关于利用微生物用于木质纤维素生物质转化为燃料乙醇的研究进展综述
- 格式:doc
- 大小:32.50 KB
- 文档页数:5
木质纤维素的酶解技术研究木质纤维素是地球上最丰富的可再生资源之一,主要来源于农业废弃物(如秸秆)、林业废弃物(如木屑)以及工业废弃物(如造纸浆渣)等。
将木质纤维素转化为有用的产品,如生物燃料、生物化学品和生物材料,对于解决能源危机、环境保护和可持续发展具有重要意义。
酶解技术作为一种绿色、高效的方法,在木质纤维素的转化中发挥着关键作用。
一、木质纤维素的组成与结构木质纤维素主要由纤维素、半纤维素和木质素组成。
纤维素是由葡萄糖通过β-1,4-糖苷键连接而成的线性聚合物,具有较高的结晶度和分子取向性。
半纤维素是由多种不同的糖单元组成的支链聚合物,其结构较为复杂。
木质素则是一种无定形的芳香族聚合物,填充在纤维素和半纤维素之间,形成复杂的网络结构,为植物提供机械强度和抗微生物侵蚀的能力。
由于木质纤维素的复杂结构,其直接利用存在诸多困难。
纤维素的结晶区难以被水解,半纤维素的复杂结构需要特定的酶来分解,而木质素则会阻碍酶与纤维素和半纤维素的接触。
因此,在进行酶解之前,通常需要对木质纤维素进行预处理,以破坏其结构,提高酶解效率。
二、木质纤维素的预处理方法预处理的目的是降低木质纤维素的结晶度、去除木质素、增加孔隙率和表面积,从而提高酶对底物的可及性。
常见的预处理方法包括物理法、化学法和生物法。
物理法主要包括机械粉碎、微波处理和超声波处理等。
机械粉碎可以减小木质纤维素的颗粒尺寸,增加表面积,但能耗较高。
微波和超声波处理可以通过产生热效应和空化效应,破坏木质纤维素的结构,但设备成本较高。
化学法包括酸处理、碱处理和有机溶剂处理等。
酸处理可以有效地水解半纤维素,但可能会导致糖的降解和设备腐蚀。
碱处理可以去除木质素,但会产生大量的废水。
有机溶剂处理可以选择性地溶解木质素,但有机溶剂的回收和处理较为困难。
生物法主要是利用微生物或其产生的酶来分解木质素。
例如,白腐菌可以分泌木质素降解酶,对木质素进行分解,但处理周期较长。
三、酶解过程中涉及的酶酶解木质纤维素主要涉及纤维素酶、半纤维素酶和木质素降解酶。
纤维素乙醇家产现状及重点过程技术难点公司,2012 年,龙力生物成立了当时中国最大的纤维素乙醇厂,最多可年产 5 万 t 酒精,但遗憾的是该装置目前也处于停运状态。
其余国内在建或已经成立的纤维素乙醇项目也都处于停产状态或许从未动工,河南天冠公司在南阳成立的 3 万 t/a 醇电联产项目自建成以来从未运转,其余几家与外国公司合资成立的工厂也没有动工。
2纤维素乙醇重点过程技术难点2.1 纤维素乙醇重点过程用木质纤维素原料生产乙醇,主假如利用木质纤维素经过预办理产生半纤维素和纤维素,后酶解产生可发酵糖发酵生产乙醇,而后通过必定的分别提纯手段获取合格产品。
纤维素乙醇生产工艺主要包含原料收储运、原料预办理、酶解、水解糖发酵、乙醇产品脱水精制和污水办理几个单元,主流工艺流程简图如图 3 所示。
2.2 重点过程技术难点2.2.1 原料根源不稳固目前用于乙醇生产的木质纤维素主要根源于农作物秸秆,但秸秆种类众多、性状不一,散布分别,收获拥有季节性,所以秸秆的采集、储藏和运输花费约占乙醇生产成本的三分之一。
且秸秆易燃易潮易发霉,长久储藏需要做好防雨、防潮、防火和防雷等设备建设,平时还需要进行必需的保护和管理。
所以秸秆收、储、运是秸秆大规模能源化利用的一大瓶颈,建立合理的秸秆收储运系统对纤维素燃料乙醇连续化生产至关重要。
2.2.2 预办理工艺复杂,收率低预办理过程相当于整个纤维素乙醇生产的龙头单元,预办理技术不单对其过程自己有影响,还几乎间接控制着其余所有操作过程,高水平的预办理技术能够降低昂贵酶制剂的用量,减少酶克制物和酵母克制物的生成,提升酶解速率和发酵水平。
但木质纤维素生物构造密切复杂,拥有激烈的抗降解性,需要经过特别物理化学方法办理来将木质纤维素的构造翻开,降低聚合度和结晶度,增添物料的比表面积。
一般的预办理方式有化学法,物理法、生物法及物理化学联合法等。
但单调的方法成本很高且办理成效不好,仅有物理化学联合法办理成效较好且经济可行,是目前使用许多的预办理方法,主要物理化学法有研磨后酸碱分解、稀酸 / 碱蒸汽爆破、亚硫酸盐蒸煮法等。
乙醇燃料的环保治理和减排技术近年来,全球气候变化不断加剧,环保治理已经成为了一个全球性重要议题,而“减排”已经成为了各国在应对气候变化时的首要任务之一。
在这个背景下,乙醇燃料成为了越来越多国家的重要减排技术和环保治理措施。
本文将以乙醇燃料的环保治理和减排技术为主题,探讨其意义、优劣以及前景等方面的信息。
一、乙醇燃料的环保意义传统燃料的使用,会释放出大量的有害气体,如二氧化碳、一氧化碳等,对环境和人类健康造成影响。
而乙醇燃料则是一种可再生的清洁能源,它的燃烧产生的主要气体是水蒸气和二氧化碳,不会对大气造成危害。
相比传统燃料,乙醇燃料的使用可以有效减少温室气体排放,从而减缓全球气候变化的进程。
二、乙醇燃料的生产乙醇可以通过多种方式生产,其中最常用的是葡萄糖发酵法。
利用葡萄糖发酵可以获得高纯度的乙醇,这种方法广泛应用于工业和农业。
此外,木质纤维素乙醇生产技术也是一种常用的乙醇生产方法。
木质纤维素是一种常见的植物纤维素,可以通过化学或生物方法转化为乙醇。
利用这种方法可以开发利用森林和农业废弃物等资源,减少有机废弃物的对环境的污染。
三、乙醇燃料的优良特性1.清洁环保:乙醇燃料的燃烧产生的主要气体是二氧化碳和水蒸气。
相比传统燃料,乙醇燃料的使用可以有效减少温室气体的排放。
2.可再生性:乙醇是一种可再生的清洁能源,可以通过多种方式生产,如葡萄糖发酵法和木质纤维素乙醇生产技术等。
利用可再生资源生产乙醇可以有效避免非可再生资源的消耗。
3.增加能源安全:利用乙醇作为燃料可以减少对石油等传统燃料的依赖,从而增加能源安全。
4.提高燃烧效率:与传统燃料相比,乙醇燃料在燃烧时有更高的燃烧效率,能够节约能源和降低能源成本。
四、乙醇燃料的减排技术1.生物发酵:利用微生物发酵的方法可以制取高纯度的乙醇。
通过这种方法生产乙醇能够减少碳排放,并且可以同时利用废弃物等资源,减少有机废弃物的对环境的污染。
2.生产可再生能源:使用可再生资源生产乙醇可以避免非可再生资源的消耗,从而减少排放的碳排放。
生物质能源的利用及研究进展【摘要】化石能源的日益紧缺及其衍生的环境污染问题越来越严重。
生物质能源的开发和应用,因其可再生性和环保性,越来越受到人们的重视。
本文首先介绍了生物质能源相关的基础知识,然后综述了生物乙醇与生物柴油的发展情况,并展望了生物质能源的发展趋势。
