极与铁芯之间的气隙是不均匀的。由于指针没有阻尼弹簧,在仪表不用时,指针可以停留在任何位置。

摇动手柄,直流发电机可输出电流,其中,一路电流I1流入线圈1和被测电阻Rx的回路,另一路的电流I2流入线圈2与附加电阻Rf回路,设线圈1的电阻为R1,线圈2的电阻为R2,根据欧姆定律有: I1=U÷(Rc+R1+Rx)、R2=U÷(Rf+R2) 处在磁场中的通电线圈受到磁场力的作用,使线圈1产生转动力矩M1,线圈2产生转动力矩M2,由于两线圈绕向相反,从而M1与M2方向相反,两个力矩作用的合力矩使指针发生偏转。在M1=M2时,指针静止不动,这时指针所指出的就是被测设备的绝缘电阻值。 当Rx断开时(即X=∞(无穷大)),I1=0,M1=0,指针在M2的作用下向左偏转,最后指向标尺度Rx=∞处,若将Rx短接(即Rx=0),此时I1最大,M1最大,使指针顺时针方向偏转,指针指到标尺度的Rx=0处。根据此原理可以检验摇表的好坏。

首先说下摇表的选用,对于额定电压500伏一下的设备,选用500伏或1000伏的摇表(兆欧表),额定电压在500伏以上的选用1000伏~2500伏的兆欧表。摇表的使用方法 摇表(兆欧表)有三个测量端钮,一个线路端钮(L),另一个是接地端钮(E),还有一个为屏蔽端钮(G)。一般测量照片或电力线路对地的绝缘电阻时,只用L和E端,接线如下左图所示。“L”端接到被测设备的“火”或“相端”,“E”端接到被测设备的“地”端。在测量电缆对地绝缘电阻时或被测设备的漏电流严重时,使用“G”端钮。如下右图所示为测量电缆绝缘电阻接线图。 线路接好后,可按顺时针方向转动摇表的发电机摇把,使发电机转子发出的电压供测量使用。摇把的转速应由慢而快,当转速达到一定值时,要保持转速均匀稳定。(一般普通摇表转速为120转左右),当摇表的发电机转速稳定后,表盘上的指针也稳定下来,这时表针指示的数值就是所测得的绝缘电阻值。 注意事项 1. 测量前应先将摇表(兆欧表)进行一次开路和短路试验,检查摇表是否良好。若将 两连接线开路,轻轻摇动手柄,指针应指在“∞”处,这时如再把两连接线短接一 下,指针应在“0”处,说明摇表是良好的,否摇表有误差。 2. 被测设备应断开电源,对于电容设备还应充分放电,以保证人身安全和测量准确。 3. 遥测过程中,被测设备上不能有人工作。

电动机缺相运行故障与保护分析标准版本

文件编号:RHD-QB-K6338 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 电动机缺相运行故障与保护分析标准版本

电动机缺相运行故障与保护分析标 准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 三相异步电动机两相运行,是引起电动机损坏的常见原因。为什么电动机安装了熔断器保护、磁力启动器附加的热继电器保护、断路器过流保护,都不能很好地对电动机两相运行起有效保护作用呢? 首先,根据电机学原理,其如接至两相电源,其定子绕组不可能产生旋转磁场,旋转力矩为零,电动机只震动而不转动。电动机在进入两相电源起动时,实际上处于短路状态,其短路电流为三相启动时启动电流的0.866倍,而一般异步电动机启动电流为额

