当前位置:文档之家› 教案7函数性质综合运用 (教师用)

教案7函数性质综合运用 (教师用)

教案7函数性质综合运用  (教师用)
教案7函数性质综合运用  (教师用)

教案7:函数性质综合运用

一、课前检测

1. 函数x

x x x f -++-=16)(2的定义域是_____________________.{12<≤-x x 或}31≤

2(),|()()()6,()246,()(),|()()g x x x f x g x f x x g x x x h x f x x x f x g x ?∈≥?=-+=-++=?∈

3. 函数)32(log )(2

21--=x x x f 的单调递增区间是___________________.)1,(--∞

4.{}c b a , , m ax 表示a 、b 、c 三个数中的最大值,则{}243 , 12 , 3m ax )(x x x f x -+=在区间]2 , 0[上的最大值M 和最小值m 分别是( )

A .9=M ,13-=m

B .5=M ,13-=m

C .9=M ,2=m

D .5=M ,1=m 答案:C

二、典型例题分析

例1.(东城期末15)已知函数()log (1)log (1)a a f x x x =+--,0>a 且1≠a .

(Ⅰ)求()f x 的定义域;

(Ⅱ)判断()f x 的奇偶性并予以证明;

(Ⅲ)当1a >时,求使()0f x >的x 的取值范围.

解: (Ⅰ)()log (1)log (1)a a f x x x =+--,则

10,10.

x x +>??->? 解得11x -<<. 故所求定义域为{}11x x -<<.………………………………………………4分

(Ⅱ)由(Ⅰ)知()f x 的定义域为{}11x x -<<,

且()log (1)log (1)a a f x x x -=-+-+[]log (1)log (1)a a x x =-+--()f x =-,

故()f x 为奇函数. ………………………………………………………………9分

(Ⅲ)因为当1a >时,()f x 在定义域{}11x x -<<内是增函数, 所以1()011x f x x

+>?

>-. 解得01x <<.

所以使()0f x >的x 的取值范围是{}01x x <<.………………………………13分

小结与拓展:解决对数函数问题,首先要注意函数的定义域,在定义域内研究函数的相关性质。 例2.已知函数f(x)=x 2+|x-a|+1,a ∈R .

(1)试判断f(x)的奇偶性;

(2)若-21≤a ≤21,求f(x)的最小值.

解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),

此时,f(x)为偶函数.当a ≠0时,f(a)=a 2+1,f(-a)=a 2+2|a|+1,

f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数.

(2)当x ≤a 时,f(x)=x 2-x+a+1=(x-21)2+a+

43, ∵a ≤21

,故函数f(x)在(-∞,a ]上单调递减,

从而函数f(x)在(-∞,a ]上的最小值为f(a)=a 2+1.

当x ≥a 时,函数f(x)=x 2+x-a+1=(x+21)2-a+43,

∵a ≥-2

1,故函数f(x)在[a ,+∞)上单调递增,从而函数f(x)在[a ,+∞)上的

最小值为f(a)=a 2+1.

综上得,当-21≤a ≤21时,函数f(x)的最小值为a 2+1.

小结与拓展:注意对参数的讨论

例3.(2006重庆)已知定义域为R 的函数12()2x x b f x a

+-+=+是奇函数。 (1)求,a b 的值;

(2)若对任意的t R ∈,不等式22

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围; 解 (1) 因为)(x f 是R 上的奇函数,所以1,021,0)0(==++-=b a

b f 解得即

从而有.212)(1a x f x x ++-=+ 又由a

a f f ++--=++---=112

1412)1()1(知,解得2=a (2)解法一:由(1)知,121212

212)(1++-=++-=+x x x x f 由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式

0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<- 因)(x f 是R 上的减函数,由上式推得.222

2k t t t +->-

即对一切,0232>--∈k t t R t 有从而3

1,0124-<<+=?k k 解得 解法二:由(1)知,2

212)(1++-=+x x x f 又由题设条件得02

21222121221222222<++-+++-+--+--k t k t t t t t 即0)12)(22()12)(22(2222212212<+-+++-+-+--+-k t t t t t k t

整理得12232>--k t t ,因底数2>1,故0232>--k t t

上式对一切R t ∈均成立,从而判别式.3

1,0124-<<+=?k k 解得

变示训练:已知()f x 是定义在()1,1-上的奇函数,且当[)0,1x ∈时,()f x 为增函数,则不等式 1()02f x f x ??+-< ??

