激光转镜式光学扫描系统的光学转镜讲解
- 格式:doc
- 大小:123.50 KB
- 文档页数:2
MEMS扫描镜介绍,MEMS微镜按原理区分MEMS微镜是指采用光学MEMS技术制造的,把微光反射镜与MEMS驱动器集成在一起的光学MEMS器件。
MEMS微镜的运动方式包括平动和扭转两种机械运动。
对于扭转MEMS微镜,当其光学偏转角度较大(达到10°以上),主要功能是实现激光的指向偏转、图形化扫描、图像扫描时,可被称为“MEMS扫描镜”,以区别于较小偏转角度的扭转MEMS微镜。
MEMS扫描镜是激光应用必不可少的关键激光元器件,应用领域已渗透到消费电子、医疗、军事国防、通讯等。
这其中有已经量产的应用,还有许多概念性的应用。
主要应用领域有三个方面:激光扫描、光通讯、数字显示。
扫描镜主要可用在激光雷达LiDAR、3D摄像头、条形码扫描、激光打印机、医疗成像;光通讯主要指光分插复用器、光衰减器、光开关、光栅;数字显示指高清电视、激光微投影、数字影院、汽车抬头显示(HUD)、激光键盘、增强现实(AR)等方面的应用。
MEMS微镜在激光雷达的应用MEMS微镜在3D摄像头中的应用MEMS微镜在光学通讯中的应用MEMS微镜在激光虚拟键盘的应用MEMS微镜在DLP的应用是一个成功的例子。
DLP显示的核心技术则是采用静电原理的MEMS微镜组成的阵列,每一面微镜构成一个单色像素,由微镜下层的寄存器控制特定镜片在开关状态间的高速切换,将不同颜色的像素糅合在一起。
DLP技术在1987年问世,最初仅用于国防,直到1996年才投入商业化应用:投影仪。
与传统的35毫米胶片电影相比,DLP影院显示技术所呈现的影像色彩更鲜艳、更精准。
这多亏了DLP显示引擎光学效率的BrillianColor(极致色彩)技术,这种技术不仅让电影公司在影片的包装和发行上变得更得心应手,同时也让观众能享受到更精彩的视觉盛宴。
更重要的是,DLP芯片出色的高稳定性和高可靠性也是让其能够在影院大放异彩的重要原因之一。
德州仪器DLP芯片技术发明者Larry Hornbeck博士,他因其与多名工程师发明的微镜装置,于2015年的奥斯卡“科学技术奖”上被授予奥斯卡奖!MEMS微镜按原理区分,主要包括四种:静电驱动、电磁驱动、电热驱动、压电驱动。
利用折返系统次镜旋转进行二维像移补偿的方法摘要:一、引言二、折返系统次镜旋转的原理1.折返系统的组成2.次镜旋转的作用三、二维像移补偿的方法1.补偿原理2.具体实施步骤四、实验与应用1.实验设备与方法2.实验结果与分析3.应用场景五、结论与展望正文:一、引言在光学成像系统中,像移是影响成像质量的一个重要因素。
特别是在高精度成像和激光通信等领域,像移对系统性能的影响尤为显著。
为了解决这一问题,本文提出了一种利用折返系统次镜旋转进行二维像移补偿的方法。
二、折返系统次镜旋转的原理1.折返系统的组成折返系统是一种光学成像系统,主要由主镜、次镜和成像探测器组成。
其中,次镜起到折返光线的作用,使光路形成闭合。
2.次镜旋转的作用当次镜旋转时,其反射的光线会形成一个旋转的成像场,这样就可以通过调整次镜的旋转角度来实现对成像位置的控制。
在此基础上,我们可以实现二维像移的补偿。
三、二维像移补偿的方法1.补偿原理利用折返系统次镜旋转进行二维像移补偿的原理如下:首先,测量像移的大小和方向,然后根据测量结果调整次镜的旋转角度,使成像位置与原始位置重合。
在这个过程中,次镜的旋转角度与像移方向呈反比例关系。
2.具体实施步骤(1)测量像移:通过光学成像探测器捕获成像信号,并分析成像位置与原始位置的偏差,得到像移的大小和方向。
(2)计算次镜旋转角度:根据像移的测量结果,计算出需要调整的次镜旋转角度。
(3)调整次镜旋转:将次镜旋转至计算得到的旋转角度,实现二维像移的补偿。
四、实验与应用1.实验设备与方法实验采用了一套折返系统成像装置,并配备了相应的测量设备和探测器。
实验过程中,首先对成像装置进行调试,确保成像质量;然后进行像移补偿实验,观察补偿效果。