定电流的4~7倍,故电动机在进入两相电源起动时,相当于两相短路时的电流为额定电流的3.464~6.062倍,所以上述电流,即比启动电流小,比电动机额定电流大得多。电动机两相启动时,电动机不运转,运行人员会立即发现,而且熔断器也会熔断,因为熔断器的熔断电流一般按下面两种原则选定:对于启动次数少及启动时间较短的电动机,按IH=IZ/2.5选定;对于反复起动及加速慢的电动机,按 IH=IZ/(1.6~2)选定。上述两式中,IH是熔断器的额定电流;IZ为电动机三相启动电流。对于运转中的电动机,突然断掉一相电源后,在机械惯性作用下,在某些特定条件下尚可滞速旋转。由于电动机过电流倍数与电动机实际负荷和电动机本身最大力矩倍数K有关。当最大力矩倍数大于2时,电动机将维持两相运行,但转速大大降低,K愈大电动机两相运

相故障保护

三相异步电动机是一种应用很广泛的电气拖动设备。电机在运行过程中,会因各种原因造成损坏,在这些故障中,缺相故障造成电机损坏占很大比例,由此而烧毁的电动机数量是巨大的,造成的经济损失也是极为严重的。根据电机学原理。电机在缺相时.定子绕组流通的不再是三相交流电流。而是单相电流。气隙中的磁场由圆形旋转磁场变为单相脉振的磁场,一方面,电机缺相启动时,其启动转矩为零.电机实际上是处于两相短路状态。电动机绕组严重发热。破坏电机绝缘,以致于烧毁电机,影响生产,甚至造成事故。另外,电机在缺相运行时。过载能力已明显减低.转差率变大。定转子电流加大,势必使绕组发热,电机运行极为不利。防止三相异步电动机缺相运行,是有很大的经济价值。于是。我们从电机的缺相机理人手,设计出几例保护电路,确保电动机的正常运转。 1电机缺相故障原因 对于三相异步电动机,正常运行的情况应该是三相对称的交流电流通入三相对称的定子绕组中产生圆形的旋转磁场,当三相电流缺掉一相后.电机将会出现不正常的运行现象,电动机造成缺相故障的原因主要有以下几种情况。 1.1电源缺相 三相电源接入交流电动机之前。该电源已少一相或两相(电源已经出现问题,三相熔断器中的一相熔体被烧断),它可造成电机无法启动或启动运转异常。 1.2控制回路造成缺相 控制回路中的接触器、继电器长期使用,触点可能存在一定程度的氧化。引起接触不良,或元件动作机构长期磨损。这些电气元器件,当受到电动机启动电流(一般为额定电流的5—7倍)的冲击,或受到机电设备的震动或运动机构卡住失灵等而误动作,定子绕组由此而缺相。 1.3电动机接线盒中接线柱松脱 电机定子三相绕组中一相绕组断开。从而造成电机运行缺相。 1.4连结头虚接或分断 供电线路中的连结头出现虚接或可能受到外力而分断,也会使得电动机缺相。 1.5绝缘老化 电动机在运行相当一段时间后,定子绕组的绝缘可能出现老化(电动机运行的环境温度长期过高。供电电压偏高或者是负载过大时),造成电动机定子绕组相间或匝间短路,电动机定子绕组也会出现一相或多相断开。 2缺相保护电路 电动机处于缺相时无启动转矩,电机不能转动,容易被发现.而当电动机在运行中发生缺相时。常常不易被发现,以致产生过流.将电机烧坏,因而研制一种高可靠的电动机运行缺相保护装置非常必要。一台三相异步电动机,其定子绕组是Y或△连接。不论是电动机启动前还是启动后产生单相运行故障,三相定子绕组中流过的电流均比正常三相运转时大(一般均超过电动机额定电流)。利用这一特点,将增大的电流信号检测出来,经执行元件。把电动机从电源上切除或报警。 2.1热继电器兼作过载和单相运行保护(图1) 热继电器就是利用电流热效应原理,将电动机单相运行时绕组电流增大信号检测出来并作用于执行元件,切断电动机电源。其方法是把热继电器的加热元件串联到被保护电动机的主回路上。当单相运行发生时,电动机绕组电流增大,加热元件温度上升,使热继电器中双金属片受热弯曲而推动导板,使推动导板上动、静触电动作,切断电动机控制回路中接触器线圈电源,从而使电动机主回路电源切断。 目前.我国生产的热继电器动作有延时特性。即当通过加热元件上的电流等于整定电流厶(电动机的额定电流)时,不动作;当通过加热元件的电流I=1.21;v时,20min动作;当电流I=1.5厶时,2rain动作;l=6I;v时,5s动作。动作的延时特性既能满足电动机启动

