二次函数的综合应用教案
- 格式:docx
- 大小:15.90 KB
- 文档页数:3
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
北师大版九年级数学下册《二次函数的应用》教案及教学反思教学目标1.理解二次函数的概念及特性2.掌握二次函数应用实例3.培养学生分析问题、解决问题的能力教学内容1. 二次函数的概念与特性(1)定义二次函数是指自变量的二次方作为函数的函数,它的一般形式为:f(x) = ax^2 + bx + c其中 a、b、c 是常数,且 a ≠ 0。
(2)基本特征•定义域:实数集•值域:当 a > 0 时,二次函数的最小值为 c - (b^2) / (4a) ;当 a < 0 时,二次函数的最大值为 c - (b^2) / (4a)。
•对称轴:x = -b / (2a)•开口方向:当 a > 0 时,二次函数开口向上,当 a < 0 时,二次函数开口向下。
•零点:f(x) = 0 时的 x 值即为二次函数的零点。
2. 二次函数的应用实例(1)求最大值或最小值当一个物理问题能够用二次函数来表达时,可以利用二次函数的特性,求出物理量的最大值或最小值。
(2)求交点二次函数和直线之间的交点可以用来解决几何问题,如交点为两柱面相切的圆的半径等。
教学方法•解释法:通过示例或铺垫讲解二次函数的定义及特性。
•运用法:通过做一些典型题目,让学生理解二次函数的不同特性。
•发散法:通过一些拓展题目,让学生探究二次函数的应用及实际问题的解决。
教学过程1. 拓展题目(10分钟)请学生观察以下二次函数图像,思考不同函数的特点。
当学生了解了不同二次函数的特性并掌握了如何求解二次函数的基本问题后,开始进入二次函数应用问题实战。
2. 例题练习(30分钟)请学生在教师指导下,完成以下例题练习: 1. 某工程公司定价方案为:一个工程的成本为 10000 元,每增加 1 万的工程量,成本额外增加 2400 元。
如果公司想最多减少亏损,最多赚多少? 2. 在 xy 平面内,一个圆心坐标为 (2, 3),一点坐标为 (0, 1)。
当圆与直线 y=2 x-1 相切时,圆的半径为多少? 3. 有一个与 x 轴成 45 度角的光线通过点 P(6, 2) 射向 y 轴的一面镜子,反射之后定位在 Q(0, y) 处,求 y的值。
初中数学《二次函数的应用》教案2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
二次函数教案【精选3篇】总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能使我们及时找出错误并改正,快快来写一份总结吧。
那么如何把总结写出新花样呢?这里给大家分享一些关于数学二次函数解题技巧,方便大家学习。
为朋友们精心整理了3篇《二次函数教案》,亲的肯定与分享是对我们最大的鼓励。
二次函数教案篇一一、教材分析:《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。
这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。
这也突出了课标的要求:注重知识与实际问题的联系。
本节教学时间安排1课时二、教学目标:知识技能:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.能够利用二次函数的图象求一元二次方程的近似根。
数学思考:1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
解决问题:1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
二次函数的应用教案一、引言二次函数作为高中数学中的重要内容之一,具有广泛的应用价值。
本教案将介绍二次函数的应用,并提供相关练习和实例,帮助学生更好地理解和掌握二次函数的应用方法。
二、教学目标1. 理解二次函数的基本概念和性质;2. 掌握二次函数在实际问题中的应用方法;3. 能够运用二次函数解决与实际问题相关的计算和分析。
三、教学内容1. 二次函数的基本概念回顾;2. 二次函数的图像特征及其解析式;3. 利用二次函数模型解决实际问题;4. 实例分析和练习。
四、教学步骤Step 1:二次函数的基本概念回顾(10分钟)1. 提醒学生二次函数的定义和一般式表达形式;2. 回顾二次函数的图像特点,如开口方向、对称轴等。
Step 2:二次函数的图像特征及其解析式(20分钟)1. 讲解二次函数的顶点形式和标准形式,并给出它们的解析式;2. 解释二次函数图像的平移、伸缩对解析式的影响。
Step 3:利用二次函数模型解决实际问题(30分钟)1. 介绍如何通过给定问题寻找相应的二次函数模型;2. 指导学生将实际问题转化为数学模型,并运用得到的二次函数解决问题。
Step 4:实例分析和练习(40分钟)1. 通过实例分析,引导学生熟悉二次函数的应用方法;2. 布置练习题,让学生在课堂上或课后进行巩固练习。
五、教学资源1. 教材:包括二次函数相关知识点的教材章节;2. 讲义:内容详尽的二次函数应用教案讲义;3. 实例:包括实际问题转化为二次函数模型的实例。
六、教学评估1. 教师根据学生的课堂参与情况和练习表现进行评估;2. 学生通过课堂练习和作业测试自我评估。
七、拓展应用1. 引导学生自行寻找并解决与二次函数相关的实际问题;2. 分享与二次函数应用相关的数学竞赛题目。
八、总结通过本教案,学生能够全面了解二次函数的应用方法,掌握二次函数解决实际问题的技巧,并通过实例练习提升应用能力。
教师在教学过程中应注重引导学生思考和解决问题的能力培养,培养学生对数学知识的应用意识和兴趣。
二次函数的应用教案教案:二次函数的应用一、教学目标:1.理解二次函数的概念及其一般式;2.掌握二次函数的图像特点;3.学会利用二次函数解决实际问题;4.培养学生的逻辑思维和问题解决能力。
二、教学准备:1.教学工具:多媒体设备、黑板、教材等;2.教学素材:二次函数的图像、实际问题等。