随着全球经济的发展,人们对能源的依赖程度逐渐增加,需求与日俱增,目前作为能源主要载体的化石燃料面临枯竭,油价飞涨,压力突出。
消耗化石能源引起的污染越来越严重,不利于环保要求,必须寻求清洁、安全、可靠、可持续发展的新能源体系,从而保护自然资源和生态环境。
生物质能源是可再生能源的重要构成部分,具有产业化和规模化发展趋势,也是传统化石能源的替代品,在未来的能源结构优化中占据重要地位,各国政府无不关注,并积极引导相关专家从事生物质能源新技术的开发研究。
一、生物质能源生物质能源是指通过植物光合作用,将太阳能转化为植物体内的化学能。
生物质能源作为一种可再生能源,它的开发利用可为解决当前全球变暖、化石能源成本飞涨和环境污染等重大问题提供新的途径。
(一)生物质能源的特点。
1.可再生性。
可再生能源,储备多,获取方便,具有天然的自我再生功能,可以保证能源长久持续的使用。
排放有突出作用,有助于减缓温室效应,2.环保性。
利用生物质能源对降低CO2并且在转化过程的同时减少硫化物、氮化物和粉尘等的排放。
3.兼容性。
可直接使用,也可以利用转化工艺作为二次能源使用。
生物质可以通过生物,化学和物理方法转换成生物能源。
4.缺点。
生物质分布不集中、单位体积内的能量低、低发热量和种类多而杂等。
(二)生物质能源的主要来源。
目前,主要的生物质能源来源如作物秸秆、林场枝叶废弃物、畜牧粪便等非粮物质。
但长久以来,人们对生物质资源中的固体废弃物常用堆肥、填埋、焚烧等方式处理,导致废物处理时间久,污染土壤和水资源;虽然焚烧法的热值高,可是成本高,而且易污染大气。
因此若是能够高效利用这些废弃物来生产新能源物质可以增加产业利润,还可以解决环境污染的问题。
前沿评述化工矿物与加工INDUSTRIAL MINERALS &PROCESSING2024年第4期文章编号:1008-7524(2024)04-0050-13D O I :10.16283/j .c n k i .h g k w y j g.2024.04.007 木质纤维素预处理技术研究现状与展望*张瀚文,陈正军,张晨雨,郭凤霞(甘肃农业大学生命科学技术学院,甘肃兰州730000) 摘要:木质纤维素是自然界中最丰富的可再生资源,可用于生产燃料乙醇㊁生物柴油等能源产品,也是制备化学品和造纸的主要原料㊂木质纤维素主要由纤维素㊁半纤维素和木质素组成,复杂的化学结构限制了其高效利用,故必须对其进行预处理,去除木质素㊁半纤维素等不可溶物质,从而使其更易被酶水解成可发酵的糖,进而提高木质纤维素的降解转化率㊂预处理技术可以改变木质纤维原料的内部结构和表面性质,为后续的酶解糖化创造良好条件㊂从物理㊁化学㊁生物㊁联合处理等4个方面全面综述了不同木质纤维素预处理技术的研究现状,总结了其预处理效果和优缺点,并展望了其未来的研究方向,旨在为木质纤维素生物质降解利用研究提供参考㊂关键词:木质纤维素;预处理;物理法;化学法;生物法;半纤维素;降解中图分类号:T Q 352 文献标志码:AR e s e a r c h s t a t u s a n d p r o s p e c t o f l i gn o c e l l u l o s e p r e t r e a t m e n t t e c h n o l o g yZ h a n g H a n w e n ,C h e n Z h e n g j u n ,Z h a n g C h e n y u ,G u o F e n gx i a (C o l l e g e o f L i f e S c i e n c e a n d T e c h n o l o g y ,G a n s u A g r i c u l t u r a l U n i v e r s i t y,L a n z h o u G a n s u 730000,C h i n a)A b s t r a c t :L i g n o c e l l u l o s e i s t h e m o s t a b u n d a n t r e n e w a b l e r e s o u r c e i n n a t u r e ,w h i c h c a n b e u s e d t o p r o d u c e e n e r g yp r o d u c t s s u c h a s f u e l e t h a n o l a n d b i o d i e s e l ,a n d i s a l s o t h e m a i n r a w m a t e r i a l f o r t h e p r e pa r a t i o n o f c h e m i c a l s a n d p a p e r m a k i n g .L i g n o c e l l u l o s e i s m a i n l y c o m p o s e d o f c e l l u l o s e ,h e m i c e l l u l o s e a n d l i g n i n ,a n d i t s c o m pl e x c h e m i c a l s t r u c t u r e l i m i t s i t s e f f i c i e n t u t i l i z a t i o n .T h e r e f o r e ,i t m u s t b e p r e t r e a t e d t o r e m o v e i n s o l u b l e s u b s t a n c e s s u c h a s l i gn i n a n d h e m i c e l l u l o s e ,s o a s t o m a k e i t e a s i e r t o b e h y d r o l y z e d b y e n z y m e s i n t o f e r m e n t a b l e s u g a r s ,t h u s i m p r o v i n g th e d e g r a d a t i o n a n d c o n v e r s i o n r a t e o f l i g n o c e l l u l o s e .P r e t r e a t m e n t t e c h n o l o g y c a n c h a n ge t h e i n t e r n a l s t r u c t u r e a n d