用摇表测接地电阻的方法和参数

一般使用的是摇表测量 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一 你搞错了,你所说的这种ZC25-3型表是兆欧表,是不能用来测接地电阻的,只能测某线路或设备间的绝缘电阻或其对地的绝缘电阻,因为绝缘电阻越大越好,所以用兆欧(1000000欧),型号普遍都是为ZC25等 而接地电阻值是越小越好的,所以一般要求测能到0.01欧及以下,这种接地电阻仪型号一般为ZC29开头,上面一般有四个端子:C1、C2、P1、P2(还有一种三个端子,分别为E、P、C),其中C2和P2是连通的(带接地符号),直接接被测物接地极;然后P1端接20米线,拉直后将探针插入地下;C1端接40米线,拉直后要和接地极以及之前插入地下的探针在同一直线上,在这个位置插入第二根探针。

摇表的时候保持摇速120转/分,打好1x几,大转盘的一格就是几,转动大转盘使指针停在中间,大转盘上被箭头对准的数就是电阻值。 比如如打好1x0.1,大转盘上被箭头对准的数是2.2,电阻值就是为0.22欧。 摇表使用及接地电阻测试 收藏此信息打印该信息添加:佚名来源:未知 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。

电动机常见故障的原因和判断方法

电动机常见故障的原因和判断方法 摘要电动机在运行过程中,经常会出现故障。当电动机发生故障时,电路将无法正常工作。那么,当电动机的运行发生故障时,我们应该根据故障发生的现象,找出电动机的故障原因,并判断出故障所在。 前言电动机是一种应用非常广泛的电气动力设备。特别是三相异步交流电动机,具有结构简单,运行可靠,维护方便,效率高,重量轻,价格低等特点。在工业方面,三相异步电动机主要被应用于拖动各种机床、起重机、水泵和中小型鼓风机等设备。在农业方面,它被应用于拖动排灌机械、脱粒机、粉碎机以及其他农副产品加工机械等。单相异步电动机则在家用电器产品中得到广泛应用。如电钻、小型鼓风机、医疗器械、风扇、冷冻机、空调机、抽油烟机及家用水泵等,它是家用现代化电器设备必不可少的动力源。在工业上,单相异步电动机也常用于通风与锅炉设备以及其他伺服机构上。 同其他任何动力设备一样,电动机在运行过程中,也常常会出现故障。 三相异步电动机的故障一般可分为电气故障和机械故障。电气故障主要是指带电体及其附属机构,包括定子绕组、转子绕组、电刷等故障;机械故障主要指非带电体的故障,包括轴承、风扇、端盖、转轴、机壳等故障。 一、电动机运行故障的原因 造成电动机运行不正常的原因,有电源方面和负载方面的原因,也有可能是使用环境不良、安装不当、维护不周造成的,另外电动机本身发生故障时,也会使电动机发生运行故障。 (一)电源方面的原因 1.电源电压过高或过低 (1)电压过低:电动机的电磁转矩将显著减小。起动困难甚至不能起动,即使能起动,但转速上升很慢,起动时间过长,达不到额定转速,导致电动机电流过大、温升高,甚至冒烟烧毁。如果在运行过程中电源电压降低,负载不变时,电动机将过载运行,转速降低、电流增大、绕组过热。 (2)电压过高:会提高电动机磁路的饱和程度,导致铁损增大;同时电流增大导致铜损增大。由于损耗的增加,使电动机过热不能正常工作。即使在空载或轻载情况下电动机也要发热。电源电压过低、过高,电动机必须停止工作。