2.实验结果与分析实验结果表明,利用折返系统次镜旋转进行二维像移补偿的方法是有效的。
在不同的像移条件下,通过调整次镜旋转角度,都能够实现成像位置的恢复,提高了成像质量。
3.应用场景本方法适用于各种光学成像系统,尤其是在高精度成像和激光通信等领域,具有较高的实用价值。
本技术新型公开了一种振镜式激光扫描实验教学装置,包括相互垂直布置的X轴导轨和Y轴导轨;以及沿光路依次布置的激光器、扩束镜、X轴扫描振镜、Y轴扫描振镜、F-theta透镜和投影屏;其中,激光器、扩束镜、X轴扫描振镜滑动安装在X轴导轨上,Y轴扫描振镜、F-theta透镜和投影屏滑动安装在Y轴导轨上。
本技术新型把传统的工业打标引入实验教学领域,能够将输入于电脑的二维图像用激光高速准确的输出。
技术要求1.一种振镜式激光扫描实验教学装置,其特征在于,包括相互垂直布置的X轴导轨和Y轴导轨;以及沿光路依次布置的激光器、扩束镜、X轴扫描振镜、Y轴扫描振镜、F-theta透镜和投影屏;其中,激光器、扩束镜、X轴扫描振镜滑动安装在X轴导轨上,Y轴扫描振镜、F-theta透镜和投影屏滑动安装在Y轴导轨上。
2.根据权利要求1所述振镜式激光扫描实验教学装置,其特征在于,还设有主控板、D/A转换板以及用于储存待输出参数的上位机;其中主控板与上位机之间通过USB接口通信连接;主控板与D/A转换板之间通过con接口通信连接;X轴扫描振镜以及Y轴扫描振镜的控制电路分别通过对应的con接口接入D/A转换板;激光器的控制电路通过对应的con接口接入主控板。
3.根据权利要求2所述振镜式激光扫描实验教学装置,其特征在于,还设有内置开关电源的控制箱,所述主控板、D/A转换板、X轴扫描振镜以及Y轴扫描振镜的控制电路、激光器的控制电路均安装在该控制箱内,在控制箱的外壳上嵌装有对应的电路接口。
4.根据权利要求3所述振镜式激光扫描实验教学装置,其特征在于,所述开关电源具有三个输出端,其中一个输出端与主控板以及激光器的控制电路供电连接,另外两个输出端与D/A转换板、X轴扫描振镜以及Y轴扫描振镜的控制电路并联供电连接。
5.根据权利要求2所述振镜式激光扫描实验教学装置,其特征在于,所述X轴扫描振镜及Y轴扫描振镜均包括反射镜、扫描电机和控制电路,所述反射镜固定在扫描电机轴上。
光纤法拉第旋转器反射镜的作用光纤法拉第旋转器反射镜是一种重要的光学元件,它在光纤通信系统中扮演着至关重要的角色。
它的作用主要体现在光信号的传输和调制上,下面我将从深度和广度两个方面来进行全面评估。
深度方面来看,光纤法拉第旋转器反射镜的作用主要表现在信号的调制和反射方面。
它能够根据输入的光信号进行相位调制,从而实现光信号的调制和控制。
它能够将光信号按照特定的角度进行反射,从而实现光信号的传输和引导。
光纤法拉第旋转器反射镜可以帮助光信号实现传输和调制,确保光通信系统的正常运行。
广度方面来看,光纤法拉第旋转器反射镜还涉及到光通信系统的整体结构和性能。
它需要与其他光学元件和设备配合使用,如光纤放大器、光接收器等,才能将光信号传输到目标地点。
它还需要考虑光信号的衰减、色散等问题,以保证光信号的稳定传输。
光纤法拉第旋转器反射镜不仅仅是单独存在的元件,更是整个光通信系统中不可或缺的一部分。
总结回顾性来看,光纤法拉第旋转器反射镜在光通信系统中扮演着至关重要的角色。
它通过调制光信号的相位和角度,实现光信号的传输和引导。
它还需要与其他光学元件和设备配合使用,保证光通信系统的正常运行。
在我看来,光纤法拉第旋转器反射镜的作用不仅仅是在实现光信号传输上,更是在推动光通信技术的发展和应用上起到了重要的作用。
在本文中,我深入探讨了光纤法拉第旋转器反射镜的作用,从深度和广度两个方面进行了评估。
希望通过这篇文章,你能对这一主题有全面、深刻和灵活的理解。
光纤法拉第旋转器反射镜是光通信系统中至关重要的光学元件,它的作用在光信号的传输和调制上起着至关重要的作用。
除了在深度和广度方面进行评估之外,我还想进一步探讨光纤法拉第旋转器反射镜的工作原理、应用领域以及未来的发展趋势。