s u r -f a c e p r o p e r t i e s o f l ig n o c e l l u l o s i c m a t e r i a l s ,c r e a t i n g g o o d c o n d i t i o n s f o r s u b s e q u e n t e n z y m a t i ch y d r o l y si s a n d s a c c h a r i f i -c a t i o n .T h e r e s e a r c h s t a t u s o f d i f f e r e n t l i g n o c e l l u l o s e p r e t r e a t m e n t t e c h n o l o g i e s i s r e v i e w e d f r o m f o u r a s p e c t s o f p h ys -i c s ,c h e m i s t r y ,b i o l o g y a n d c o m b i n e d t r e a t m e n t .T h e p r e t r e a t m e n t e f f e c t s ,a d v a n t a g e s a n d d i s a d v a n t a ge s a r e s u mm a -r i z e d ,a n d t h ef u t u r e r e s e a r c h d i r e c t i o n s a r e p r o s p e c t e d ,a i m i ng t o p r o v i d e r e f e r e n c e s f o r th e d e g r a d a ti o n a n d u t i l i z a t i o n o f l i gn o c e l l u l o s e b i o m a s s .K e yw o r d s :l i g n o c e l l u l o s e ;p r e t r e a t m e n t ;p h y s i c a l m e t h o d ;c h e m i c a l m e t h o d ;b i o l o g i c a l m e t h o d ;h e m i c e l l u l o s e ;d e g r a -d a t i o n㊃05㊃*收稿日期:2023-05-16基金项目:国家自然科学基金项目(31560175);甘肃省高等学校创新能力提升项目(2019B -074);甘肃农业大学公招博士科研启动基金项目(2017R C Z X -25);甘肃省自然科学基金项目(20J R 10R A 517)㊂作者简介:张瀚文(1996-),男,硕士研究生,研究方向为生物技术与工程;E -m a i l :452717908@q q .c o m ㊂通信作者:陈正军(1985-),男,博士,讲师,研究方向为环境微生物,E -m a i l :c h e n z j@g s a u .e d u .c n ㊂郭凤霞(1963-),女,博士,研究员,研究方向为药用植物栽培与育种,E -m a i l :gu o f x @g s a u .e d u .c n .c o m ㊂引用格式:张瀚文,陈正军,张晨雨,等.木质纤维素预处理技术研究现状与展望[J ].化工矿物与加工,2024,53(4):50-62.Z H A N G H W ,C H E N Z J ,Z HA N G C Y ,e t a l .R e s e a r c h s t a t u s a n d p r o s p e c t o f l i g n o c e l l u l o s e p r e t r e a t m e n t t e c h n o l o g y[J ].I n d u s t r i a l M i n e r a l s &P r o c e s s i n g,2024,53(4):50-62.张瀚文等:木质纤维素预处理技术研究现状与展望2024年4月0引言能源危机和环境污染是制约人类发展的核心问题㊂木质纤维素是自然界中最丰富和最廉价的可再生资源,年产量约为2000亿t[1],其广泛存在于农作物资源和林业资源中,具有分布广㊁数量大㊁种类多㊁成本低等优点[2]㊂木质纤维素通过生物转化技术可生产沼气㊁生物乙醇等高价值化学品,以其为原料生产的生物乙醇是一种具有高能量可再生能源,利用生物乙醇替代石油㊁天然气等化石燃料,对于缓解能源危机[3]㊁治理生态环境[4]㊁培育生物产业[5]等具有重要意义㊂木质纤维素主要由纤维素(30%~50%)㊁半纤维素(15% ~30%)和木质素(15%~30%)[6]构成,三者间通过共价键和氢键连接,常见的木质纤维素生物质有水稻秸秆㊁小麦秸秆㊁高粱秸秆㊁玉米芯㊁玉米秸秆㊁甘蔗渣㊁柳枝稷㊁松木㊁桉木等[7-8]㊂纤维素和半纤维素被高度聚合的木质素包裹形成紧密结构,导致其降解利用困难㊂预处理技术是克服木质纤维素的复杂性和顽固性的关键技术,预处理能破坏木质纤维素结构,去除木质素和半纤维素,增强酶对纤维素的可及性,进而提高木质纤维素的降解转化效率[9]㊂本文总结了降解木质纤维素的各种预处理技术,详细介绍了物理法㊁化学法㊁生物法和联合处理技术,分析了各种方法的预处理效果和优缺点,并展望了木质纤维素高效转化利用的方向㊂1木质纤维素预处理技术概述木质纤维素对化学试剂和生物分解具有的抗性称为生物顽固性㊂纤维素的晶体结构㊁木质化程度以及细胞壁结构成分的复杂性等因素导致其具有顽固性,为了高值化利用木质纤维素原料,必须克服该性质㊂预处理是木质纤维素降解利用中的核心步骤,通过破坏其稳定的结构㊁去除木质素㊁减小半纤维素的致密度及打开纤维素中的氢键,将结晶性的纤维素转化为无定形的纤维素,从而增强纤维素酶的可及性㊂有效的预处理应满足以下要求:有利于后续水解,避免产生酶解糖化的抑制物,减少污染和资源浪费,经济上可行㊂目前对木质纤维素的预处理技术主要包括物理法㊁化学法㊁生物法及联合处理法[10-12](见表1)㊂表1木质纤维素预处理方法及其特点T a b l e1L i g n o c e l l u l o s e p r e t r e a t m e n t m e t h o d s a n d t h e i r c h a r a c t e r i s t i c