三相电机缺相的原因与判断

三相电机缺相的原因可分为两大类1:电源缺相,电源缺相即输入电机的电源 就缺相造成此类故障的原因一般有熔断器或自动断路器缺相,交流接触器缺相,热继电器缺相,接线端子缺相,或是一次线路断路。判断此类故障很简单只需要在电路接通的时候用电压档在电机的输入端测量,如果三相任有一次测量结 果电压严重不足就可以确定是此类故障。2:电机缺相,电机缺相是因为电机过热,或是轴承损坏,接头松动,机械创伤,接线端子断裂等原因造成的此类故 障的判断可用万用表的电阻挡分别对电机的三相绕组进行测量,如果三相平衡 即非缺相,如果有一相或两相断路即可判断是电机缺相 用万用表测量三相异步电动机的短路可以用电阻档测量每相绕组的电阻值,一 般用最小档,如果短路那么基本为零,如果有2欧姆以上基本是好的。缺相就 直接测量电阻就可以,有电阻就是好的,没有电阻说明缺相的。绕组对地电阻 值一般要用摇表测量的,万用表测量不准确的,大于3兆欧姆就是好的,小于 3兆欧姆说明绝缘不够。 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机 的定子绕组就是用来产生旋转磁场的。我们知道,但相电源相与相之间的电压 在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也 互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个 旋转磁场因此三相设备一般缺相后,电机无启动力矩。静止的电机无法启动。但,已经运行的电机本身具备启动力矩。但由于缺相。电磁力不平衡,仍然会慢速运 行 三相电机缺相运行时的杂音随负荷的加大而加大,转速也随负荷大小有小量 减小,做工无力,电动机缺相时一般是不宜启动的,如果是启动后有缺了一相,空载时杂音有,但不大,要注意辨听

交安设施经常性检查报告12月

泗许高速公路小修保养工程二〇一四年十二月 交 安 设 施 经 常 性 检 查 报

告 编制单位:安徽省环宇公路建设开发有限责任公司 泗许高速公路小修保养工程02标项目经理部 编制日期:2014年12月22日 一、工程概况 泗许高速公路小修工程02标段养护里程87.814km(S04 K78+000- S04K113+136、 S06K0+000-S06K52+678),养护路段起点为宿州东收费站,终点皖豫省界浍河二桥,全线路基宽28米,路面宽23.5米,采用沥青混凝土路面,为全封闭全立交四车道高速公路,设计行车时速120公里/小时。 本标段管养特大、大桥延米/14座、中桥延米/66座、小桥延米/62座,支线上跨桥1延米/28座,匝道桥延米/27座、涵洞197座。养护范围包括互通立交4座:宿州北互通(S04 K110+000)、符离集立交(S04 K113+136)、濉溪互通(S06 K27+500)、铁佛互通(S06 K46+700);服务区2处:宿州北服务区(S04 K101+596)、濉溪服务区(S06 K22+000);主线收费站1处:淮永收费站;匝道收费站3处:宿州北收费站、濉溪收费站、铁佛收费站。 本段主要交安设施有波形板、钢护栏、防阻块、防眩板、轮廓标、

立柱、隔离栅、道钉、公里牌、反光油漆、防撞桶、反光膜等。 二、检查目的 经常性检查主要采取目测的方法进行,检查人员对护栏板、立柱、防阻块、隔离栅是否有变形或磨损;交通标志、交通标线是否清晰;防眩设施是否扭曲、损坏现象进行检查统计。 本次检查主要由项目经理、总工程师、质检工程师、技术人员、安全生产负责人等组成。 检查过程中,认真仔细做好记录和有关缺损情况的描述,并进行拍照,检查完毕后,填写“交通安全设施经常性检查记录表”。 三、规定和标准 《道路交通标志反光膜技术条件》(GB/T 18833—2002) 《公路工程质量检验评定标准》(JTG F80/1—2004) 《公路隧道交通工程设计规范》(JTG/T D71—2004) 《公路交通安全设施施工技术规范》(JTG F71—2006) 《高速公路交通工程及沿线设施设计通用规范》(JTG D80—2006) 《道路交通标线质量要求和检测方法》(GB/T 16311—2005)《公路养护技术规范》(JTG H10—2009) 四、检查仪器和设备 本次检查投入的主要检查设备和仪器见下表 五、检查组织开展情况 1、前期准备阶段

