木质纤维素类生物质的应用和预处理研究进展
- 格式:pdf
- 大小:486.33 KB
- 文档页数:3
木质纤维素预处理技术研究进展朱跃钊1,卢定强2,万红贵2,贾红华2Ξ(1 南京工业大学 机械与动力工程学院,南京 210009;2 南京工业大学 制药与生命科学学院,南京 210009)摘 要:详细评述了木质纤维素的预处理工艺研究进展,特别是浓酸低温水解-酸回收工艺、稀酸二阶段水解工艺、金属离子在稀酸水解过程中的助催化作用以及水蒸汽爆裂、氨纤维爆裂、C O 2爆裂、酶催化水解等方法的研究进展情况。
木质纤维素原料预处理技术发展为发酵生产乙醇技术的研究开发奠定了坚实基础。
关键词:木质纤维素;乙醇;水解;发酵中图分类号: Q539+13 文献标识码:A 文章编号:167223678(2004)0420011206Progresses on treatment of lignocellulosic materialZHU Y ue 2zhao 1,LU Ding 2qiang 2,WAN H ong 2gui 2,J I A H ong 2hua 2(1 C ollege of Mechanical and P ower Engineering ,Nanjing University of T echnology ,Nanjing 210009,China ;2 C ollege of Life Science and Pharmacy ,Nanjing University of T echnology ,Nanjing 210009,China)Abstract :Progress of study on technology of pre 2treatment of lignocellulose is reviewed in this paper.With the exhaustion of oil and rising price of oil ,studies on ethanol production from lignocellulosic material were attra 2tive 1Cellulose and hemicellulose in lignocellulosic material can be converted to sugar via s ome suitable treat 2ments ,and then can be used in the production of ethanol by fermentation further 1The progresses on technology of pre 2treatment of lignocellulosic material were reviewed and commented ,especially the hydrolysis processes via concentrated acid ,tw o 2stage diluted acid ,and catalysis of metal ion in diluted acid 1Several different pre 2treatment methods for cellulase hydrolysis ,such as steam explosion ,aminonia fiber explosion ,C O 2explosion ,acid treatment and enzymatic hydrolysis method ,were reviewed 1The advanced pre 2treatments of lignocellulosic material has laid a concrete basis for ethanol production at a large commercial scale 1K ey w ords :lignocellulose ;ethanol ;hydrolysis ;fermentation 随着现代工业的发展和世界人口的激增,能源危机日趋加剧。
《不同木质纤维素类生物质的预处理条件及酶解糖化研究》篇一一、引言随着全球能源需求的增长和环境污染问题的日益突出,寻找可持续替代能源成为了科学家们研究的重点。