让我们来了解一下光纤法拉第旋转器反射镜的工作原理。
光纤法拉第旋转器反射镜是通过法拉第效应来实现光信号的调制和反射的。
法拉第效应是指当光线通过介质中的磁场时,它的偏振面会发生旋转,这样就可以实现光信号的相位调制。
用于激光背光源电视的扫描分光与消散斑系统宋少华;仝召民【摘要】针对单颗激光二极管光功率过高不能直接用于激光液晶电视光源阵列的限制,本文设计了将高功率激光束分为多束功率接近的子光束的扫描分光系统,从而为液晶电视提供激光背光.系统中激光器发出的准直光束经过扫描振镜进行二维扫描后,经凸透镜和柱面透镜会聚成一条细线型光束耦合进一维多模光纤阵列,从而达到分光的目的.此外,基于扫描振镜和多模光纤实现了系统散斑的抑制.实验结果显示,11根光纤的平均单根出射功率为674.13μW,离散系数为16%,平均散斑对比度为0.162.使用激光作为背光源的激光液晶电视因其优秀的显示性能而具备强大的市场竞争力和广阔的市场前景.【期刊名称】《光学精密工程》【年(卷),期】2019(027)002【总页数】8页(P271-278)【关键词】液晶电视;激光电视;扫描振镜;背光;分光;散斑抑制【作者】宋少华;仝召民【作者单位】山西大学激光光谱研究所量子光学与光量子器件国家重点实验室 ,山西太原030006;极端光学协同创新中心,山西太原030006;山西大学激光光谱研究所量子光学与光量子器件国家重点实验室 ,山西太原030006;极端光学协同创新中心,山西太原030006【正文语种】中文【中图分类】O439;TN949.151 引言平板显示器(Flat Plane Displays,FPD)以其体积小、功耗低、无辐射的优点成为21世纪电视机的主流显示器件。
平板显示技术中,液晶显示(Liquid Crystal Displays,LCD)已大规模商业化,而有机发光二极管(Organic Light Emitting Diode, OLED)显示处于研发和初步试用阶段。
液晶显示器是一种采用液晶材料的平板显示设备,液晶本身不发光,必须由背光模组提供背光源。
在电场作用下,液晶分子产生排列上的变化,结合液晶面板中的偏光板和滤光片,实现对透射光亮度和颜色的调节[1]。
基础光学实验一、实验仪器从基础光学轨道系统,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,datastudio软件系统二、实验简介利用传感器扫描激光衍射斑点,可标度各个衍射单缝之间光强与距离变化的具体规律。
同样可采集干涉双缝或多缝的光强分布规律。
与理论值相对比,并比较干涉和衍射模式的异同。
理论基础衍射:当光通过单缝后发生衍射,光强极小(暗点)的衍射图案由下式给出asinθ=m' λ(m'=1,2,3,....)(1)其中a是狭缝宽度,θ为衍射角度,λ是光的波长。
下图所以为激光实际衍射图案,光强与位置关系可由计算机采集得到。
衍射θ角是指从单缝中心到第一级小,则数。
m'为衍射分布级双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大的角度由下式给出:dsinθ=mλ(m=1,2,3,....)(2)其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光的波长,m为级数(0为中心最高,1为第一级的最大,2为第二级的最大...从中心向外计数)。
如下图所示,为双缝干涉的各级光强包络与狭缝的具体关系。
三、实验预备1.将单缝盘安装到光圈支架上,单缝盘可在光圈支架上旋转,将光圈支架的螺丝拧紧,使单缝盘在使用过程中不能转动。
要选择所需的狭缝,秩序旋转光栅片中所需的狭缝到单缝盘中心即可。
2、将采集数据的光传感器与转动传感器安装在光学轨道的另一侧,并调整方向。
3、将激光器只对准狭缝,主义光栅盘侧靠近激光器大约几厘米的距离,打开激光器(切勿直视激光)。
调整光栅盘与激光器。