?的解集为 答案:1124x x ?

?-<

小结与拓展:本题是一个综合题,需灵活运用函数的性质来解决。

四、归纳与总结(以学生为主,师生共同完成)

1.知识:

2.思想与方法:

3.易错点:

4.教学反思(不足并查漏):

函数的基本性质教案1第1课时

课题:§1.3.1函数的单调性及最大、小值 ⑴通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; ⑵学会运用函数图象理解和研究函数的性质; ⑶够熟练应用定义判断数在某区间上的的单调性. ⑷理解函数的最大(小)值及其几何意义; ⑸学会运用函数图象理解和研究函数的性质; 函数的单调性及其几何意义.函数的最大(小)值及其几何意义. 利用函数的单调性定义判断、证明函数的单调性.利用函数的单调性求函数的 最大(小)值. ⑴观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: ①随x 的增大,y 的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性? ⑵画出下列函数的图象,观察其变化规律: ①f(x) = x ○ 1 从左至右图象上升还是下降 ______? ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . ②f(x) = -2x+1 ○ 1 从左至右图象上升还是下降 ______? ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . ③f(x) = x 2 ○1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . ○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . ⑴设函数)(x f y =的定义域是I,区间I D ?,D x x ∈21,,当21x x <时,都有)()(21x f x f < 成立,则称)(x f 在区间D 上是增函数... ,如图⑴ ⑵设函数)(x f y =的定义域是I,区间I D ?,D x x ∈21,,当21x x <时,都有 )()(21x f x f >成立,则称)(x f 在区间D 上是减函数... ,如图⑵ ①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意..两个自变量x 1,x 2;当x 1

幂函数及其性质教案

幂函数及其性质专题 一、幂函数的定义? 一般地,形如y x α=(x ∈R)的函数称为幂函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基 本初等函数. 【思考】幂函数与指数函数有何不同? 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 【例】1.下列函数:①31 x y =;②23-=x y ;③24x x y +=;④32x y =,其中幂函数的个数为( ) 2.若函数22)5(x k k y --=是幂函数,则实数k的值是( ) 3.已知点)33,3 3 ( 在幂函数f(x )的图像上,则f(x)的表达式是? 4.当()+∞∈,0x 时,幂函数()3521----=m x m m y 为减函数,则实数m 的值为? 二、函数的图像和性质 (1)y x = (2)1 2 y x = (3)2y x = (4)1y x -= (5)3y x = 用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出:

【例】已知幂函数f(x)的图像过点 ( ) 2,2,幂函数 g(x )的图像过点?? ? ??41,2,(1)求f (x),g (x)的解 析式;(2)当x为何值时:①f(x)>g (x );②f(x)=g (x);③f(x)<g (x) 【变式】若点 ( ) 2,2改为()8,2,探求f(x)与g (x ) 中较小的一个的单调性及奇偶性。 【规律小结】 (1)求幂函数解析式的步骤为以下几点:①设出幂函数的一般形式y=x α(α为常数); ②根据已知条件求出α的值(待定系数法); ③定出幂函数的解析式. (2)作直线x=t,t ∈(1,+∞)与幂函数的各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的. 【幂函数性质】 (1)单调性:①所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); ②0>a 时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 ③0

人教版_数学_必修1函数的基本性质_教案

一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 (3)单调性:如果函数()y f x =在某个区间是增函数或减函数。那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。 2、单调性的判定方法 (1)定义法: 判断下列函数的单调区间:2 1x y = (2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在] ,[b a 上也是单调函数。 ①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 ②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”) 练习:(1)函数24x y -=的单调递减区间是 ,单调递增区间 为 . (2)5 412 +-= x x y 的单调递增区间为 . 3、函数单调性应注意的问题: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上 是增(或减)函数 4.例题分析