电机缺相保护器

电机缺相保护器电路原理 电机缺相保护器装置的电路工作原理见下图。在A、B、C三相中均串入LSE 器件。当三相电力线均完好时,LSE的④脚输出高电平,此时继电器J1、J2、J3均处于吸合状态,从而使三相交流接触器CJ吸合,其触点CJ1、CJ2、CJ3自保,电动机M正常工作。如果A、B、C三相电源中有任意一相断开,将导致其中一只LSE的①、②脚间呈断开状态,相应的LSE器件上的④脚就会变为低电平,其继电器J就会释放。由于其触点j1、j2、j3在CJ的回路中呈与门的逻辑关系,故只要其中的任一只触点断开,均会导致CJ断电释放,从而使得CJ1、CJ2、CJ3触点全部断开,保护了电动机M。电路中设置了12V直流电源,是使该电路万无一失。 针对电机缺相保护器问题,提出保护方法。 设置电机缺相保护器保护的目的 在电机缺相保护器的运行中,由于种种原因,如三相电源的熔断器一相熔断,或者接触器触点烧损等造成一相接触不良,或由安装维护等原因造成一相断线,都会造成三相电动机缺相运行。若发现不及时,时间稍长便会烧毁电动机,造成设备损坏,影响生产的连续性,给企业生产造成重大损失。

为了保障电动机的安全运行,使其在发生缺相运行时能及时停止电动机的运行,避免造成电动机烧毁事故,一般重要电动机都装有各种保护装置,尤其是缺相保护。 目前的电动机缺相保护电路大部分采用微机保护或电子式保护装置,元件较多,线路复杂,工作可靠性不高,出现问题时往往失去保护作用,或者工作失常,造成电动机保护拒动或不能合闸,对生产造成不利影响。本文介绍的保护装置具有原理简单,元件少,工作可靠,基本不需维护等特点。并且通过适当的配置元件,可起到无功补偿的作用。 该保护装置的原理为:三相星形接线的中性点,三相负载平衡时电位很低,基本相当于地电位。而当三相电源缺相时,中性点电位会升高至相电压。利用这一特点,对电源的供电情况进行监测,从而起到缺相保护作用。 3 接线说明三个电容器接成星形,电容器端子分别接A、B、C三相电源,中性点接电压继电器的线圈,线圈另一端接地。电压继电器的常闭接点应串接与交流接触器的控制回路中。当A、B、C任一相断开时,中性点电位升高为相电压,电压继电器动作,使交流接触器的控制回路断开,切除电动机电源。本电路中电容器容量不必选得太大,主要是耐压水平足够即可。选择耐压值时应注意,因电压为交流电压,需考虑其峰值,并考虑一系数,留有余地。如果电动机的功率因数较低,可在选择电容器容量时,结合电动机的功率和功率因数,选择合适的电容值,使保护装置同时起到无功补偿的作用。电压继电器的选择主要考虑其整定范围能够满足实际最高电压的要求。 以上主要是针对低压电动机考虑。对于高压电动机,一般属于大型设备,其保护装置比较完善,这里不再赘述。这种保护装置接线简单,易于实现,适用于各类三相感应式电动机及其他需要缺相保护的场所。安装时可直接和控制回路一起安装,基本不占用空间,但要保证安全距离。