4、自左向右和向上向下的调节激光束的位置,直至光束的中心通过狭缝,一旦这个位置确定,请勿在实验过程中调整激光束。
5、初始光传感器增益开关为×10,根据光强适时调整。
并根据右图正确讲转动传感器及光传感器接入科学工作室500.6、打开datastudio软件,并设置文件名。
四、实验内容 a、单缝衍射1、旋转单缝光栅,使激光光束通过设置为0.16毫米的单缝。
车载激光雷达Risley棱镜光束扫描系统曾昊旻; 李松; 张智宇; 伍煜【期刊名称】《《光学精密工程》》【年(卷),期】2019(027)007【总页数】7页(P1444-1450)【关键词】车载激光雷达; Risley棱镜; 光束扫描系统; 二维扫描【作者】曾昊旻; 李松; 张智宇; 伍煜【作者单位】武汉大学电子信息学院湖北武汉 430079【正文语种】中文【中图分类】TN958.981 引言光束扫描系统控制激光雷达的光束指向,将激光脉冲投射到周围环境中形成三维激光点云,是决定激光雷达环境感知能力的关键模块。
为实现对车辆周边的无盲区环境感知,车载激光雷达要求尽可能大的水平视场角与垂直视场角,目前主流的高端车载激光雷达均具有360°的水平视场,垂直视场角在25°~40°。
然而,常见的激光雷达扫描方式如振镜扫描、转镜扫描、声光、电光扫描等均无法实现如此大范围的二维扫描。
目前,车载激光雷达中主流的扫描方式是在垂直方向上间隔一定角度排列多个半导体激光器覆盖垂直视场,同时使激光雷达整体绕轴360°旋转以覆盖水平视场[1]。
然而,采用多个半导体激光器使得系统的装调相当复杂,且不同激光器在时间响应上存在差异,使得激光雷达不同测距通道之间存在测距互差,影响激光雷达整体的测距精度。
本文基于Risley棱镜设计的光束扫描系统只需单个激光器即可实现二维方向的扫描,在简化激光雷达系统结构的同时提升了测距精度。
Risley棱镜一般由两片或两片以上共轴楔形棱镜组成,通过控制棱镜的相对转动,Risley棱镜可以精确控制光束指向,实现大角度范围的高精度二维扫描[2-3]。
自1960年Rosell等首次提出用Risley棱镜系统实现光束扫描以来,由于具有指向精度高、响应快、结构紧凑、鲁棒性好[4-5]等特点,Risley棱镜作为光束指向器件已应用在激光通信、激光雷达、红外对抗、显微成像、军事侦察等多种领域[6-10]。
光学显微镜的结构与使用方法目的要求1、熟悉光学显微镜的主要构造及其性能.2、掌握低倍镜及高倍镜的使用方法.3、初步掌握油镜的使用方法.4、了解光学显微镜的维护方法.实验原理光学显微镜lightmicroscope是生物科学和医学研究领域常用的仪器,它在细胞生物学、组织学、病理学、微生物学及其他有关学科的教学研究工作中有着极为广泛的用途,是研究人体及其他生物机体组织和细胞结构强有力的工具.光学显微镜简称光镜,是利用光线照明使微小物体形成放大影像的仪器.目前使用的光镜种类繁多,外形和结构差别较大,有些类型的光镜有其特殊的用途,如暗视野显微镜、荧光显微镜、相差显微镜,倒置显微镜等,但其基本的构造和工作原理是相似的.一台普通光镜主要由机械系统和光学系统两部分构成,而光学系统则主要包括光源、反光镜、聚光器、物镜和目镜等部件.光镜是如何使微小物体放大的呢物镜和目镜的结构虽然比较复杂,但它们的作用都是相当于一个凸透镜,由于被检标本是放在物镜下方的1~2倍焦距之间的,上方形成一倒立的放大实相,该实相正好位于目镜的下焦点焦平面之内,目镜进一步将它放大成一个虚像,通过调焦可使虚像落在眼睛的明视距离处,在视网膜上形成一个直立的实像.显微镜中被放大的倒立虚像与视网膜上直立的实像是相吻合的,该虚像看起来好像在离眼睛25cm处.分辨力是光镜的主要性能指示.所谓分辨力resolvingpower也称为辨率或分辨本领,是指显微镜或人眼在25cm的明视距离处,能清楚地分辨被检物体细微结构最小间隔的能力,即分辨出标本上相互接近的两点间的最小距离的能力.据测定,人眼的分辨力约为100μm.显微镜的分辨力由物镜的分辨力决定,物镜的分辨力就是显微镜的分辨力,而目镜与显微镜的分辨力无关.