s预处理技术方法适用原料预处理效果副产物优点缺点物理预处理机械粉碎减小原料的粒径,增强纤维素酶的可及性㊂无操作简单,无化学品使用㊂能耗高,不能去除木质素和半纤维素㊂微波辐射均可降低纤维素聚合度,增大酶触面积㊂极少操作简单,糖化效果明显㊂木质素去除不完全㊂超声辐射降低木质纤维素分子内部聚合度㊂无无需其他试剂㊂价格昂贵㊂化学预处理酸处理均可溶出半纤维素,打破纤维素间氢键㊂脂肪族羧酸㊁苯类㊁呋喃类作用时间短,半纤维素转化效率高㊂去除木质素效果不佳,糖降解副产物多㊂碱处理硬木和农业废弃物脱去木质素及少部分半纤维素㊂乙酸㊁羟基酸处理效率高㊂处理时间较酸法长㊂离子液体木质素和半纤维素去除率高㊂无离子液体可重复使用㊂成本高㊂有机溶剂均可有效去除半纤维素㊂无实现木质素㊁纤维素和半纤维素组分分离㊂成本高,易燃易爆㊂氧化剂处理脱去木质素和部分半纤维素㊂乙酸㊁糠酸㊁醛糖酸环保㊁高效去除木质素㊂成本高㊂㊃15㊃2024年第4期I M&P化工矿物与加工第53卷(续表)预处理技术方法适用原料预处理效果副产物优点缺点生物预处理细菌㊁真菌㊁放线菌均可去除木质素,溶出水解半纤维和降低纤维素聚合度㊂无反应条件温和,能耗低,无需添加化学试剂㊂周期长,不太适合商业应用㊂复合菌系均可木质纤维素结构被破坏,纤维素结晶度降低㊂无提高糖产率,水解糖化效率高㊂构建筛选高效降解复合菌系过程复杂㊂联合预处理物化预处理硬木㊁秸秆和农业废弃物可以有效去除木质素,降低纤维素结晶度㊂极少商业应用前景大㊂使用化学试剂㊂生物联合处理均可去除木质素,降低半纤维素结晶度,减少抑制化合物的产生㊂呋喃类成本低,无污染,工业化产物易回收,应用前景大㊂无2物理法预处理木质纤维素2.1机械粉碎预处理机械粉碎是利用机械将原料粉碎至0.22mm 的工艺,减小原料的粒径,降低纤维素的结晶度,增强纤维素酶的可及性,以提高木质纤维素的水解效率[13]㊂不同的木质纤维素原料所需粒径的耗能不同[14]㊂粉碎方式包括球磨粉碎㊁盘式粉碎和气流粉碎等㊂球磨粉碎能更高效地减小木质纤维素的粒径㊂G U等[15]使用高速球磨机对玉米秸秆进行预处理后发现,葡萄糖的产率提升了44%㊂K AW E E等[16]通过高压均质化(H P H)从细菌纤维素中分解细菌纳米原纤化纤维素,H P H被认为是一种简单㊁无毒且高效的纳米原纤化纤维素提取方法㊂H I D E N O等[17]分别采用湿法粉碎和球磨粉碎处理水稻秸秆,酶解产率分别达到了78.5%和89.4%㊂Z H E N G等[18]改进了螺杆挤压法,通过将机械元件换成反向元件,使得木质素的去除效果好于绝大多数化学方法㊂机械粉碎预处理(见表2)不产生任何有毒或抑制性化合物,适用于各种木质纤维素原料的预处理㊂该方法操作简单,不涉及化学品,污染小㊂粉碎程度越高,酶解糖化效果越好,但粉碎时间过长会导致颗粒间发生聚合而增加能量损耗[19]㊂该方法的缺点是不能去除木质素和半纤维素,能耗高㊂未来应根据实际需求同其他预处理工艺相结合,以提高木质纤维素的降解转化率㊂表2机械粉碎预处理的降解效果及其优缺点T a b l e2 M e c h a n i c a l g r i n d i n g p r e t r e a t m e n t d e g r a d a t i o n e f f e c t a n d a d v a n t a g e s a n d d i s a d v a n t a g e s 方法预处理效果副产物优点缺点机械粉碎预处理减小粒径及纤维素的结晶度,增大酶接触面积,增强纤维素酶的可及性㊂无适用于处理各种木质纤维素原料,操作简单,不涉及化学品㊂不能去除木质素和半纤维素,能耗高㊂2.2微波辐射预处理微波辐射预处理是指通过微波破坏木质纤维素结构,将纤维素分子间的氢键打破以增大酶触面积,从而达到提高木质纤维素水解效率的目的[20]㊂MA等[21]采用680W微波预处理稻秆,与未处理的稻秆相比,糖化率提高了30.3%㊂陈亮等[22]采用800k G yγ射线辐照预处理水稻秸秆,其纤维素的酶解转化率由12.8%提高至64.1%㊂L I U等[23]使用微波辐射在碱性条件下处理木质纤维素,发现在微波处理下复杂的纤维结构发生了有效断裂,碱性溶液渗透到木质纤维素内部结构,可明显去除半纤维素,纤维素产率高达93.05%㊂MO O D L E Y等[24]研究了微波辅助无机盐预处理甘蔗叶废弃物增强酶促糖化的影响,当用2m o l/L 的F e C l3在700W和3.5m i n照射时间下进行预处理后,每克原料产生了0.406g还原糖㊂微波辐射预处理(见表3)具有操作简单㊁糖化效果明显㊁绿色环保等优点,缺点是装置的成本高,使其大规模工业化应用受到了一定限制㊂未来的发展方向应是同其他预处理方法相结合,以㊃25㊃张瀚文等:木质纤维素预处理技术研究现状与展望2024年4月提高木质纤维素的降解转化效率㊂表3微波辐射预处理的降解效果及其优缺点T a b l e3 D e g r a d a t i o n e f f e c t s o f m i c r o w a v e r a d i a t i o n p r e t r e a t m e n t a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s 方法预处理效果副产物优点缺点微波辐射预处理减少纤维素的结晶区域,降低木质纤维素的聚合程度,增大酶接触面积㊂极少操作简单,绿色环保,木质纤维素酶解糖化效果明显㊂装置成本高,大规模应用困难㊂2.3超声波预处理超声波预处理是利用高于2000H z的声波通过空化作用切割木质纤维素的复杂结构,促进所需化合物的提取,如纤维素㊁半纤维㊁木质素[25]㊂超声波持续时间㊁功率以及温度是影响超声波预处理效果的关键㊂L I Y A K A T H A L I等[26]研究发现甘蔗渣的酶解效率随着超声时间和温度的增加而升高,而超声频率对酶消化率没有影响㊂C H E R P O Z A T等[27]研究了超声波预处理木屑用于生物油生产,发现在170k H z㊁0.5h和40k H z㊁1.5h的组合以及1000W的功率条件下,与未处理的木屑相比,生物油的产量提高了12.0%㊂超声波是一种环保高效的预处理技术(见表4),缺点是成本高,不适合工业化应用㊂未来的研究方向应是同化学法预处理相结合,以提高木质纤维素降解效率㊂表4超声波预处理的降解效果及其优缺点T a b l e4 D e g r a d a t i o n e f f e c t o f u l t r a s o n i c p r e t r e a t m e n t a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s 