三相异步电动机缺相运行的原因后果和预防措施

三相异步电动机缺相运行的原因后果和预防措施 摘要:三相交流电动机在工业生产中应用十分广泛,但三相交流电动机因缺相运行造成烧毁的事故在生产中比较多,给企业造成较大经济损失,本篇文章分析了三相电动机缺相运行后烧毁的故障现象及△接法的电动机和Y接法的电动机缺相时各相电流的变化和产生的后果 及保护措施。 关键词:电动机 缺相原因 缺相运行后果 预防措施 一、造成电动机缺相运行的原因有: 保险丝选择不当或压合不好,使熔丝断一相。 开关发触器的触头接触不良。 导线接头松动或断一根线。 有一相绕组开路。 二、电动机缺相运行的后果 1、缺相时电机电流的变化 正常起动或运行时,三相电机为对称负载,三相电流大小相等,小于或等于额定值。出现一相断线后,使一相线电流为零,另两相线电流会增大。例如,对于三角形接法的电动机,在额定值下正常运行时,每相绕组的相电流为电动机额定电流(线电流)的1/√3倍。当U相断开,如下图a所示,U、W两相绕组串联后再与V相绕组并联接在V、W两相电源上运行。在额定负载不变时,V相绕组的相电流将是最大,为正常运行时的2倍(即为电动机额定电流的1.16倍),而U、W两相的相电流仍不变,而线路上的线电流增大到额定电流的√3

倍。由于V相绕组的相电流比正常运行时增大了一倍,引起绕组过热。对于星形接法的电动机,当U相断开,如图b所示,V、W两相绕组串联接在电源V、W两相上运行。在额定负载不变时,U相电流为零,V、W两相绕组的电流增大到额定电流的√3倍,使绕组过热。从上述分析可知,两种接法的电动机,当发生缺相运行时,都会使某一相绕组(三角形接法)或某两相绕组(星形接法)的相电流和线电流增大。但增大的电流不能使熔丝熔断,可如果长期缺相运行,温度上升很快,容易烧毁电动机。事实证明,当电动机的负载为额定负载的40%以上发生缺相运行时,绕组的相电流就会超过正常值。所以在实践中60%-70%以上的电动机烧毁事故都是缺相运行所致,故对电动机的缺相防护十分重要。 2、运行中电动机缺相时 ①、当满载时缺相,电动机处于过流状态 即电流超过额定电流,表现为电机噪声大,转速急速下降且无力,电机温度急速上升导致烧坏电机。 ②、轻载运行电动机断相时,电动机会因为惯性的作用下继续运转一段时间,但转速偏低,未断相的绕组电流迅速增加,使这相绕组