【原创教案】《幂函数》公开课教案

《幂函数》教学设计 授课班级:高一(8)班 一、教学目标 1.了解幂函数的概念,会求幂函数的解析式。 2.结合幂函数y x =,2 y x =,3 y x = ,1 y x = ,1 2y x =的图像,掌握它们的性 质。 3.能利用幂函数的单调性比较指数幂的大小。 4.结合幂函数的图像,培养直观想象的数学素养。 5.借助幂函数的性质,培养逻辑推理的数学素养。 二、教学重点:常见幂函数的图像与性质。 教学难点:幂函数的单调性及比较两个幂值的大小。 三、教学方法:启发式、探究式教学法 四、教学辅助:多媒体课件、几何画板 五、教学过程 (一)复习回顾(课前准备) 1.证明:函数()f x =[0,)+∞上是增函数. 2.证明:函数3()f x x =在[0,)+∞上是增函数. (二)创设情景,引入新课 请同学们观察以下几个具体问题,分析归纳这些问题中的函数有什么共同特征? 问题1:如果张红购买了每千克1元的蔬菜x 千克,那么她需要支付y = 元; 问题2:如果正方形的边长为x ,那么正方形的面积y = ; 问题3:如果立方体的边长为x ,那么立方体的体积y = ; 问题4:如果一个正方形场地的面积为x ,那么这个正方形的边长y = ; 问题5:如果某人x s 内骑车行进了1km ,那么他骑车的平均速度 y = /km s 。 (三)概念形成

1、幂函数的概念 幂函数的定义:一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数。 思考:判断一个函数是幂函数的依据是什么? 答:底数是自变量x 、指数是常数、系数是1。 2.实践理解: 例1:下列函数为幂函数的是( ) A .42y x = B .321y x =- C .2 y x = D .2y x = 练习:(1) 已知22 ()(1)m f x m x +=+是幂函数,则m = (2)已知幂函数()y f x =的图象过点,求这个函数的解析式。 (四)常见幂函数的图像与性质 请学生在坐标系内画出下列几个熟悉的幂函数:y x =、2y x =、1y x -=的图象。对于3y x =、12 y x =这两个函数,教师在课前让学生证明他们的单调性,课堂上借助计算机《几何画板》软件,演示它们的图象。 合作探究:观察函数y x =、2 y x =、1 y x -=、3 y x =、12 y x =的图象,将发现的结论填入表格内。

函数的性质专题教案

函数专题(二) 函数的性质 (一)函数的单调性与最值 ★知识梳理 1.函数的单调性定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有 ,那么就说在区间上是单调增函数,称为的单调增 区间 如果对于区间内的任意两个值,,当时,都有,那么就说 在区间上是单调减函数,称为的单调减区间 2.函数的最大(小)值 设函数的定义域为 如果存在定值,使得对于任意,有恒成立,那么称为 的最大值; 如果存在定值,使得对于任意,有恒成立,那么称为 的最小值。 ★热点考点题型探析 考点1 函数的单调性 【例】试用函数单调性的定义判断函数2 ()1 f x x = -在区间(1,+∞)上的单调性. 【巩固练习】证明:函数2()1 x f x x = -在区间(0,1)上的单调递减. )(x f y =A A I ?I 1x 2x 21x x <)()(21x f x f <)(x f y =I I )(x f y =I 1x 2x 21x x <)()(21x f x f >)(x f y =I I )(x f y =)(x f y =A A x ∈0A x ∈)()(0x f x f ≤)(0x f )(x f y =A x ∈0A x ∈)()(0x f x f ≥)(0x f )(x f y =

考点2 函数的单调区间 1.指出下列函数的单调区间: (1)|1|y x =-; (2)22||3y x x =-++. 2. 已知二次函数2()22f x x ax =++在区间(-∞,4)上是减函数,求a 的取值范围. 【巩固练习】 1.函数26y x x =-的减区间是( ). A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ). A. y =-x +1 B. y C. y = x 2-4x +5 D. y = 2x 3. 已知函数f (x )在-1∞(,)上单调递减,在[1+∞,)单调递增,且其图像关于x=1对称,那么 f (1),f (-1),f 之间的大小关系为 . 4.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围. 5. 已知二次函数2()22f x ax x =++在区间(-∞,2)上具有单调性,求a 的取值范围. 考点3 函数的最值 【例】求函数253 32,[,]22 y x x x =--∈-的最大值和最小值:

函数的基本性质(教案)

[课题]:第一章集合与函数概念 1.3 函数的基本性质 主备人:高一数学备课组陈伟坚编写时间:2013年9月30日使用班级(21)(22)计划上课时间:2013-2014学年第一学期第6 周星期一至三(四至六月考)[课标、大纲、考纲内容]: 【教材与学情分析】 学生在初中已学过一次函数、二次函数、反比例函数的图象与性质,通过这些基本初等函数引入函数的单调性和最值,学生还是容易接受的,但很多学生的二次函数的性质还不过关,需要加强。学生的阅读理解能力还是较弱,教师需要引导学生对函数的单调性、奇偶性的定义理解透彻。 [教学目标]:

[教学重难点]: 1、重点:理解函数的单调性、最大(小)值及其几何意义;求函数的单调区间和最值;奇偶性 的定义,判定函数的奇偶性的方法;运用函数图象理解和研究函数的性质。 2、难点:运用函数图象理解函数单调性和奇偶性的定义,研究基本函数的单调性和奇偶性。 [课的类型、教具、教法、教时]: 第1课时 1.3.1 单调性与最大(小)值(1) 【教学目标】 1. 运用已学过的函数特别是二次函数的图象,理解函数的单调性的定义及其几何意义; 2. 学会运用函数图象理解和研究函数的性质; 3. 会用定义证明函数的单调性 【教学重难点】 教学重点: 理解函数的单调性的含义及其几何意义. 教学难点: 用定义证明函数的单调性. 【教学过程】 一、引入课题 1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: ○ 1 随x 的增大,y 的值有什么变化? ○ 2 能否看出函数的最大、最小值? 2. 画出下列函数的图象,观察其变化规律: 1.f(x) = x ○ 1 从左至右图象上升还是下降 ______? ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○ 1 从左至右图象上升还是下降 ______? ○ 2 在区间 ____________ 上,随着x 的增

3.3幂函数教案

§3.3 幂函数 【学习要求】 1.了解幂函数的概念. 2.会画幂函数y =x,y =x 2,y =x 3,y =x - 1,y =x 的图象. 3.理解幂函数的性质. 【学法指导】 类比研究指数函数、对数函数的过程与方法,通过五个具体幂函数认识幂函数的图象与性质.体会幂函数的变化规律及蕴含其中的对称性,体验由特殊到一般、由具体到抽象的学习方法,进一步渗透数形结合与类比的思想方法. 填一填:知识要点、记下疑难点 1.幂函数的定义:一般地,形如y =x α (α∈R)的函数称为幂函数,其中 α 为常数. 2.幂函数的性质:(1)所有的幂函数在 (0,+∞) 上都有定义,并且图象都过点 (1,1) ; (2)若α>0,则幂函数的图象通过 原点 ,并且在区间 [0,+∞) 上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)如果α<0,则幂函数在区间 (0,+∞) 上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 研一研:问题探究、课堂更高效 [问题情境] 我们知道对于N =a b ,N 随b 的变化而变化,我们建立了指数函数y =a x ;如果a 一定,b 随N 的变化而变化,我们建立了对数函数y =log a x.设想:如果b 一定,N 随a 的变化而变化,是不是也应该可以确定一个函数呢?本节我们就来探讨这个问题. 探究点一 幂函数的概念 问题1:函数y =x,y =x 2,y =1 x 分别是哪种类型的函数? 答:分别是一次函数,二次函数,反比例函数. 问题2这些函数的解析式结构有何共同特点?其一般形式如何? 答:幂的底数是自变量,指数是常数,一般形式为y =x α. 问题3 函数y =x,y =x 2,y =1 x 都是幂函数.怎样定义幂函数? 答:幂函数的定义:一般地,形如y =x α (α∈R)的函数叫做幂函数,其中α是常数. 问题4判断一个函数是幂函数的标准是什么? 答:幂函数与指数函数、对数函数的定义类似,只有满足函数解析式右边的系数为1,底数为自变量x, 指数为一常数这三个条件时,才是幂函数.如: y =3x 2, y =(2x)3, y =????x 2 4 都不是幂函数. 例1在函数y =1 x 2,y =2x 2,y =x 2+x,y =1中,幂函数的个数为( ) A.0 B.1 C.2 D.3 解析 ∵y =1x 2=x - 2,所以是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数; 常函数y =1不是幂函数. 小结:只有在形式上完全符合幂函数的定义的式子,才是幂函数,否则就不是. 跟踪训练1已知y =(m 2+2m -2)x m2- 1+2n -3是定义域为R 的幂函数,求m,n 的值. 解:由题意得m 2+2m -2=1,m 2-1≠0,2n -3=0 解得m =-3,n =3 2 . 探究点二 幂函数的图象和性质 导引为了研究幂函数的性质,如下图,在同一坐标系内作出函数 (1)y =x; (2)y =x 1 2 ; (3)y =x 2; (4)y =x - 1; (5)y =x 3的图象,思考 下列问题: 问题1你能从这五个具体的函数图象中,发现什么规律? 答:(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)若α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)如果α<0,则幂函数在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 问题2函数y =x 2与y =x 1 2 在第一象限的图象有什么关系?出现这种关系的原因是什么? 答:函数y =x 2与y =x 12 在第一象限的图象关于直线y =x 对称,因为y =x 2与y =x 1 2 互为反函数.