光镜的分辨力RR值越小,分辨率越高可以下式计算:这里n为聚光镜与物镜之间介质的折射率空气为1、油为1.5;为标本对物镜镜口张角的半角,sin的最大值为1;为照明光源的波长白光约为0.5m.放大率或放大倍数是光镜性能的另一重要参数,一台显微镜的总放大倍数等于目镜放大倍数与物镜放大倍数的乘积.一、光学显微镜的基本构造及功能一机械部分1、镜筒:为安装在光镜最上方或镜臂前方的圆筒状结构,其上端装有目镜,下端与物镜转换器相连.根据镜筒的数目,光镜可分为单筒式或双筒式两类.单筒光镜又分为直立式和倾斜式两种.而双筒式光镜的镜筒均为倾斜的.镜筒直立式光镜的目镜与物镜的中心线互成45度角,在其镜筒中装有能使光线折转45度的棱镜.2、物镜转换器:又称物镜转换盘.是安装在镜筒下方的一圆盘状构造,可以按顺时针或反时针方向自由旋转.其上均匀分布有3~4个圆孔,用以装载不同放大倍数的物镜.转动物镜转换盘可使不同的物镜到达工作位置即与光路合轴.使用时注意凭手感使所需物镜准确到位.3、镜臂:为支持镜筒和镜台的弯曲状构造,是取用显微镜时握拿的部位.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45度,否则显微镜则由于重心偏移容易翻倒.在使用临时装片时,千万不要倾斜镜臂,以免液体或染液流出,污染显微镜.4、调焦器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端镜筒直立式光镜或下端镜筒倾斜式光镜,分粗调螺旋大螺旋和细调螺旋小螺旋两种.粗调螺旋可使镜筒或载物台以较快速度或较大幅度的升降,能迅速调节好焦距使物像呈现在视野中,适于低倍镜观察时的调焦.而细调螺旋只能使镜筒或载物台缓慢或较小幅度的升降升或降的距离不易被肉眼观察到,适用于高倍镜和油镜的聚焦或观察标本的不同层次,一般在粗调螺旋调焦的基础上再使用细调焦螺旋,精细调节焦距.有些类型的光镜,粗调螺旋和细调螺旋重合在一起,安装在镜柱的两侧.左右侧粗调螺旋的内侧有一窄环,称为粗调松紧调节轮,其功能是调节粗调螺旋的松紧度向外转偏松,向内转偏紧.另外,在左侧粗调螺旋的内侧有一粗调限位环凸柄,当用粗调螺旋调准焦距后向上推紧该柄,可使粗调螺旋限位,此时镜台不能继续上升但细调旋仍可调节.5、载物台:也称镜台,是位于物镜转换器下方的方形平台,是放置被观察的玻片标本的地方.平台的中央有一圆孔,称为通光孔,来自下方光线经此孔照射到标本上.6、镜柱:为镜臂与镜座相连的短柱.7、镜座:位于显微镜最底部的构造,为整个显微镜的基座,用于支持和稳定镜体.有的显微镜在镜座内装有照明光源等构造.二光学系统部分光镜的光学系统主要包括物镜、目镜和照明装置反光镜、聚光器和光圈等.1、目镜:又称接目镜,安装在镜筒的上端,起着将物镜所放大的物像进一步放大的作用.每个目镜一般由两个透镜组成,在上下两透镜即接目透镜和会聚透镜之间安装有能决定视野大小的金属光阑——视场光阑,此光阑的位置即是物镜所放大实像的位置,故可将一小段头发粘附在光阑上作为指针,用以指示视野中的某一部分供他人观察.另外,还可在光阑的上面安装目镜测微尺.每台显微镜通常配置2~3个不同放大倍率的目镜,常见的有5×、10×和15××表示放大倍数的目镜,可根据不同的需要选择使用,最常使用的是10×目镜.2、物镜:也称接物镜,安装在物镜转换器上.每台光镜一般有3~4之个不同放大倍率的物镜,每个物镜由数片凸透镜和凹透镜组合而成,是显微镜最主要的光学部件,决定着光镜分辨力的高低.常用物镜的放大倍数有10×、40×和100×等几种.一般将8×或10×的物镜称为低倍镜而将5×以下的叫做放大镜;将40×或45×的称为高倍镜;将90×或100×的称为油镜这种镜头在使用时需浸在镜油中.在每个物镜上通常都刻有能反映其主要性能的参数,主要有放大倍数和数值孔径如10/0.25、40/0.65和100/1.25,该物镜所要求的镜筒长度和标本上的盖玻片厚度160/0.17,单位mm等,另外,在油镜上还常标有“油”或“Oil”的字样.