数字兆欧表使用方法

数字兆欧表使用方法 数字兆欧表在工作时,自身产生高电压,而测量对象又是电气设备,所以必须正确使用,否则就会造成人身或设备事故。使用前,首先要做好以下各种准备: (1)测量前必须将被测设备电源切断,并对地短路放电,决不允许设备带电进行测量,以保证人身和设备的安全。 (2)对可能感应出高压电的设备,必须消除这种可能性后,才能进行测量。 (3)被测物表面要清洁,减少接触电阻,确保测量结果的正确性。 (4)测量前要检查数字兆欧表是否处于正常工作状态,。 (5)数字兆欧表使用时应放在平稳、牢固的地方,且远离大的外电流导体和外磁场。 做好上述准备工作后就可以进行测量了,在测量时,还要注意数字兆欧表的正确接线,否则将引起不必要的误差甚至错误。 数字兆欧表的接线柱共有三个:一个为“L”即线端,一个“E”即为地端,再一个“G”即屏蔽端(也叫保护环),一般被测绝缘电阻都接在“L”“E”端之间,但当被测绝缘体表面漏电严重时,必须将被测物的屏蔽环或不须测量的部分与“G”端相连接。这样漏电流就经由屏蔽端“G”直接流回发电机的负端形成回路,而不再流过数字兆欧表的测量机构。这样就从根本上消除了表面漏电流的影响,特别应该注意的是测量电缆线芯和外表之间的绝缘电阻时,一定要接好屏蔽端钮“G”,因为当空气湿度大或电缆绝缘表面又不干净时,其表面的漏电流将很大,为防止被测物因漏电而对其内部绝缘测量所造成的影响,一般在电缆外表加一个金属屏蔽环,与数字兆欧表的“G”端相连。 当用数字兆欧表测电器设备的绝缘电阻时,一定要注意“L”和“E”端不能接反,正确的接法是:“L”线端钮接被测设备导体,“E”地端钮接地的设备外壳,“G”屏蔽端接被测设备的绝缘部分。如果将“L”和“E”接反了,流过绝缘体内及表面的漏电流经外壳汇集到地,由地经“L”流进测量线圈,使“G”失去屏蔽作用而给测量带来很大误差。另外,因为“E”端内部引线同外壳的绝缘程度比“L”端与外壳的绝缘程度要低,当数字兆欧表放在地上使用时,采用正确接线方式时,“E”端对仪表外壳和外壳对地的绝缘电阻,相当于短路,不会造成误差,而当“L”与“E”接反时,“E”对地的绝缘电阻同被测绝缘电阻并联,而使测量结果偏小,给测量带来较大误差。

几种电动机的缺相保护方法

浅谈三相异步电动机的缺相保护 周云波 (宝鸡文理学院物理系721007) 摘要:三相异步电动机烧毁的原因是缺相启动和运行。针对这些原因设计了3种缺相保护电路,分析了3种保护电路的工作原理和优缺点,给出了缺相保护控制电路图。 关键词:电动机;缺相;控制电路;保护电路;优缺点 中图分类号: 感应电动机的损坏率很高,除了机械方面的原因外,在电气方面的最重要的因素是 三相电动机缺相启动和运行。根椐电机学原理,当三相电动机缺相启动和运行时,其定子 绕组不可能产生旋转磁场,旋转力矩为零,电动机只震动而不转动。电动机在进入两相电 源启动时,实际上处于短路状态,其短路电流为三相启动时启动电流的0.866倍,而一般 异步电动机启动电流为额定电流的4~7倍,故电动机在进入两相电源启动时,相当于两相 短路时的电流为额定电流的3.464~6.062倍,所以上述电流,即比启动电流小,比电动机 额定电流大得多,因而在电动机缺相启动和运行时,易烧坏电动机,下面通过增加继电器 和按纽来实现电动机启动和运行时的缺相保护。 1.一种简单的电动机缺相保护电路 电路如图1是在控制电路中加入了一个交流接触器KMb即在L1、L2两相间接入KMb的 电磁线圈,并把它的一个常开触点KMb串接在控制电路中。 1.1缺相保护原理 两相之间的交流接触器KMb电磁线圈得电 吸合,使接在控制回路中的常开触点KMb闭 合,为电动机启动做好准备。当按下启动按 钮SB2时,回路接通,电动机转动。若电动 机启动前电源缺相的话,由于控制电路接入 三相电源,无论缺电源L1、L2、L3三相中任 一相,控制回路中的两个电磁线圈总有一个 不能吸引衔铁而使电路闭合,故电动机不能 启动。当电动机运行时,突然有一相掉电, 如缺L1相或L3相,交流接触器KMb电磁线圈 失电,而串接在控制回路中的KMb断开,使 交流接触器KM失电,自锁触点断开,主触 头也断开,电动机停转。如缺L2相电,KMb 虽得电闭合,但交流接触器的线圈KM失电, 自锁触点断开,主触头断开,电动机停止转 动。该电路的最大优点就是将三相电源同时引入控制电路。 2.一种线圈接地的电动机缺相保护电路

相关主题
文本预览
相关文档 最新文档