指数函数的性质的应用教案

2.1.2指数函数的性质的应用 【教学目标】 (1)能熟练说出指数函数的性质。 (2)能画出指数型函数的图像,并会求复合函数的性质。 (3)在学习的过程中体会研究指数函数性质的应用,养成良好的思维习惯。 【教学重难点】 教学重点:指数函数的性质的应用。 ; 教学难点:指数函数的性质的应用。 【教学过程】 ㈠情景导入、展示目标 1.指数函数的定义,特点是什么 2.请两位同学画出指数函数的图象(分两种情况画a>1与0 (≠ 2.函数)1 a =a y a x. (≠ ,0 > ; 当a>1时,若x>0时,y1, 若x<0时,y1;若x=1时,y1; 当0<a<1时,若x>0时,y1,

若x<0时,y 1;若x=1时,y 1. 3.函数)1,0(≠>=a a y a x 是 函数(就奇偶性填). ㈢合作探究、精讲精练 探究点一:平移指数函数的图像 ) 例1:画出函数21+=x y 的图像,并根据图像指出它的单调区 间. 解析:由函数的解析式可得: 21+=x y =??????? -≥-<++) 1(,) 1(,2)2 1(11 x x x x 其图像分成两部分,一部分是将)211 1(+=x y (x<-1)的图 像作出,而它的图像可以看作)2 1(x y =的图像沿x轴的负方向平移一个单位而得到的,另一部分是将)1(21 2 ≥=+x x y 的图像作出,而 它的图像可以看作将2x y =的图像沿x轴的负方向平移一个单位而得到的. 解:图像由老师们自己画出 单调递减区间[-∞,-1],单调递增区间[-1,+∞]. 点评:此类函数需要先去绝对值再根据平移变换画图,单调性由图像易知。

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A版,数学必修1 教学内容:第二章,基本初等函数(I),指数函数及其性质 教学目标 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 | 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数的解析式与问题1中函数的解析式有什么共同特征 师生活动:教师提出问题引导学生把对应关系概括到的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域是 & 3.剖析概念 (1)规定底数大于零且不等于1的理由: 如果=0, 如果等等时,在实数范围内实数值不存在 如果是一个常量,对它就没有研究的必要 (2)形式上的严格性 指数函数是形式定义的函数,就像初中所学的一次函数﹑反比例函数都是形式定义的概念,因此把握指数函数的形式非常重要。在指数函数的定义表达式中,前的系数必须是1,自变量在指数的位置上,否则,不是指数函数,比如等,都不是指数函数 (二)指数函数的图像及性质 ) 1.提出问题:同学们能类比前面讨论函数性质时的思路,提出研究指数函数性质的方法吗 师生活动:教师引导学生回顾需要研究函数的那些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图像在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,学生独立思考,提出研究指数函数性质的基本思路 2.画出函数的图像 师生活动:学生用描点法独立画图,教师课堂巡视,个别辅导,展示画的较好的学生的图像

北京四中高考数学总复习 函数的基本性质(提高)知识梳理教案

【考纲要求】 1. 了解函数的定义域、值域,并能简单求解. 2. 理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义. 3. 会运用函数图象理解和研究函数的性质. 【知识网络】 【考点梳理】 1.单调性 (1)一般地,设函数()f x 的定义域为I 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,若都有12()()f x f x <,那么就说函数在区间D 上单调递增,若都有12()()f x f x >,那么就说函数在区间D 上单调递减。 (2)如果函数()y f x =在区间D 上是增函数或减函数,那么就说函数()y f x =在这一区间具有严格的单调性,区间D 叫做()y f x =的单调区间。 (3)判断证明函数单调性的一般方法:单调四法,导数定义复合图像 定义法: 用定义法证明函数的单调性的一般步骤是①设D x x ∈21,,且12x x <;②作差 )()(21x f x f -;③变形(合并同类项、通分、分解因式、配方等)④判断)()(21x f x f -的 正负符号;⑤根据定义下结论。 复合函数分析法 设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,则[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表: 函数的基本性质 奇 偶 性 单 调 性 周 期 性