其中,木质纤维素类生物质作为重要的可再生资源,被认为是一种极具潜力的替代能源。
通过对不同木质纤维素类生物质进行预处理和酶解糖化研究,可以有效地将其转化为生物能源,如生物乙醇等。
本文将详细介绍不同木质纤维素类生物质的预处理条件以及酶解糖化的研究进展。
二、不同木质纤维素类生物质的预处理条件预处理是木质纤维素生物质转化为生物能源的关键步骤之一。
预处理的目的是破坏生物质的复杂结构,提高其酶解效率。
不同木质纤维素类生物质的预处理条件因生物质种类、组成及结构等因素而异。
1. 农业残余物农业残余物如秸秆、稻草等,通常采用物理、化学或物理化学相结合的方法进行预处理。
物理方法主要包括粉碎、热解等,可以降低纤维素的结晶度,提高酶解效率。
化学方法则包括酸、碱或氧化剂处理等,可以破坏木质素的交联结构,释放出纤维素和半纤维素。
2. 林业残余物林业残余物如木屑、树皮等,其预处理方法与农业残余物类似。
此外,还可以采用蒸汽爆破法、氨纤维膨胀法等方法进行预处理。
这些方法可以有效地破坏木质纤维素的紧密结构,提高其酶解效率。
3. 能源作物能源作物如柳枝稷、switchgrass 等,其纤维结构较为松散,预处理相对容易。
通常采用稀酸或稀碱处理,结合机械粉碎等方法,进一步提高其酶解效率。
三、酶解糖化研究酶解糖化是将预处理后的木质纤维素生物质转化为单糖(如葡萄糖、木糖等)的过程。
这一过程需要使用纤维素酶、半纤维素酶等酶制剂。
1. 酶的选择与搭配不同的酶制剂对不同生物质的酶解效果有所差异。
因此,需要根据生物质的种类和组成,选择合适的酶制剂并进行搭配。
此外,还需要考虑酶的用量、酶解时间等因素,以获得最佳的酶解效果。
2. 酶解条件优化酶解条件如温度、pH 值、反应时间等对酶解效果具有重要影响。
木质纤维素化学方法预处理木质纤维素是一种重要的生物质资源,具有丰富的可再生特性和广泛的应用前景。
然而,由于其独特的结构和复杂的化学成分,木质纤维素在直接利用前需要进行预处理,以提高其可转化性和降低生产成本。
在本文中,我们将介绍常见的木质纤维素化学方法预处理技术,并讨论其优点和应用领域。
木质纤维素主要由纤维素、半纤维素和木质素组成。
纤维素是最主要的组分,占据了40%至50%的木质纤维素总质量。
半纤维素和木质素的含量较低,但对木质纤维素的结构和特性有着重要的影响。
因此,木质纤维素的化学方法预处理通常包括对纤维素、半纤维素和木质素进行分离和降解。
最常用的木质纤维素化学方法预处理技术之一是酸处理。
酸处理可以将纤维素酸解为可溶性纤维素和不溶性纤维素,从而降低木质纤维素的结晶度和分子量,提高其可转化性。
酸处理通常使用硫酸或盐酸作为催化剂,同时加热反应系统以促进反应进行。
酸处理的优点是操作简单、成本低廉,但其缺点是产生大量废水和酸性气体,对环境造成污染。
另一种常见的木质纤维素化学方法预处理技术是氧化处理。
氧化处理可以通过氧化剂的作用将木质纤维素部分降解为低聚糖和酚类化合物,从而降低木质纤维素的结晶度和分子量。
氧化处理通常使用过氧化氢、臭氧或高锰酸钾作为氧化剂,反应条件一般较温和。
氧化处理的优点是对环境友好,但其缺点是操作复杂、成本较高。
此外,还有其他木质纤维素化学方法预处理技术,如碱处理、酶处理和有机溶剂处理等。
碱处理可以将木质纤维素中的半纤维素部分水解为低聚糖,从而降低木质纤维素的结晶度和分子量。
酶处理可以利用纤维素酶或半纤维素酶将木质纤维素部分水解为可溶性纤维素和低聚糖,从而提高其可转化性。
有机溶剂处理可以利用有机溶剂将木质纤维素溶解或脱除,从而提高其可转化性。
这些木质纤维素化学方法预处理技术具有各自的优点和适用范围,可以根据具体情况选择合适的方法。
总之,木质纤维素化学方法预处理是提高木质纤维素可转化性和降低生产成本的重要步骤。
木质纤维素的酶解及其在生物能源领域中的应用研究随着全球能源需求的增长和能源供应的不断减少,生物能源已经成为了越来越重要的替代能源之一。
而木质纤维素则是生物能源领域中存在量最大、化学组成最为复杂的一种生物质原料。
其生产和利用一直是生物能源领域的重大研究难点之一。
本文将介绍木质纤维素的酶解过程,以及其在生物能源领域中的应用研究现状。
一、木质纤维素的酶解过程木质纤维素是由纤维素和半纤维素两种关键成分组成的。