三、教学过程:1.导入与展示(10分钟)引导学生复习二次函数的基本概念,并展示一些二次函数的图像,让学生感受二次函数的基本特点。
2.探究与讨论(15分钟)通过讨论和思考,引导学生找出二次函数图像中的关键要素:顶点、对称轴、开口方向等,并与函数表达式进行关联。
3.案例分析(20分钟)将二次函数的解释和实际问题相结合,通过一些实际案例,引导学生理解二次函数的应用。
比如:抛物线的应用、最值问题、几何问题等。
4.讲解与总结(20分钟)讲解二次函数的一般式及其性质,通过展示一些典型的例题和解题方法,引导学生掌握二次函数的解题技巧。
5.练习与巩固(20分钟)给学生一些练习题,让学生动手解答,帮助学生巩固所学知识。
6.拓展与应用(15分钟)通过一些扩展问题和应用题,培养学生的批判性思维和问题解决能力。
7.总结与作业(10分钟)总结二次函数的基本特点和解题方法,布置相应的作业,让学生自主巩固所学内容。
四、教学评估及反思:通过学生的课堂表现、练习情况以及课后作业的完成情况,来评估学生对二次函数应用的理解和掌握程度。
根据评估结果,及时调整教学策略,加强薄弱环节的讲解和练习。
教学反思:二次函数是高中数学中的重要内容,掌握好二次函数的应用对于学生的数学学习和解决实际问题非常关键。
本课在教学过程中注重结合实际问题,引导学生思考和探究,并通过一些典型问题的分析和解答,帮助学生更好地理解和掌握二次函数的应用。
同时,在教学过程中注重培养学生的解决问题的能力,引导学生发展批判性思维和创新思维。
通过及时反馈和评估,不断优化教学,提高教学效果。
1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a/0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式"为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程
导学提纲
设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
(一)前情回顾:
1.复习二次函数y=ax2+bx+C(a0)的图象、顶点坐标、对称轴和最值
2.(1)求函数y=X2+2x-3的最值。
(2)求函数y=×2+2x-3的最值。
(0sx≤3)3、抛物线在什么位置取最值?
(二)适当点拨,自主探究1.在创设情境中发现问题请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?
2、在解决问题中找出方法
某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和竞各取多少米,才能使存放场地的面积最大?
(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体会其应用价值??我们要学有用的数学知识。
学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含×的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习
奠定思想方法基础。
)
3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花围的宽AD究竟应为多少米才能使花圃的面积最大?
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。
)解:设垂直于墙的边AD=x米,则AB=(32-2x)米,设矩形面积为y米2,得到:
Y=x(32-2x)=-2×2+32x[错解]由顶点公式得:
x=8米时,y最大=128米2而实际上定义域为11sx?16,由图象或增减性可知x=11米时,y 最大=110米2(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。
)
(三)总结交流:
(1)同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.
引导学生分析解题循环图:
(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?
(四)掌握应用:
图中窗户边框的上半部分是由四个全等扇形组成的半园,下部分是矩形。
如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使透光面积最大(结果精确到0.01m2)?
(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。
)(五)我来试一试:
如图在RtABC中,点P在斜边AB上移动,PMLBC,PNLAC,M,N分别为垂足,已知AC=1,AB=2,求:
(1)何时矩形PMCN的面积最大,把最大面积是多少?
(2)当AM平分∠CAB时,矩形PMCN的面积。
(六)智力闯关:
如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最大面积是多少?
作业:课本随堂练习、习题1,2,3板书设计二次函数的应用??面积最大问题课后反思二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。
本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解
决与交流,让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。
教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐和成就感。
在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。
同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。