油镜在使用时需要用香柏油或石蜡油作为介质,这是因为油镜的透镜和镜孔较小,而光线要通过载玻片和空气才能进入物镜中,玻璃与空气的折光率不同,使部分光线产生折射而损失掉,导致进入物镜的光线减少,而使视野暗淡,物像不清.在玻片标本和油镜之间填充折射率与玻璃近似的香柏油或石蜡油时玻璃、香柏油和石蜡油的折射率分别为1.52、1.51、1.46,空气为1,可减少光线的折射,增加视野亮度,提高分辨率.物镜分辨力的大小取决于物镜的数值孔径numerialaperture,N.A.,N.A.又称为镜口率,其数值越大,则表示分辨力越高.图1-3物镜的性能参数及工作距离C线为盖玻片的的上表面,10物镜的工作距离为7.63mm;40物镜的工作距离为0.198mm;10/0.25、40/0.65、100/1.25表示镜头的放大倍数和数字孔径.160/0.17表示显微镜的机械镜筒长度标本至目镜的距离和盖玻片的厚度.即镜筒长度为160mm,盖玻片厚度为0.17mm.不同的物镜有不同的工作距离.所谓工作距离是指显微镜处于工作状态焦距调好、物像清晰时,物镜最下端与盖玻片上表面之间的距离.物镜的放大倍数与其工作距离成反比.当低倍镜被调节到工作距离后,可直接转换高倍镜或油镜,只需要用细调螺旋稍加调节焦距便可见到清晰的物像,这种情况称为同高调焦.不同放大倍数的物镜也可从外形上加以区别,一般来说,物镜的长度与放大倍数成正比,低倍镜最短,油镜最长,而高倍镜的长度介于两者之间.3、聚光器:位于载物台的通光孔的下方,由聚光镜和光圈构成,其主要功能是光线集中到所要观察的标本上.聚光镜由2~3个透镜组合而成,其作用相当于一个凸透镜,可将光线汇集成束.在聚光器的左下方有一调节螺旋可使其上升或下降,从而调节光线的强弱,升高聚光器可使光线增强,反之则光线变弱.光圈也称为彩虹阑或孔径光阑,位于聚光器的下端,是一种能控制进入聚光器的光束大小的可变光阑.它由十几张金属薄片组合排列而成,其外侧有一小柄,可使光圈的孔径开大或缩小,以调节光线的强弱.在光圈的下方常装有滤光片框,可放置不同颜色的滤光片.4、反光镜:位于聚光镜的下方,可向各方向转动,能将来自不同方向的光线反射到聚光器中.反光镜有两个面,一面为平面镜,另一面为凹面镜,凹面镜有聚光作用,适于较弱光和散射光下使用,光线较强时则选用平面镜现在有些新型的光学显微镜都有自带光源,而没有反光镜;有的二者都配置.二、光学显微镜的使用方法-准备将显微镜小心地从镜箱中取出移动显微镜时应以右手握住镜壁,左手托住镜座,放置在实验台的偏左侧,以镜座的后端离实验台边缘约6~10cm为宜.首先检查显微镜的各个部件是否完整和正常.如果是镜筒直立式光镜,可使镜筒倾斜一定角度一般不应超过45度以方便观察观察临时装片时禁止倾斜镜臂.二低倍镜的使用方法1、对光:打开实验台上的工作灯如果是自带光源显微镜,这时应该打开显微镜上的电源开关,转动粗调螺旋,使镜筒略升高或使载物台下降,调节物镜转换器,使低倍镜转到工作状态即对准通光孔,当镜头完全到位时,可听到轻微的扣碰声.打开光圈并使聚光器上升到适当位置以聚光镜上端透镜平面稍低于载物台平面的高度为宜.然后用左眼向着目镜内观察注意两眼应同时睁开,同时调节反光镜的方向自带光源显微镜,调节亮度旋钮,使视野内的光线均匀、亮度适中.2、放置玻片标本:将玻片标本放置到载物台上用标本移动器上的弹簧夹固定好注意:使有盖玻片或有标本的一面朝上,然后转动标本移动器的螺旋,使需要观察的标本部位对准通光孔的中央.3、调节焦距:用眼睛从侧面注视低倍镜,同时用粗调螺旋使镜头下降或载物台上升,直至低倍镜头距玻片标本的距离小于0.6cm注意操作时必须从侧面注视镜头与玻片的距离,以避免镜头碰破玻片.然后用左眼在目镜上观察,同时用左手慢慢转动粗调螺旋使镜筒上升或使载物台下降直至视野中出现物像为止,再转动细调螺旋,使视野中的物像最清晰.如果需要观察的物像不在视野中央,甚至不在视野内,可用标本移动器前后、左右移动标本的位置,使物像进入视野并移至中央.