这些成分都是由葡萄糖分子构成的,并且存在多种不同的结构和化学键。
因此,酶解木质纤维素是一项极为复杂的化学过程。
在酶解木质纤维素的过程中,通过添加各类产纤酶和木聚糖酶等酶类,能够有效地降解出其中的纤维素和半纤维素等组分。
其中,木聚糖酶具有高分子酶、尾酶和其他辅助酶等多种作用,这些部分的合作作用能够有效地将纤维素和半纤维素分离开来。
通过酶解过程,木质纤维素以及其他碳水化合物可以被分解为单糖和少量的低分子量聚糖。
这些分解产物可以进一步被利用于生物能源领域中的燃料制备、酒精生产等方面。
但是,酶解的过程中也会产生许多难以处理的副产物,这些副产物包括酸性含量高、废水污染较大等。
二、木质纤维素在生物能源领域的应用研究近年来,随着生物能源领域的不断发展,人们对于利用木质纤维素的研究也越来越重视。
以下是近年来木质纤维素在生物能源领域中的一些应用研究:1. 燃料制备利用木质纤维素制备燃料是目前生物能源领域中的重要应用方向之一。
通过对木质纤维素的酶解,可以将产生的糖分离出来后,进一步转化为丰富的燃料,例如生物柴油、生物酒精等。
2. 发酵乙醇生产木质纤维素的细菌转化过程可以产生大量的废弃物,而其中的大部分废弃物都是产品或原料的剩余物质。
发酵乙醇生产技术利用低质量糖分进行发酵,产生大量的乙醇。
可以将这些剩余物质和产生的乙醇再进行热氧化处理,从而转化为更高价值的材料。
3. 纤维素乙醇中间产物的生产利用纤维素乙醇中间产物的生产可以从已制备的生物质中分离出高纯度的生达、氧化接汇。
木质纤维素预处理技术研究进展
朱旭冉;李潇;李平;王帅;李峰;孙力;王田雄
【期刊名称】《广东化工》
【年(卷),期】2024(51)7
【摘要】世界范围能源短缺和环境恶化的双重压力促使寻找化石燃料替代品以缓解全球能源危机和解决地球环境问题,实现人类社会可持续发展具有重要意义。
木质纤维素作为地球上唯一可再生的有机碳源,储量大、分布广、成本低,具有替代化石能源的潜力。
然而木质纤维素的“顽抗”特性制约着其高效能源化利用。
本文综述了近年来木质纤维素的预处理技术,包括物理、化学和生物法以及联合处理法等,同时简要介绍了各预处理方法的作用机制,并就其优缺点进行了分析总结,旨在为木质纤维素更高效开发利用提供参考。
【总页数】4页(P72-75)
【作者】朱旭冉;李潇;李平;王帅;李峰;孙力;王田雄
【作者单位】承德市农林科学院;北京大学第三医院延庆医院;承德市农业农村局;承德县六沟镇人民政府
【正文语种】中文
【中图分类】S38
【相关文献】
1.离子液体预处理纤维素及木质纤维素的研究进展
2.木质纤维素预处理技术研究进展
3.木质纤维素预处理及高值化技术研究进展
4.基于纤维素溶剂的木质纤维素预处理方法的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
《不同木质纤维素类生物质的预处理条件及酶解糖化研究》篇一一、引言随着化石资源的日益减少,全球的注意力已经转向可再生生物质资源。
木质纤维素类生物质作为一类重要的可再生资源,其利用和开发具有巨大的潜力。
预处理和酶解糖化是木质纤维素生物质转化为生物能源和生物基化学品的关键步骤。
本文旨在研究不同木质纤维素类生物质的预处理条件及酶解糖化的过程,为实际应用提供理论依据。
二、不同木质纤维素类生物质的预处理条件1. 预处理方法的分类预处理方法主要分为物理法、化学法、物理化学法以及生物法等。
不同预处理方法的效果受到原料类型、处理条件等多种因素的影响。
2. 具体预处理条件(1)物理法:如机械破碎、蒸汽爆破等,通过改变纤维素的结晶度、孔隙结构等,提高酶解效率。
(2)化学法:如稀酸、稀碱等预处理方法,通过改变木质素的性质,提高纤维素的可及性。
其中,稀酸预处理是最常用的方法之一,其条件包括酸浓度、温度、时间等。
(3)物理化学法:如氨纤维爆破等,结合了物理和化学的作用,有效提高纤维素的利用率。
(4)生物法:如通过白腐菌等微生物进行预处理,分解部分木质素和半纤维素,从而提高纤维素的可利用性。
三、酶解糖化研究酶解糖化过程中主要涉及的是纤维素酶对纤维素的作用。
在这一过程中,纤维素被分解成葡萄糖等单糖。
这一过程的效率和效果受到多种因素的影响,包括温度、pH值、酶浓度等。
同时,生物质的组成和预处理方法也会影响酶解糖化的效果。