()u g x = ()y f u = [()]y f g x = 增 增 增 增 减 减 减 增 减 减 减 增 导数证明法: 设()f x 在某个区间(,)a b 内有导数'()f x ,若()f x 在区间(,)a b 内,总有'()0('()0)f x f x ><,则()f x 在区间(,)a b 上为增函数(减函数);反之,若()f x 在区间(,)a b 内为增函数(减函数) ,则'()0('()0)f x f x ≥≤。 图像法: 一般通过已知条件作出函数图像的草图,从而得到函数的单调性。 2、奇偶性 (1)定义: 如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),则称f(x)为这一定义域内的奇函数;如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称f(x)为这一定义域内的偶函数. 理解: (Ⅰ)上述定义要求一对实数x,-x 必须同时都在f(x)的定义域内,注意到实数x,-x 在x 轴上的对应点关于原点对称(或与原点重合),故知f(x)的定义域关于原点对称是f(x)具有奇偶性的必要条件. (Ⅱ)判断函数奇偶性的步骤: ①考察函数定义域; ②考察f(-x)与f(x)的关系; ③根据定义作出判断. (Ⅲ)定义中条件的等价转化 ①f(-x)=-f(x)?f(x)+f(-x)=0;或f(-x)=-f(x) ? ) () (x f x f -=-1 (f(x)≠0) ②f(-x)= f(x) ?f(x)-f(-x)=0;或f(-x)=f(x) ? ) () (x f x f -=1 (f(x)≠0)

中职数学:幂函数教学教案

2.3幂函数 一.教学目标: 1.知识技能 (1)理解幂函数的概念; (2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用. 2.过程与方法 类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质. 3.情感、态度、价值观 (1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性. 二.重点、难点 重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质 5.学法与教具 (1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质; (2)教学用具:多媒体 三.教学过程: 引入新知 阅读教材P90的具体实例(1)~(5),思考下列问题. (1)它们的对应法则分别是什么? (2)以上问题中的函数有什么共同特征? 让学生独立思考后交流,引导学生概括出结论 答:1、(1)乘以1 (2)求平方(3)求立方 (4)求算术平方根(5)求-1次方 =,其中x是自变量,α是 2、上述的问题涉及到的函数,都是形如:y xα 常数. 探究新知 1.幂函数的定义 =(x∈R)的函数称为幂孙函数,其中x是自变量,α是常一般地,形如y xα 数.

如112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都 是基本初等函数. 2.研究函数的图像 (1)y x = (2)12 y x = (3)2 y x = (4)1 y x -= (5)3 y x = 一.提问:如何画出以上五个函数图像 引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像. . 2

高中数学第二章 反函数性质的应用 教案(北师大版必修1)

反函数性质的应用 只有定义域和值域一一对应的函数才有反函数,反函数是由原函数派生出来的,它的定义域、对应法则、值域完全由原函数决定。因此利用这一关系可以将原函数的问题与反函数的问题相互转化,使问题容易解决。现在看一下反函数性质的应用。 ⒈利用反函数的定义求函数的值域 例1:求函数y= 1 21 x x - +的值域。 分析:这种函数可以利用分离常数法或反函数法求值域,下面利用反函数法来求解。解:由 y= 1 21 x x - +得y(2x+1)=x-1 ∴(2y-1)x=-y-1 ∴x= 1 21 y y -- - ∵x是自变量,是存在的, ∴2y-1≠0,∴y≠1 2。 故函数y= 1 21 x x - +的值域为:{y│y≠ 1 2}。 点评:形如y=ax b cx d + +的函数都可以用反函数法求它的值域。 ⒉原函数与反函数定义域、值域互换的应用 例2:已知f(x)=4x-21x+,求f1-(0)。 分析:要求f1-(0),只需求f(x)=0时自变量x的值。 解:令f(x)=0,得4x-21x+=0,∴2x(2x-2)=0, ∴2x=2或2x=0(舍), ∴x=1。 故f1-(0)=1。 点评:反函数的函数值都可以转化为求与之对应的原函数的自变量之值,反之也成立。 ⒊原函数与反函数的图像关于直线y=x对称的应用