方法预处理效果副产物优点缺点超声波预处理木质纤维素分子内部聚合度降低无环保,高效,无需化学试剂㊂成本高,不适合工业化应用㊂3化学法预处理木质纤维素3.1酸预处理酸预处理木质纤维素是通过破坏木质素㊁溶出半纤维素,降低纤维素的结晶度,从而降解木质纤维素[28]㊂因为强酸具有腐蚀性和强氧化性,采用强酸预处理木质纤维素对设备要求高,所以工业生产中通常使用弱酸㊂使用稀硫酸处理木质纤维素,可以增强纤维素的水解性,将纤维素降解为葡萄糖,木质素降解为多种单环芳香族化合物,半纤维素降解为多种单糖,如甘露糖㊁阿拉伯糖㊁木糖等[29]㊂G A O等[30]使用酸性溴化锂通过一锅法用玉米秸秆制备了糠醛,通过这种方法可将100%的半纤维素转化为糠醛,40.71%的纤维素转化为5-羟甲基糠醛㊂酸预处理(见表5)的优点是对半纤维素的转化效率高,降解耗时短;缺点是木质素去除较少,废液难以回收㊂酸预处理虽然对半纤维素有很好的增溶作用,但也会产生糠醛㊁羟甲基糠醛等挥发性产物,对后续糖化发酵过程有抑制作用㊂未来应关注副产物的去除,简化工艺流程,降低成本㊂表5酸预处理的降解效果及其优缺点T a b l e5 D e g r a d a t i o n e f f e c t o f a c i d p r e t r e a t m e n t a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s方法主要试剂预处理效果副产物优点缺点酸预处理硫酸㊁盐酸㊁二氧化硫㊁磷酸㊂降低纤维素的结晶度,溶出半纤维素㊂脂肪族羧酸㊁苯类㊁呋喃类㊂半纤维素的降解转化效率高,降解耗时短㊂木质素去除较少,副产物降解较多,废液难以回收㊂3.2碱预处理碱预处理木质纤维素主要使用碱性氨水㊁氢氧化钠和过氧化氢作为反应试剂,因氢氧根离子能断裂纤维素和半纤维素的氢键,破坏木质素和半纤维素间的化学键导致木质素结构被破坏,增强纤维素酶的可及性,从而提高水解效率[31]㊂高浓度的N a O H可以降低纤维素的结晶度,使其有效溶解[32]㊂B A L I等[33]研究发现低浓度N a O H 预处理对增强纤维素酶的可及性效果最明显,其次是氨水浸泡和石灰处理,均能有效去除木质素㊂㊃35㊃2024年第4期I M&P化工矿物与加工第53卷N O S R A T P O U R等[34]采用不同浓度碳酸钠㊁亚硫酸钠和乙酸钠对甘蔗渣进行预处理,结果表明,碳酸钠更有助于降低结晶度㊁去除木质素以及提高产糖率㊂杜琨等[35]研究发现,以甘蔗渣为原料,在温度为90ħ㊁质量分数为5%的N a O H条件下处理4h,纤维素回收率可达96%㊂苗林平等[36]研究碱性过氧化氢预处理小麦秸秆后发现,在N a OH质量分数为2.0%的碱性环境中,H2O2质量分数为2.0%㊁30ħ下处理24h的样品中纤维素质量分数为50.43%,纤维素保留率为89.52%,木质素脱除率为48.66%,半纤维素脱除率为41.81%,样品酶解率达94.18%㊂碱预处理(见表6)可以去除大部分木质素,不会造成多糖的大量损失,副产物较少;但处理时间相对较长,通常需要消耗大量的水来洗涤和解毒预处理的基质,存在成本高㊁试剂回收难等问题㊂表6碱预处理的降解效果及其优缺点T a b l e6 D e g r a d a t i o n e f f e c t o f a l k a l i p r e t r e a t m e n t a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s方法主要试剂预处理效果副产物优点缺点碱预处理氢氧化钠㊁氢氧化钙㊁氨气㊂去除木质素和少部分半纤维素,增强纤维素酶的可及性㊂乙酸㊁羟基酸㊁二羧酸㊁酚类化合物㊂能去除大部分木质素,与酸处理相比,反应器的成本较低㊂处理时间比酸法长,试剂废液回收困难㊂3.3离子液体预处理离子液体能有效去除木质素和半纤维素,是处理木质纤维素的理想溶剂[37]㊂常用的离子液体有咪唑基㊁吡啶基㊁吡咯基㊁磷基和磺基等[38]㊂HO S S A I N等[39]利用离子液体1-乙基-3-甲基咪唑氯盐预处理松木,提高了预处理后的酶解效率,离子液体经3次循环使用后仍具有良好的降解性能㊂H A S HM I等[40]利用1-丁基-3-基唑醋酸预处理甘蔗渣,发现在110ħ㊁30m i n处理条件下甘蔗渣木质素含量显著降低,葡萄糖和木聚糖的转化率分别达到97.4%㊁98.6%㊂B R A N D T-T A L-B O T等[41]首次使用低成本离子液体三乙基硫酸氢铵预处理芒草,发现高达75%的木质素和100%的半纤维素被溶解,并且通过酶促糖化产生了77%的葡萄糖;离子液体重复使用了4次,每次的回收率均为99%㊂离子液体预处理(见表7)木质纤维素后可回收重复使用,其具有无挥发性㊁无毒性㊁高热稳定性和化学稳定性等显著优势;离子液体价格昂贵且对微生物和酶有毒性是其主要缺点㊂未来需要进一步研究低成本回收技术并降低其对酶的毒性㊂表7离子液体预处理的降解效果及其优缺点T a b l e7D e g r a d a t i o n e f f e c t o f i o n i c l i q u i d p r e t r e a t m e n t a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s方法常用离子液体预处理效果副产物优点缺点离子液体预处理咪唑基㊁吡啶基㊁吡咯基㊁磷基㊁磺基等木质素和半纤维素去除率高无离子液体可重复使用成本高3.4有机溶剂预处理有机溶剂预处理是利用有机溶剂在100~250ħ的温度范围对木质纤维素进行处理,利用生物质的溶解性不同而实现组分分离[42]㊂常使用各种醇类㊁苯酚㊁酯等有机溶剂作为处理试剂,处理效果好,半纤维素能有效降解并进一步生成生物乙醇等高值化学品[43]㊂S A L A P A等[44]使用乙醇在180ħ㊁40m i n条件下对小麦秸秆进行预处理,小麦秸秆纤维素酶解糖化效率达到89%,生物乙醇产率达到67%㊂邓学群[45]使用硫酸-乙醇在硫酸质量分数2%㊁乙醇体积分数50%㊁预处理温度120ħ㊁预处理时间60m i n㊁固液比1ʒ10的条件下预处理玉米芯,酶解得率为68.48%;在氢氧化钠质量分数2%㊁乙醇体积分数50%㊁预处理温度60ħ㊁预处理时间60m i