四、实验设计及结果分析本文选择了几种典型的木质纤维素类生物质进行预处理和酶解糖化的研究。
包括小麦秸秆、玉米秸秆、木质废料等。
实验过程中,首先进行预处理,然后通过测定预处理后生物质的组成、结构和性质的变化,来优化预处理的条件。
随后进行酶解糖化的实验,记录酶解的时间、单糖的产量等数据。
实验结果表明,不同的预处理方法对生物质的酶解糖化效果有显著影响。
其中,稀酸预处理在适当的条件下可以显著提高酶解糖化的效率。
同时,不同的生物质类型对酶解糖化的效果也有影响,如木质废料的酶解糖化效果通常优于小麦秸秆和玉米秸秆。
木质纤维素预处理方法的研究进展摘要:概述了几种比较实用的木质纤维素预处理技术,总结了各种预处理技术的方法、原理以及优缺点,进而对木质纤维素预处理方法的发展前景进行了展望。关键词:木质纤维素;预处理方法;研究进展Research Advances of Pretreatment Technology of LignocelluloseAbstract: Some practical pretreatment technologies of lignocellulose were briefly introduced, including the main methods, principles, advantages and disadventages. And the development prospect of pretreatment technology of lignocellulose was put forward.Key words: lignocellulose; pretreatment method; research progress随着世界经济的不断发展和石油资源的日益消耗,开发更加长久有效的能源是各国面临的一个巨大难题。作为一种可再生能源,生物质能源是中国能源可持续发展的必然战略选择之一。利用木质纤维素生产生物乙醇、丁醇等生物质燃料是生物质能源开发的重要内容。我国天然纤维素原料非常丰富(包括农作物秸秆、林业副产品、城市垃圾和工业废弃物等),利用生物技术分解和转化木质纤维素既是资源利用的有效途径,对于解决环境污染、食品短缺和能源危机又具有重大的现实意义。1 木质纤维素的结构木质纤维素是指以纤维素、半纤维素和木质素为主要成分的原料,3种成分在植物原料中的含量分别为35%~50%、15%~25%和15%~30%。纤维素是聚合度在 1 000~10 000的葡萄糖的线性直链聚合物,由结晶相和非结晶相交错形成,结晶相结构致密,阻碍纤维素的分解。半纤维素结构较纤维素简单,主要是由木糖、阿拉伯糖等戊糖及少量的葡萄糖、甘露糖和半乳糖等己糖形成的直链或支链聚合物,在适宜的温度下易于溶解在稀酸溶液中并降解成单糖。木质素是一种由苯丙烷结构单体组成的具有复杂三维结构的芳香族高聚物,在植物结构中发挥胶粘作用,将纤维素和半纤维素紧密结合在一起,增大茎秆的机械强度,起到木质化作用,阻碍微生物对植物细胞的攻击,同时减小了细胞壁的透水性。纤维素和半纤维素作为可酵解糖类,占原料总重的65%~75%[1]。2 预处理的目的木质纤维素的转化利用可分为原料预处理、酶水解和糖发酵3个阶段,主要的技术瓶颈在于预处理技术不够成熟以及纤维素酶活性较低,造成生产成本过高。通过原料的预处理,可以破坏纤维素的结晶结构,降低木质素的聚合度,提高木质纤维素材料的多孔性,增加酶与底物的接触面积,从而提高酶解的效率,达到节约时间和降低成本的目的。好的预处理应满足以下4个条件:①有利于提p 3.1.1 机械粉碎法通过机械削切和研磨分别将木质纤维处理成粒径为10~30 mm和0.2~2.0 mm的颗粒,可有效降低木质纤维素的结晶度和消化效率[2]。震动球磨技术能比普通球磨技术更有效地降低木质纤维素的结晶度和消化特性。相对来说,机械粉碎耗时长、耗能高,造成预处理成本太高,无法在工业化生产中广泛使用[3]。3.1.2 蒸汽爆破蒸汽爆破是当今应用最为广泛的木质纤维素预处理技术。通过将经高压饱和蒸汽溶解的木质纤维素瞬间降压,达到破坏木质纤维素结构的目的。通常认为,半纤维素被爆破过程中产生的醋酸和其他的有机酸所溶解,从而导致纤维素暴露出来,增大了微纤维与酶的可及性。木质素的含量变化不大,只有小部分被溶解,但是在溶解过程中木质素发生解聚/再聚合反应,从而使木质纤维素的表面结构发生变化。