在调焦时如果镜头与玻片标本的距离已超过了1cm还未见到物像时,应严格按上述步骤重新操作.三高倍镜的使用方法1、在使用高倍镜观察标本前,应先用低倍镜寻找到需观察的物像,并将其移至视野中央,同时调准焦距,使被观察的物像最清晰.2、转动物镜转换器,直接使高倍镜转到工作状态对准通光孔,此时,视野中一般可见到不太清晰的物像,只需调节细调焦螺旋,一般都可使物像清晰.请注意:1在从低倍镜准焦的状态下直接转换到高倍镜时,有时会发生高倍物镜碰擦玻片而不能转换到位的情况这种情况,主要是高倍镜、低倍镜不配套,即不是同一型号的显微镜上的镜头,此时不能硬转,应检查玻片是否放反、低倍镜的焦距是否调好以及物镜是否松动等情况后重新操作.如果调整后仍不能转换,则应将镜筒升高或使载物台下降后再转换,然后在眼睛的注视下使高倍镜贴近盖玻片,再一边观察目镜视野,一边用粗调螺旋使镜头极其缓慢地上升或载物台下降,看到物像后再用细调螺旋准焦.2由于制造工艺上的原因,许多显微镜的低倍镜视野中心与高倍镜的视野中心往往存在一定的偏差即:低倍镜与高倍镜的光轴不在一条直线上,因此,在从低倍镜转换高倍镜观察标本时常会给观察者迅速寻找标本造成一定困难.为了避免这种情况的出现,帮助观察者在高倍镜下能较快找到所需放大部分的物像,可事先利用羊毛交叉装片标本来测定所用光镜的偏心情况,并绘图记录制成偏心图.具体操作步骤如下:①用在高倍镜下找到羊毛交叉点并将其移至视野中心;②换低倍镜观察羊毛交叉点是否还位于视野中央,如果偏离视野中央,其所在的位置就是偏心位置;③将前面两个步骤反复操作几次,以找出准确的偏心位置,并绘出偏心图.当光镜的偏心点找出之后,在使用该显微镜的高倍镜观察标本时,事先可在低倍镜下将需进一步放大的部位移至偏心位置处,再转换高倍镜观察时,所需的观察目标就正好在视野中央.四油镜的使用方法1、用高倍镜找到所需观察的标本物像,并将需要进一步放大的部分移至视野中央.2、将聚光器升至最高位置并将光圈开至最大因油镜所需光线较强.3、转动物镜转换盘,移开高倍镜,往玻片标本上需观察的部位载玻片的正面,相当于通光孔的位置滴一滴香柏油折光率1.51或石蜡油折光率1.47作为介质,然后在眼睛的注视下,使油镜转至工作状态.此时油镜的下端镜面一般应正好浸在油滴中.4、左眼注视目镜中,同时小心而缓慢地转动细调螺旋注意:这时只能使用微调节螺旋,千万不要使用粗调节螺旋使镜头微微上升或使载物台下降,直至视野中出现清晰的物像.操作时不要反方向转动细调节螺旋,以免镜头下降压碎标本或损坏镜头.5、油镜使用完后,必须及时将镜头上的油擦拭干净.操作时先将油镜升高1cm,并将其转离通光孔,先用干擦镜纸揩擦一次,把大部分的油去掉,再用沾有少许清洁剂或二甲苯的擦镜纸擦一次,最后再用干擦镜纸揩擦一次.至于玻片标本上的油,如果是有盖玻片的永久制片,可直接用上述方法擦干净;如果是无盖玻片的标本,则盖玻片上的油可用拉纸法揩擦,即先把一小张擦镜纸盖在油滴上,再往纸上滴几滴清洁剂或二甲苯.趁湿将纸往外拉,如此反复几次即可干净.三、使用显微镜应注意的事项1、取用显微镜时,应一手紧握镜臂,一手托住镜座,不要用单手提拿,以避免目镜或其它零部件滑落.2、在使用镜简直立式显微镜时,镜筒倾斜的角度不能超过450,以免重心后移使显微镜倾倒.在观察带有液体的临时装片时,不要使用倾斜关节,以避免由于载物台的倾斜而使液体流到显微镜上.3、不可随意拆卸显微镜上的零部件,以免发生丢失损坏或使灰尘落入镜内.4、显微镜的光学部件不可用纱布、手帕、普通纸张或手指揩擦,以免磨损镜面,需要时只能用擦镜纸轻轻擦拭.机械部分可用纱布等擦拭.5、在任何时候,特别是使用高倍镜或油镜时,都不要一边在目镜中观察,一边下降镜筒或上升载物台,以避免镜头与玻片相撞,损坏镜头或玻片标本.6、显微镜使用完后应及时复原.先升高镜筒或下降载物台,取下玻片标本,使物镜转离通光孔.如镜筒、载物台是倾斜的,应恢复直立或水平状态.然后下降镜或上升载物台,使物镜与载物台相接近.垂直反光镜,下降聚光器,关小光圈,最后放回镜箱中锁好.7、在利用显微镜观察标本时,要养成两眼同时睁开,双手并用左手操纵调焦螺旋,右手操纵标本移动器的习惯,必要时应一边观察一边计数或绘图记录.。