n㊁固液比1ʒ10的条件下预处理玉米芯,纤维素质量分数为73.11%,木质素含量明显降低,木质素的脱除率达到74.48%,玉米芯的酶解得率为77.29%㊂有机溶剂预处理(见表8)可以实现木质素㊁纤维素㊁半纤维素三大组分的分馏㊂该方法的缺点是大多数有机溶剂价格昂贵,且有机溶剂的高易燃性和挥发性使得预处理需要在特别受控的条件㊃45㊃张瀚文等:木质纤维素预处理技术研究现状与展望2024年4月下进行,操作不慎容易发生爆炸,安全性低㊂表8有机溶剂预处理的降解效果及其优缺点T a b l e8 D e g r a d a t i o n e f f e c t o f o r g a n i c s o l v e n t p r e t r e a t m e n t a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s 方法主要试剂预处理效果副产物优点缺点有机溶剂预处理醇类㊁苯酚㊁酯等有效去除半纤维素无能得到纯木质素㊁纤维素㊁半纤维素有机溶剂价格昂贵,易燃易爆3.5氧化剂预处理氧化剂预处理是通过溶出大部分半纤维素,降解木质素增强纤维素酶的可及性,进而提高木质纤维素的酶解糖化效率㊂如G A R C I A-C U B E-R O等[46]用臭氧处理小麦和黑麦秸秆,处理前的酶解率分别为29%和16%,处理后的酶解率分别为88.6%和57.0%㊂湿氧化爆破预处理木质纤维素是利用碱㊁氧气和水在加压㊁加温的条件下溶出半纤维素和木质素,从而分离出纤维素,达到组分分离的目的㊂李诚等[47]使用臭氧预处理玉米秸秆后进行水解制备了可发酵的单糖,研究发现,臭氧处理秸秆在较小的粒径(<48μm)及含水率60%的条件下效果最好,原料中木质素质量分数由15.04%下降至2.96%,酶解糖化率从9.17%提高至39.80%㊂MA R T I N等[48]在195ħ㊁15 m i n条件下处理甘蔗渣,发现纤维素溶出率达到70.0%,酶解转化率为74.9%㊂氧化剂预处理(见表9)的优点是处理条件温和㊁操作简单㊁能高效脱除木质素㊁不产生发酵抑制物;但缺点也十分明显,需要大量氧气,成本较高㊂表9氧化剂预处理的降解效果及其优缺点T a b l e9 D e g r a d a t i o n e f f e c t o f o x i d i z e r p r e t r e a t m e n t a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s 方法预处理效果副产物优点缺点氧化剂预处理脱去木质素和部分半纤维素乙酸㊁糠酸㊁醛糖酸操作简单㊁能高效脱除木质素成本高㊁需要大量氧气4生物法预处理木质纤维素生物法预处理降解木质纤维素是利用微生物产酶使木质纤维素间化学键断裂㊂因为木质纤维素的三大组分(木质素㊁纤维素㊁半纤维素)的差异较大[49],所以降解酶也各不相同㊂纤维素外切葡萄糖聚合酶作用在纤维素的结晶区,纤维素内切酶作用在其无定形区,β-葡萄糖苷酶将纤维素寡糖水解为葡萄糖;半纤维素的降解酶是内切β-木聚糖酶和外切木聚糖酶和辅酶[50],木质素降解酶主要有漆酶㊁锰过氧化物酶㊁木质素过氧化物酶及辅酶,能够破坏木质素化学键生成各种小分子片段,最终进入三羧酸循环㊂生物法预处理木质纤维素因处理过程中不会形成抑制剂,具有无污染㊁能耗低等优点,缺点是降解时间长[51]㊂以下将从单菌株和复合菌系降解两个方面介绍微生物法预处理降解木质纤维素㊂4.1单菌株降解处理自然界中降解木质纤维素的单菌株微生物主要是从土壤㊁堆肥㊁动物胃中筛选出具有降解能力的细菌㊁真菌㊁放线菌[52](见表10)㊂细菌分为好氧细菌和厌氧细菌两种,好氧细菌有假单胞菌[53]㊁热酸菌[54]和芽孢杆菌[55]等,厌氧细菌有梭菌[56]㊁热解纤维素菌[57]等;好氧细菌降解效率低,厌氧细菌降解效率高但生长繁殖速度慢,降解的中间产物对其生长繁殖具有抑制作用㊂白腐真菌是自然界中最主要的木质素降解菌,其分泌的胞外氧化酶能够将木质素彻底降解为二氧化碳和水[58],白腐真菌还具有纤维素酶㊁半纤维素酶活性,可以高效降解木质纤维素[59];放线菌如小单胞菌[60]和诺卡氏菌[61]等,降解能力弱,生长繁殖缓慢,产酶效率低㊂㊃55㊃2024年第4期I M&P化工矿物与加工第53卷表10单菌株降解效果及其优缺点T a b l e10 D e g r a d a t i o n e f f e c t o f s i n g l e s t r a i n a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s来源主要菌属副产物优点缺点细菌芽孢杆菌㊁纤维粘菌无分泌内切纤维素酶,应用在中性和碱性环境中,商用价值大㊂对结晶纤维素的活性不高,酶产量少,难以提纯㊂真菌白腐真菌㊁木酶㊁曲霉㊁青霉属无一般为胞外酶,活性高㊁产酶量大㊁酶系广,易于纯化分离㊂对环境要求高,一般仅适用于酸性条件下的工业应用㊂放线菌诺卡氏菌㊁小单胞菌无酸或碱的环境下均有较好的活性,原核生物结构简单,便于对编码酶的基因进行克隆和重组㊂放线菌繁殖速度慢,纤维素酶含量低,研究相对较少㊂4.2复合菌系降解处理复合菌系降解木质纤维素(见表11)是指从自然界中筛选出具有降解木质纤维素能力的菌株,在实验室条件下模拟自然环境,构建具有高效降解木质纤维素能力的复合菌系[62],通过研究复合菌系降解菌株间的协调作用机制,配合基因组学设计实验,筛选出降解能力强的复合菌系,以此提高木质纤维素的降解转化效率[63]㊂P U E N T E S-T E L L E Z等[64]结合生态学理论和富集原理开发出了一种能有效降解木质纤维素的最小活性微生物群落,获得了代表4个代谢官能团的18种木质纤维素降解菌株,当18个物种都存在时,降解率达96.5%㊂G U A N等[65]从环境样品中分离出27种细菌菌株,其中具有低β-葡萄糖苷酶活性和最佳木质纤维素降解能力的Z J W-6被鉴定为纤维素单胞菌,由不动杆菌Z J W-6和D A-25组成的复合菌系625在优化条件下表现出了最高的降解率(57.62%)㊂Z H E N G等[66]通过在兼性厌氧静态条件下连续富集培养,从寒冷的多年生森林土壤中获得了一种新型耐冷木质纤维素降解微生物群落L T F-27,在15ħ㊁20d条件下,纤维素㊁半纤维素和木质素的失重率分别为71.7%㊁65.6%和12.5%;L T F-27产生的乙酸和丁酸可在随后的产甲烷阶段直接或间接被微生物转化利用,其在中国东北地区农业秸秆沼气发酵方面具有应用潜力㊂表11复合菌系降解效果及其优缺点T a b l e11 D e g r a d a t i o n e f f e c t o f c o m p l e x b a c t e r i a a n d i t s a d v a n t a g e s a n d d i s a d v