瞬时爆破使样品得以破碎降解,从而增大了反应的可接触面积,这些因素都能够提高纤维素的水解效率。影响蒸汽爆破处理效果的因素主要有以下几方面:压力保持时间、温度、颗粒的粒径大小和含水量。高温短时处理(270 ℃、1 min)或者低温长时间处理都能够使半纤维素达到最大程度的溶解。相对于机械粉碎,蒸汽爆破法可以节省大约70%的能量,同时对环境不产生污染。近几年来,通过加入各种催化剂(酸或碱)或者改换不同的蒸汽介质(如氨水),发展出许多新型的爆破技术,有效推动了预处理技术的发展,使蒸汽爆破成为最接近商业化应用的预处理方法。大量不同种类的木质纤维素预处理试验证明了蒸汽爆破技术的可行性,其使用规模也在不断扩大。加拿大的Iogen工厂已经建立了一套利用该技术处理木质纤维素的中试装置。尤其在阔叶树木及农作物秸秆的处理方面,蒸汽爆破法被看作是最具有经济价值的预处理技术[1]。蒸汽爆破法的局限主要包括半纤维素的分解、木质素的不完全降解以及在处理过程中产生的对于后续酶水解和发酵有害的物质。因此,需要用大量的水冲洗预处理产物以去除这些有害物质。但冲洗的同时带走了可溶性的糖,其中包括一大部分的可溶性半纤维素,降低了总的糖产量。3.1.3 超临界水处理超临界水处理是指利用处于超临界状态(T>374.2 ℃、P>22.1 MPa)的水处理木质纤维素的方法,通常与亚临界水解技术联合使用。在临界点(T=374.2 ℃、P=22.1 MPa)时,水的溶剂化能力突然增强,电离程度增大,可有效打破木质素的包裹作用同时降低纤维素的结晶度,使纤维素可以很容易地溶解在超临界的水溶液中,并且迅速分解成低聚糖,低聚糖进而快速分解成葡萄糖。阳金龙等[4]研究了该技术在玉米秸秆预处理中的应用,将40 mg玉米秸秆和2.5 mL水置于380~400 ℃的密闭容器中反应15~35 s,然后对产物进行分析。结果表明,玉米秸秆在388 ℃的超临界水相中,经21 s的反应时间后,低聚糖转化率和可检测转化率最高,分别为24.1%和43.6%。相对于传统预处理技术,超临界水处理具有反应时间短、水解效率高、资源和环境成本低等优点,但是作为一项新兴技术,其理论研究相对不足,尚无法解决葡萄糖分解产物较多、副产物成分复杂、发酵糖产量较低等问题。3.2 化学法化学法是用碱、酸、有机溶剂等预处理木质素、纤维素的方法,主要目的是破坏细胞壁中半纤维素与木质素之间的共价键,破坏纤维素的结晶结构及纤维素与木质素的连接键,从而提高秸秆的消化率。3.2.1 酸处理酸处理是利用稀酸、浓酸和无水有机酸等酸性物质水解秸秆中纤维素的方法。酸处理可大致分为无机酸处理和有机酸处理。无机酸处理主要作用是使半纤维素变成单糖进入溶液中,增大试剂与纤维素的接触面积,提高可及度。预处理后的原料中木质素含量基本不变,半纤维素含量变少,纤维素的含量和聚合度有一定程度的下降。Silverstein等[5]研究了硫酸、氢氧化钠、过氧化氢和臭氧在不同条件下预处理的效果。结果表明,这几种物质都能够明显降解木质素或者提高单糖得率,而硫酸预处理时半纤维素降解率最高,在121 ℃、0.1 MPa、2% H2SO4、90 min的条件下,木质素降解率为95.23%,但是对后续的纤维素水解影响最大,葡萄糖的转化率最低,为23.85%。唐锘[6]在研究中发现,稀硫酸预处理方法对秸秆各组分降解率最高,在最适水解条件(0.7%稀硫酸、121 ℃、1 h)下,半纤维素、纤维素、木质素的降解率分别为46.15%、43.75%和50.00%。有机酸处理原理与无机酸相似,主要是使原料中半纤维素和木质素溶解,降低二者在原料中的含量,一般在使用时增添无机酸作为催化剂。但是,相对于无机酸,有机酸对容器的腐蚀性小,对后续水解过程的毒性低,具有更大的发展潜力。3.2.2 碱处理常见的碱处理试剂有氢氧化钙、氢氧化钠、碳酸氢钠或者过氧化氢等。秸秆碱化的原理在于氢氧根阴离子能削弱半纤维素、纤维素之间的氢键,打开木质素和半纤维素之间的醚键,皂化木质素和半纤维素之间的酯键。碱处理能够使木质素发生降解以及降低纤维素的结晶度。Silverstein等[5]用2%的NaOH 处理棉花秸秆,能够明显去除秸秆中的木质素、提高纤维素的转化率。Wang等[7]研究了百慕大海草在不同浓度的氢氧化钠预处理后结构和物质的变化,结果发现,在NaOH浓度大于或等于1%的情况下,30 min的处理时间可以起到明显的去木质化的作用。