例3:求函数y= 2 1 x x+(x∈(-1,+∞))的图像与其反函数图像的交点。 分析:可以先求反函数,再联立方程组求解;也可以利用原函数与反函数的图像关于直线y=x 对称求解,这里用后一种方法求解。只要原函数与反函数不是同一函数,它们的交点就在直线y=x上。 解:由 2 1 x y x y x ? = ? + ? ?= ?得 x y = ? ? = ?或 1 1 x y = ? ? = ? ∴原函数和反函数图像的交点为(0,0)和(1,1)。 点评:利用利用原函数与反函数的图像关于直线y=x对称的性质,可以简化运算,提高准确率。但要注意原函数与反函数不能是同一函数,它们的交点才在直线y=x上。 ⒋原函数与反函数的单调性相同的应用 例4:已知f(x)=2x+1的反函数为f1-(x),求f1-(x)<0的解集。 分析:因为f(x)=2x+1在R上为增函数,所以f1-(x)在R上也为增函数。又因为原函数与反函数定义域、值域互换,所以f1-(x)中的x的范围就是f(x)的范围。 解:由f(x)=2x+1>1得f1-(x)中的x>1。 又∵f1-(x)<0且f(x)=2x+1在R上为增函数, ∴f 1() f x - ?? ??

2.2.2对数函数及其性质教案

2.2.2对数函数及其性质(一) 隆湖中学教师 李江华 教学目标 (一) 教学知识点 1. 对数函数的概念; 2. 对数函数的图象与性质. (二) 能力训练要求 1. 理解对数函数的概念; 2. 掌握对数函数的图象、性质; 3. 培养学生数形结合的意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题; 3.了解对数函数在生产生活中的简单应用. 教学重点 对数函数的图象、性质. 教学难点 对数函数的图象与指数函数的关系. 教学过程 一、复习引入: 1、指对数互化关系: b N N a a b =?=log 2、 )10(≠>=a a a y x 且的图象和性质. 3、 我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个 数y 是分裂次数x 的函数,这个函数可以用指数函数y =x 2表示.

现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数x 就是要得到的细胞个数y 的函数.根据对数的定义,这个函数可以写成对数的形式就是y x 2log =. 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log =. 引出新课--对数函数. 二、新授内容: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞. 学生思考问题:为什么对数函数概念中规定?1,0≠>a a 例1. 求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; 分析:此题主要利用对数函数x y a log =的定义域(0,+∞)求解. 解:(1)由2 x >0得0≠x ,∴函数2log x y a =的定义域是{}0|≠x x ; (2)由04>-x 得40得x>1, ∴函数 的定义域是()+∞,1. 2.对数函数的图象: 通过列表、描点、连线作x y 2log =与x y 2 1log =的图象: 思考:x y 2log =与x y 2 1log =的图象有什么关系? 3,(1)根据对称性(关于x 轴对称)已知y =3log x 的图像,你能画出y =x 3 1log 的图像吗? 1 1log )3(7 -=x y 11 log 7-=x y

关于幂函数的性质知识点总结

关于幂函数的性质知识点总结 定义: 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a 为正数,0才进入函数的值域 性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n 是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的

定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出

《函数的概念与性质》教案设计.

《函数的概念与性质》教案设计 2019-02-16 一、学习要求 ①了解映射的概念,理解函数的概念; ②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法; ③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数; ④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质; ⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题. 二、两点解读 重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题. 难点:①抽象函数性质的研究;②二次方程根的.分布. 三、课前训练 1.函数的定义域是( D ) (A)(B)(C)(D) 2.函数的反函数为( B ) (A)(B) (C)(D) 3.设则. 4.设,函数是增函数,则不等式的解集为 (2,3) 四、典型例题

例1设,则的定义域为() (A)(B) (C)(D) 解:∵在中,由,得,∴ , ∴在中,. 故选B 例2已知是上的减函数,那么a的取值范围是() (A)(B)(C)(D) 解:∵ 是上的减函数,当时,,∴ ;又当时,,∴ ,∴ ,且,解得:.∴综上,,故选C 例3函数对于任意实数满足条件,若,则 解:∵函数对于任意实数满足条件, ∴ ,即的周期为4, 例4设的反函数为 ,若× ,则 2 解: ∴m+n=3,f(m+n)=log3(3+6)=log39=2 (另解∵ , 例5已知是关于的方程的两个实根,则实数为何值时,大于3且小于3? 解:令,则方程 的两个实根可以看成是抛物线与轴的两个交点(如图所示), 故有:,所以:, 解之得:

人教版 数学 必修1函数的基本性质 教案

课程标题 函数的基本性质 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 (3)单调性:如果函数()y f x =在某个区间是增函数或减函数。那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。 2、单调性的判定方法 (1)定义法: 判断下列函数的单调区间:2 1x y = (2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在] ,[b a 上也是单调函数。 ①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 ②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相 同。 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”) 练习:(1)函数2 4x y -= 的单调递减区间是 ,单调递增区间 为 .