a n t a g e s 方法预处理效果副产物优点缺点复合菌系降解处理木质纤维素结构被破坏,纤维素结晶度降低㊂无提高糖产率,酶解糖化效率高㊂构建筛选高效降解木质纤维素的复合菌系的过程繁琐㊂5联合预处理木质纤维素因为木质纤维素结构紧致㊁抗逆性强,利用单一处理方法达不到理想的降解利用效果㊂随着对木质纤维素降解研究的深入,人们可结合多种预处理工艺降解木质纤维素,如碱和稀酸的组合处理㊁稀酸和蒸汽爆破的组合处理㊁超声波和碱组合处理等,以提高木质纤维素的降解效率[67-69]㊂采用联合预处理工艺将是未来木质纤维素降解利用的发展趋势,其中以生物法为核心的组合处理可实现降低成本㊁无污染㊁工业化和产物易回收等目标,具有巨大的应用前景㊂5.1物理化学预处理法5.1.1水热预处理水热预处理是指在160~240ħ的条件下利用水蒸气处理木质纤维素的工艺[70]㊂该工艺主要溶解木质素和半纤维素,使内部纤维素暴露而增强酶对纤维素的水解㊂半纤维素衍生糖主要以低聚物形式存在于液体部分中[71-72]㊂X U等[73]使用水热预处理玉米秸秆,发现葡聚糖的回收率高于98%,反应产生的抑制剂甲酸㊁乙酸等浓度低且对后期的酵母发酵无影响㊂Z H A N G等[74]在探究水热预处理玉米秸秆的最适条件时发现,经水热预㊃65㊃。
关于利用微生物用于木质纤维素生物质转化为燃料乙醇的研究进展综述
摘 要:木质纤维素生物质是一种廉价、易得的可持续发展的潜在新能源材料,随着能源危机的加剧,由木质纤维素生物质转化为燃料乙醇成为开发新能源的一个新突破口。国内外近年来在这个领域都有很多研究成果。本文就微生物在木质纤维素生物质转化为燃料乙醇的预处理、水解中的应用作出综述,分析了现在木质纤维素生物质转化为燃料乙醇要想实现产业化所遇到的问题,并提出几条对策。
关键词:木质纤维素、燃料乙醇、发酵、纤维素酶、研究进展 随着现代工业与经济的发展,能源需求日益增加。特别是石油能源,由于人类社会的不断开采,石油资源目前面临着枯竭的危险。据2010年11月8号《环境科学与技术杂志》发表的研发报告显示,以当前的使用速度,化石燃料原料将在2050年前枯竭,而石油开采量下降10%~15%足以令发达工业国家的经济完全瘫痪1。这就意味着,要想保证人类社会的继续发展,寻求清洁、可持续的新能源已经成为了人类一项必须要完成的任务。因此,越来越多的国家已将生物质能源产业作为国家的一项重大战略推进,纷纷投入巨资进行生物质能源的研发。20世纪70年代石油危机以来,一些国家开始尝试利用生物质资源生产液体燃料2。 继美国和巴西用玉米和甘蔗生产燃料乙醇成功后,欧盟、日本、加拿大、印度等国家和地区也先后加大用粮食制备燃料乙醇的投入,2006年,仅美国由玉米淀粉生产乙醇的产量就达到了50亿加仑3。然而,随着随着世界耕地面积的缩小和人口数量的急剧增多,世界粮食价格也在近年出现大幅攀升。如何寻求价格低廉且来源广泛的替代原料来生产燃料乙醇,成为了发展生物质能转化为乙醇新能源亟待解决的问题。木质纤维素生物质如农林牧业加工废弃物,是可再生、价廉易得和来源丰富的资源和能源。全球每年光合作用的产物高达1500-2000亿吨,其中80%以上为木质纤维素生物质(如秸秆、草类、树木等)4。利用木质纤维素生物质生产乙醇不仅有利于环境保护和资源再利用,而且可减少温室气体的排放和缓解化石能源的危机,因此成为了一条解决新能源问题的新途径,其研究得到了世界各国的大力支持,并且也取得了很多阶段性的进展。本文就木质纤维素类生物质来制备燃料乙醇的研究现状及进展进行了综述(主要以微生物研究方向为主)。
1 纤维素生物质的主要成分 木质纤维素生物质主要由纤维素、半纤维素和木质素组成,其中,用于处理制取燃料乙醇的主要是纤维素和半纤维素。纤维素分子是由葡萄糖分子通过β-1,4糖苷键连接而成的链状高分子聚合物,是地球上最丰富的生物聚合物,其水解产物是葡萄糖。半纤维素是无定型的生物高聚物,是由包括六碳糖(葡萄糖、半乳糖、甘露糖)和五碳糖(木糖、阿拉伯糖)等不同糖基组成的,在温和条件下很容易水解成单糖5。在植物体内,木质素与半纤维素经共价键结合,将纤维素分子包埋其中,使多糖成分不易被降解6。由于其葡萄糖单体之间特殊的糖苷键,纤维素结构稳定,不易分解,常用于构成植物体稳定的骨架结构。
2 从纤维素生物质来制备燃料乙醇的工艺 目前,从木质纤维素生物质制备燃料乙醇的基本工艺可以分为预处理、水解、发酵和纯化4个部分7。预处理主要是为了破坏木质纤维素结构,释放出纤维素和半纤维素,主要方法包括物理预处理法、化学预处理法、物理-化学预处理法和生物预处理法。水解主要是为了将纤维素等多糖水解转化为单糖,主要方法包括酸水解法和生物酶水解法。发酵工艺主要是用微生物将单糖酵解为乙醇。结合水解和发酵过程,此工艺主要可分为分步水解发酵工艺(separate hydrolysis and fermentation,SHF)、同步糖化发酵工艺(simultaneous saccharificationand fermentation,SSF)8和固定化微生物水解发酵法 (consolidated bio-processing,CBP)9。纯化过程主要是通过蒸馏、过滤等手段,获得纯度较高的乙醇。在这四个过程中,主要以预处理、水解成本耗费较大。由于在这两步过程中使用微生物发酵相对于物理、化学处理有较大的成本优势,因此有关木质纤维素转化为燃料乙醇的大量研究集中在如何利用微生物和用微生物产生的纤维素酶对木质纤维素进行预处理、分解以及发酵过程中微生物选育的优化上。本文就木质纤维素生物质制备燃料乙醇方法中的预处理、水解所涉及的微生物研究进行总结。
3 微生物在预处理过程中的应用 真菌类的白腐担子菌类和某些放线菌类能产生降解木质素的木质素降解酶,如木质素过氧化物酶、锰过氧化物酶或漆酶10。这些酶类能破坏木质纤维素中复杂的网状结构,使得一般的物理化学方法很难处理的木质素轻松脱离出来并被降解。能降解木质素的担子菌类主要包括: Phanerochaete chrysosporium11,Daldinia concentrica,Daedalea flavida12, Postia plancenta , Panus tigrinus13 , Rigidoporus lignosus14 。其它白腐菌类包括Pleurotus ostreatus15 , Ceriporiopsis subvermispora。放线菌类主要包括Streptomyces viridosporus,S. lividans TK 64.116。 目前,国内外对能有效降解木质素的微生物研究较多的主要是担子菌类的黄孢原毛平革菌。它可以分泌胞外的木质素过氧化物酶和锰过氧化物酶来破坏和降解木质素,再者,根据真菌可以在固相表面生长的特点,黄孢原毛平革菌已经被成功应用于木质素降解的固相发酵工艺17。用微生物进行生物预处理法具有成本低、条件温和等独特的优势,使得这一方法具有较大的前景。但是这种方法现在还停留在试验阶段,而且这种方法的周期一般较长,过程中糖损耗较大,要实现工业化还有一定距离要走。