在整个处理过程中,纤维素的去除率变化很小(在10%之内),而半纤维素的去除率随着NaOH浓度的增大而增大,而且效果明显。碱处理是现在人们普遍采用的方法,但是在用碱处理秸秆时除溶解掉一部分木质素外,也使部分半纤维素被分解,损失较大,同时与用酸处理相同,用碱进行预处理也存在着试剂的回收、中和以及洗涤等问题,这些问题都不可避免地会造成环境污染。随着技术的发展,酸或碱处理通过与其他的物理或者化学方法(包括球磨法、蒸汽爆破、微波或者氧化技术)进行组合,将形成一些更有效的预处理方法。3.3 生物方法微生物方法预处理被认为是目前最有前途的一种处理手段,它具有对环境无污染、降解率高、用途广、周期短、可再生、成本低等优点,能提高秸秆的综合利用效率,利于可持续发展。微生物法主要利用菌类产生的一些酶来降解木质素和半纤维素,而对纤维素的降解作用较小。目前常用的真菌有白腐菌、褐腐菌等,如黄孢原毛平革菌、彩绒革盖菌等,利用这些真菌产生的木质素分解酶系来对物料进行分解。Kurakake等[8]对城市垃圾中办公室用纸采用两种菌株(Sphingomonas paucimobilis 和Bacillus circulans)进行混合预处理,然后再用酶水解。研究表明,混合菌株生物预处理技术能够有效提高废弃办公用纸的酶水解率,糖回收率可达94%,预处理效果显著。参考文献[1] 波吉特K,帕特里克R G,迈克K. 生物炼制——工业过程与产品(上卷)[M]. 马延和,译. 北京:化学工业出版社,2007. 160-166.[2] SUN Y, CHENG J. Hydrolysis of lignocellulosic materials for ethanol production: A review[J]. Bioresour Technol,2002,83(1):1-11.[3] GALBE M, ZACCHI G. Pretreatment of lignocellulosic materials for efficient bioethanol production[J]. Adv Biochem Eng Biotechnol,2007,108:41-65.[4] 阳金龙,赵岩,陆文静,等. 玉米秸秆超临界预处理与水解[J]. 清华大学学报(自然科学版),2010(9):1408-1411.[5] SILVERSTEIN R A, CHEN Y, SHARMA-SHIVAPPA R R, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J]. Bioresource Technology,2007,98(16):3000-3011.[6] 唐锘. 秸秆预处理方法的筛选[J].化工时刊,2008(7):22-26.[7] WANG Z, KESHW ANI D R, REDDING A P, et al. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass[J]. Bioresour Technol, 2010, 101(10): 3583-3585.[8] KURAKAKE M, IDE N, KOMAKI T. Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper[J]. Curr Microbiol, 2007, 54: 424-428.。
木质纤维素生物质预处理技术研究现状摘要:为了研究经济高效的预处理技术,综述了近10年国内外在木质纤维素预处理技术方面的研究,对物理法、物理-化学法、化学法、生物法等预处理技术进行了重点分析,发现稀酸处理法、蒸汽爆破法和生物法等技术极具潜力,但目前的研究仍存在不足,今后还需研究成本低、产率高、污染小的预处理技术。
最后对预处理技术的发展提出了建议。
引言木质纤维素原料来源广泛,是储量丰富的可再生资源。
近年来,利用木质纤维素制备燃料乙醇新能源备受国内外专家学者的关注。
发展木质纤维素生产燃料乙醇的能源技术,对于降低成本和保护环境是一个“双赢”的模式,与当今世界的低碳环保主题一致,有利于人类社会的可持续发展。
目前,用植物纤维原料生产乙醇的成本仍然较高,还无法与粮食乙醇形成竞争。