《幂函数》教案

《幂函数》教案 教学目标 知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函 数的图象和性质. 情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性. 教学重点 重点 从五个具体幂函数中认识幂函数的一些性质. 难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 教学过程 环节 教学内容设计 师生双边互动 创设情境 组织探究 尝试练习 巩固反思 作业回馈 课外活动 问题引入. 幂函数的图象和性质. 幂函数性质的初步应用. 复述幂函数的图象规律及性质. 幂函数性质的初步应用. 利用图形计算器或计算机探索一般幂函数的图象规律.

创设情境 阅读教材P90的具体实例(1)~(5),思考下列 问题: 1.它们的对应法则分别是什么? 2.以上问题中的函数有什么共同特征? (答案) 1.(1)乘以1;(2)求平方;(3)求立方;(4) 开方;(5)取倒数(或求-1次方). 2.上述问题中涉及到的函数,都是形如αx y= 的函数,其中x是自变量,是α常数. 生:独立思考完成引 例. 师:引导学生分析归纳 概括得出结论. 师生:共同辨析这种新 函数与指数函数的异 同. 组织探究 材料一:幂函数定义及其图象. 一般地,形如 α x y=) (R a∈ 的函数称为幂函数,其中α为常数. 下面我们举例学习这类函数的一些性质. 作出下列函数的图象: (1)x y=;(2)2 1 x y=;(3)2x y=; (4)1- =x y;(5)3x y=. [解] ○1列表(略) ○2图象 师:说明: 幂函数的定义来 自于实践,它同指数函 数、对数函数一样,也 是基本初等函数,同样 也是一种“形式定义” 的函数,引导学生注意 辨析. 生:利用所学知识和方 法尝试作出五个具体 幂函数的图象,观察所 图象,体会幂函数的变 化规律. 师:引导学生应用画函 数的性质画图象,如: 定义域、奇偶性. 师生共同分析,强调画 图象易犯的错误. 环节教学内容设计师生双边互动

函数的性质的应用教学设计

§1.3函数的基本性质的应用 教学设计 一、课标分析 1.本内容是在高中数学人教社A版必修1讲完1.2.1函数的单调性和奇偶性之后,安排的一节专题研究课。这节课承接前面所研究的函数的定义、表示方法、单调性、奇偶性,是这些内容的深化、提高,并且是在研究完具体初等函数的性质之后再进行的,从感性认识提高到理性认识。另一方面,为后面学习指数函数、对数函数、及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值、导数等等都有着紧密的联系,同时它对后面的函数的进一步学习在思维上起着进一步深化、拓展的作用。 2.本节课在函数中是由具体到抽象的一个重要过渡,它对后面利用函数性质的进一步研究抽象函数问题起着重要的铺垫、引领作用。 3.通过函数的性质的研究,能够培养、训练、提高学生的逻辑思维能力和发散思维能力,对其他知识的进一步学习、探索产生良好迁移作用具有奠基性的作用。 4.通过对函数性质的研究,能够对其它学科的学习,比如说物理学中的波形图、化学中的无机化学、生物学中的遗传等知识,使学生在思维上具有正面的积极导向,给予数学上的基础性支撑。 5.渗透转化等数学思想方法。从学习过程中感悟转化思想的作用,化繁为简、化抽象为直观,为今后进一步学习、深化,打下坚实基础。 二、教材分析 函数的性质与应用位于高一数学教材必修1,且贯穿于整个高中学习。在高考中,函数的性质是命题的主线索,并且考察的类型较多,涉及到函数的单调性、单调区间、奇偶性、周期性、最值、图象,函数与导数、不等式的联系等,在选择、填空和解答题中都有体现。其中函数的单调性、奇偶性和周期性更是重中之重。而学生对函数各性质的掌握和应用能力还不够。

相关主题
文本预览
相关文档 最新文档