4 微生物在纤维素水解过程中的应用 微生物在纤维素水解过程中的应用机制主要是由某些微生物分泌的能够水解纤维素至葡萄糖的纤维素酶来完成。纤维素酶是一种高效的复合酶,可根据其催化功能不同分为:①内切葡萄糖苷酶(EC3.2.1.4,也称Cx酶),该酶的作用位点为β-1,4糖苷键,能随机切割β-1,4糖苷键,将长链纤维素分子水解为数个短链;②外切葡萄糖苷酶(EC3.2.1.91,也称C1酶),主要作用于纤维素分子的还原或非还原端,切割糖苷键,生成纤维二糖;③β-葡萄糖苷酶(EC3.2.1.21,也称纤维二糖酶),其作用为切割纤维二糖为单个葡萄糖分子。这三种酶协同作用,共同将纤维素分子降解成葡萄糖。 目前发现的能产生纤维素酶的微生物主要为细菌和真菌类,细菌类主要可分为三大类:①厌氧型,如热纤梭菌(Clostridium thermocellum)、解纤维梭菌(Clostridium cellulolyticum)等;②好氧型,如纤维弧菌属(Cellvibrio)18;③好氧滑动菌,如噬胞菌属(Cytophaga)19。国内外研究较多的主要集中在细菌中厌氧嗜热型的热纤梭菌( Clostridium thermocellum)20。但由于细菌所产纤维素酶一般存在于细胞质基质或者吸附在细菌细胞壁上,只有很少一部分分泌到培养液中,再加上厌氧菌生长慢,无法工业化生产。因此,此类微生物大多用于实验室。 真菌类产纤维素酶的真菌,目前国内外研究较多的是木霉属(Trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium)。木霉可以产生胞外的纤维素酶,并且易分离提纯,酶活性也较高,可在工业生产上广泛应用。其中应用的较多的主要有里氏木霉(Trichoderma reesei)、绿色木霉(Trichoderma viride)、康氏木霉(Trichoderma koningi)和黑曲霉(Aspergillus niger)21。由于某些担子菌类如黄孢原毛平革菌既可以产生降解木质素的木质素酶,同时可以产生降解纤维素的纤维素酶22,因此也有研究者培育专门用于纤维素预处理和分解的黄孢原毛平革菌菌株,国内外在这方面也有很多研究报道。
5 利用微生物用于木质纤维素生物质转化产业化所遇到的问题 现阶段,大规模工业化将微生物发酵用于木质纤维素生物质转化为燃料乙醇还存在着几个亟待解决的关键性问题。①木质纤维素预处理过程复杂:天然纤维素材料的结构性质非常复杂,纤维素不仅被半纤维素和木质素所包裹,且其本身也存在着高度结晶性和木质化,阻碍了酶与纤维素的接触,使其难以直接被微生物降解23;②酶的催化效率偏低,成本偏高:目前生产所运用的菌株所产生的纤维素酶活性大多偏低,因此需要较大的酶投入量,无形中增大了催化成本。其纤维素酶的热不稳定性也使得纤维素酶的催化效率偏低、成本过高。
6 利用微生物用于木质纤维素生物质转化产业化的发展对策 通过对纤维素酶的高效菌株进行选育、改造,可产生具有高催化效率的纤维素酶菌株。可主要通过基因重组及定位突变技术对优良菌株进行改造,从而选育出适合工业生产的高效能菌株。目前对纤维素酶基因的研究主要集中在产纤维素酶的高产真菌及耐热细菌上。有报道称,将编码Erwinia chrysanthemi P86021 endoglucanase的基因序列重组到Escherichia coli KO11 质粒中24,可以使表达的纤维素酶产率大大提高。随着生物化学和分子生物学的发展,高效能产纤维素酶微生物的研究将取得一个新的里程碑。 对纤维素酶作用机理进行进一步研究,可以从其分子结构上了解其催化的机理,进而提高其催化效率。由于纤维素酶的空间结构复杂,加之纤维素酶不易分离纯化、结晶难,如果能在分离纯化技术和研究方法上进行进一步突破,就能更好地了解纤维素酶的机理,从而改造纤维素酶,提高转化效率。 总之,利用微生物进行木质纤维素生物质制备燃料乙醇的研究取得了很多重大的进展,但还有很多技术问题需要解决。其中包括成本过高、工艺复杂等诸多问题。但是随着科学技术的发展和进步,这些关键技术一定会在某一天被攻破,顺利实现木质纤维素生物质制备燃料乙醇的工业化生产,并为人类带来一个和谐、稳定发展的社会。
参 考 文 献
1 刘锋 祁文 纤维素生物质能源的发展之路 安徽科技,2011年第4期. 2 高凤芹 孙启忠 刑启明 木质纤维素乙醇的研究进展 理论与研究,2009年第4期. 3-5 李祖明 李鸿玉 厉重先 刘雪峥 张洪勋 纤维素酶转化木质纤维素生物质生产乙醇的研究进展 科学研究.
6 Moiser N,Wyman C,Dale B,et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology,2005,96:673 - 686. 7 Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnology,1997,56:1-24. 8 Elia T,Jose M,Mercedes B,et al.Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains[J]. Biotechnol. Bioeng. 2008,100:1122-1131. 9 Lynd L R,Van Z H,Mcbride J E,et al . Consolidated bioprocessing of cellulosic biomass:an update[J]. Current Opinion in Biotechnology, 2005,16:577 - 583. 10 Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnology,1997,56:1-24. 11 Bonnarme P,Dellattre M,Drouet H,et al. Toward a control of lignin and manganese peroxidases hypersecretion by Phanerochaete chrysosporium in agitated vessels. Evidence of the