因此,致力于寻找经济高效的预处理方法是当今燃料乙醇制备过程中的研究热点之一。
常规的预处理技术主要包括:酸法、碱法、有机溶剂法、蒸汽爆破法或几种方法的结合,虽然处理效果相对较好,但是对设备的要求高,造成严重的环境污染;生物法能耗低、无污染,但是成本高、作用周期长、木质素分解酶类的酶活力低。
为此,开发低廉高效的木质纤维素预处理技术成为当前生物乙醇研究的关键。
基于此,笔者对木质纤维素生物质预处理技术进行综述及分析,并对预处理技术的发展前景提出建议,以期为纤维素乙醇的研究提供有益的参考。
1木质纤维素生物质预处理的意义木质纤维素构成了植物的细胞壁,对细胞起着保护作用。
木质纤维素是指纤维素、半纤维素及木质素三者的总称,也有少量的果胶、树胶、藻胶和琼脂等成分,结构非常复杂。
纤维素和半纤维素被木质素层层包裹,纤维素是由1000~10000个β-D-吡喃型葡萄糖单体形式以β-1,4-糖苷键连接形成的直链多糖,多个分子层平行排列构成丝状不溶性微纤维结构,基本组成单位为纤维二糖,是地球上含量最丰富的聚合物。
半纤维素主要是由木糖、少量阿拉伯糖、半乳糖或甘露糖组成。
生物法预处理木质纤维素的应用案例
那我给你讲讲生物法预处理木质纤维素的超酷应用案例吧。
就拿造纸业来说吧。
你知道的,造纸的原料很多都是木质纤维素。
以前处理这些原料可麻烦了,化学法虽然也能行,但有点“简单粗暴”,还可能污染环境。
现在生物法就闪亮登场啦。
有一种白腐菌,这小家伙就像是木质纤维素的“小工匠”。
造纸厂把木材原料和白腐菌放在一起,就像是安排了一场小聚会。
白腐菌开始发挥它的魔力,它分泌出各种酶,就像小剪刀一样,把木质纤维素结构里那些紧密连接的木质素给剪开,让纤维素更容易被提取出来。
这样一来,造纸的时候,从木材里获取纤维素就变得更容易,而且纸张的质量还更好了呢。
再说说生物燃料的生产。
有个公司想要用农作物秸秆这种木质纤维素丰富的东西来生产生物乙醇。
他们采用了一种特殊的微生物群落预处理秸秆。
这些微生物在秸秆堆里就像一群勤劳的小矿工,它们分解木质素,打开纤维素的“宝藏之门”。
然后,后续的发酵过程就能更高效地把纤维素转化成乙醇。
原本那些可能被烧掉或者扔掉的秸秆,就这么华丽转身变成了清洁能源,多厉害呀。
还有在饲料生产领域。
木质纤维素在一些植物原料里含量不少,但是动物不好消化啊。
有个农场主想把一些干草类的东西变成更优质的饲料。
他就用了瘤胃微生物来预处理。
瘤胃微生物就像是动物消化系统派来的先遣部队,它们提前在饲料堆里对木质纤维素进行初步分解,降低木质素含量,提高纤维素的可消化性。
这样动物吃了这种预处理过的饲料,能更好地吸收营养,长得更壮实呢。
这些就是生物法预处理木质纤维素在不同领域超棒的应用案例啦。
木质纤维素是地球上最丰富、最廉价且符合可持续发展要求的可再生资源。
我国是一个农业大国,每年形成的农业废弃物约有7亿t,其中大部分被丢弃或焚烧,这样不仅造成了大量资源的浪费,还造成了环境污染。
自从20世纪70年代石油危机之后,人们开始致力于开发各种新能源,转化利用巨大的木质纤维素资源,以提供人们所需的能源和其它化工产品,已成为许多国家正在积极探索的课题。
天然植物纤维原料主要由纤维素、半纤维素和木质素组成,结构非常复杂。
由于木质素、半纤维素对纤维素的保护作用以及纤维素自身的晶体结构,使得木质纤维素形成致密不透水的高级结构,使酶制剂很难与纤维素接触,直接影响接下来的水解和发酵过程。
因此,要充分利用纤维素类资源必须先对其进行有效的预处理。
预处理的目的是改变天然纤维素的结构,破坏纤维素-木质素-半纤维素之间的连接,降低纤维素的结晶度,脱去木质素,增加原料的疏松性以增加纤维素酶系与纤维素的有效接触,从而提高酶效率。
预处理必须满足以下要求:(1)促进糖的形成,或提高后续酶水解形成糖的能力;(2)避免糖的降解或损失;(3)避免形成副产物阻碍后续水解和发酵过程;(4)节约成本。
目前,木质纤维素原料预处理的方法主要有:物理法、化学法、生物法、综合法等。
1 物理方法 常用的物理方法有:机械微粒粉碎、高温分解、微波处理、蒸汽爆破、高能辐射等。
1.1 机械微粒粉碎 该方法是纤维素质原料预处理常用方法之一,它能使木质纤维素原料在破裂、碾磨等外力作用下使颗粒变小,结晶度降低。
经粉碎的纤维素粉没有膨润性,体积小,有利于提高基质浓度,可得到较高糖化液浓度。
麦秸粉碎预处理对酶解的影响是:随着木质纤维素张 鑫︐刘 岩(郑州轻工业学院食品与生物工程系,河南 郑州 450002)秸秆粉碎程度加深,表面积也增大,裸露在表面的结合点增加,酶解速度加大。
在机械粉碎处理方法中震荡球磨的效率较高,碾磨之后的原料粒径一般在0.2~2mm高温下研磨比常温下处理效果更好,但耗能大,而且处理的材料也有一定局限性。
译文:木质纤维素生物预处理的现状:潜力、进展与挑战摘要通过生化平台从木质纤维素中生产生物燃料和生化制剂的可行性在很大程度上取决于从植物细胞壁上的纤维素和半纤维素获得糖类的推进技术。
本文概述了发展中的植物细胞壁结构生物预处理技术在从纤维素聚合物中进行糖的后续酶提取方面的成果和挑战。
该技术已经成为了一个打破瓶颈的新选择。
尽管由于许多固有的局限性没有引起多少注意,生物预处理还是由于其自身的许多优势而存在很大潜力,包括更环保、耗能更少、反应产生抑制剂更少、副产物更少等。
在白蚁和白腐菌方面不断取得的科技成果为实现这些利益,发展新一代生物预处理技术提供了理论依据。
本文综述了以木质素降解酶为主的酶系统,描述了当前对微生物降解植物细胞壁的理解,对比了生物与化学的预处理过程。
还对生物制浆的成果进行了总结,提供了一个未来生物预处理过程的发展方向。
简介获得可再生燃料和化学制剂的唯一方式是通过利用绿色植物吸收太阳能,再以有机碳源的形式存储起来。
大自然还开发了各种途径以额外的最小输入能量来利用和回收这些植物材料。
这样做,大自然能够一直保持一个可持续发展的平衡的生态系统数百万年。
如何利用木质纤维素的生物分解来进行生物燃料和生化生产是这些天然生物过程需要解决的主要障碍,他们往往最节能并且对环境产生的影响不大。
随着化石燃料资源的衰退和对气候变化的担忧,发展生物质燃料和化学制剂显得愈发紧迫。
例如,到2022年,每年生产的360亿加仑可再生燃料中,生物燃料必须占到210亿加仑。
未来生化和生物燃料发展的基础是生物质原料的供应。
所有的类型中,木质纤维素、木质生物、作物残留物、草和藻类的生物质能含量是最丰富的。
木质生物质是地球上最丰富的可再生生物资源,在地球上,每年可生产109~ 200吨,其中只有3%用于诸如造纸工业的非食品领域。
目前纤维素的消费量与谷物消费持平,是钢铁消费的3倍。
为了既能将这些材料用于生产生物燃料又不与人类的粮食供应构成冲突,未来的生物炼制将以木质生物质原料为主。
碱性低共熔溶剂预处理木质纤维素类生物质近年来,生物质作为可再生资源的重要代表之一,受到了广泛关注。
然而,木质纤维素类生物质的利用受到了一些限制,其中主要的问题是纤维素的结晶性和抗生物降解性。
为了克服这些问题,研究人员开始探索使用低共熔溶剂进行预处理的方法。
低共熔溶剂是指能够与纤维素类生物质中的纤维素和木质素发生作用的溶剂,其熔点相对较低,且在一定温度下形成液态。
与传统的溶剂相比,低共熔溶剂具有较高的溶解能力和选择性,能够在较温和的条件下有效地预处理纤维素类生物质。
碱性低共熔溶剂是一种常见的低共熔溶剂,其主要成分通常是一种无机碱和有机溶剂的混合物。
碱性低共熔溶剂的优势在于其碱性能够中和纤维素中的酸性官能团,从而降低纤维素的结晶度,提高纤维素的溶解性。
此外,碱性低共熔溶剂还可以通过裂解木质素和其他非纤维素组分,提高生物质的可利用性。
在碱性低共熔溶剂预处理过程中,温度、溶剂比例、溶剂用量等参数是影响预处理效果的关键因素。
适当的温度可以加速纤维素的溶解和裂解,而过高的温度则可能导致纤维素的降解和产生副产物。
合理的溶剂比例和溶剂用量可以提高溶剂的溶解能力和选择性,从而增加纤维素的溶解度和木质素的裂解程度。
碱性低共熔溶剂预处理木质纤维素类生物质的优点主要体现在两个方面。
首先,预处理可以有效地降低纤维素的结晶度和抗生物降解性,提高纤维素的可溶解性和可降解性,从而有利于后续的酶解、发酵和化学转化等工艺。
其次,预处理还可以裂解木质素和其他非纤维素组分,提高生物质的可利用性和产物的价值。
总之,碱性低共熔溶剂预处理木质纤维素类生物质是一种有效的方法,可以克服纤维素的结晶性和抗生物降解性等问题,提高生物质的可利用性和产物的价值。
未来的研究还可以进一步优化预处理条件,探索新的低共熔溶剂体系,以实现对木质纤维素类生物质的高效转化。