双CCD交汇测量物体落点坐标设计研究[摘要] 测量物体的落地点坐标在打击精确度测试中具有重大的意义。
在当前的武器打击精准度测量中有多种测测量方法,如光幕靶测量、声靶测量。
这些测量方法都有各自的缺陷。
针对以上的问题本文提出了以转镜为基础的双CCD 交汇测量进行设计研究。
经过测试转镜式测量方法比其余的方法更具有优越性。
本文设计了测试的总体方案,并进行了具体实验,将有效的数据进行处理分析,分析结果显示该测试方案误差小,性能好,动态响应快,能够满足测试场的精度要求。
[关键词] 双CCD交汇测量高速扫描系统坐标精度校准1 前言双CCD交汇测量技术是远距离激光高速扫描光电测量技术,在对远距离和大视场的空间目标进行定位测量中显示出独特的优越性,因此在目标的追踪测量中有极其广泛的应用。
双CCD测量技术作为空间定位装置,首要的问题就是如何能够提高测量的精确度。
影响坐标精确度的原因很多,但是究其主要因素是光斑中心位置的精确确定。
光斑的中心的确定将直接影响图像中心位置的确定,进而影响光斑中心的确定。
本文设计主要运用双CCD构建的光斑中心空间定位的系统结构,并给出光斑中心坐标的计算公式。
通过对不同落点的多次测量计算,并与实际坐标比对,计算分析误差。
2 测试系统与数学建模图1双CCD交汇测量系统框图图2物象坐标关系2.1测试方案测试的总体方案如图1所示,激光转镜式高速扫描系统扫描被测区域的目标点,并且将激光能平稳地打在被测的物体上。
双CCD在同步触发电路的作用下高频率采集图像,并将所筛选的目标图像传送至终端进行计算分析。
2.2数学建模在平行于水平面的平面内放置两台CCD相机,使其主光轴的交汇点与被测区域的几何中心重合。
根据水平校准将两台CCD相机的水平光轴平行于被测平面,且光轴的交汇点与被测平面的几何中心重合。
两相机视场的交汇部分形成有效靶区,根据相机的视场角来确定相机与被测区域几何中心的距离。
当弹丸飞过有效靶区,外触发相机工作,经图像采集、软件处理,可获得弹体过靶的坐标位置,从而得出弹体的落地点坐标。
激光振镜工作原理激光打标设备的核心是激光打标控制系统和激光打标头,因此,激光打标的发展历程就是打标控制系统和激光打标头的发展过程。
从1995年起,在激光打标领域就经历了大幅面时代、转镜时代和振镜时代,控制方式也完成了从软件直接控制到上下位机控制到实时处理、分时复用的一系列演变,如今,半导体激光器、光纤激光器、乃至紫外激光的出现和发展又对光学过程控制提出了新的挑战,振镜式激光打标头(振镜式扫描系统)是最新产品。
1998年,振镜式扫描系统在中国的大规模应用开始到来。
所谓振镜,又可以称之为电流表计,它的设计思路完全沿袭电流表的设计方法,镜片取代了表针,而探头的信号由计算机控制的-5V—5V或-10V-+10V的直流信号取代,以完成预定的动作。
同转镜式扫描系统相同,这种典型的控制系统采用了一对折返镜,不同的是,驱动这套镜片的步进电机被伺服电机所取代,在这套控制系统中,位置传感器的使用和负反馈回路的设计思路进一步保证了系统的精度,整个系统的扫描速度和重复定位精度达到一个新的水平。
振镜扫描式打标头主要由XY扫描镜、场镜、振镜及计算机控制的打标软件等构成。
根据激光波长的不同选用相应的光学元器件。
相关的选件还包括激光扩束镜、激光器等。
其工作原理是将激光束入射到两反射镜(扫描镜)上,用计算机控制反射镜的反射角度,这两个反射镜可分别沿X、Y轴扫描,从而达到激光束的偏转,使具有一定功率密度的激光聚焦点在打标材料上按所需的要求运动,从而在材料表面上留下永久的标记,聚焦的光斑可以是圆形或矩形,其原理如右图所示。
在振镜扫描系统中,可以采用矢量图形及文字,这种方法采用了计算机中图形软件对图形的处理方式,具有作图效率高,图形精度好,无失真等特点,极大的提高了激光打标的质量和速度。
同时振镜式打标也可采用点阵式打标方式,采用这种方式对于在线打标很适用,根据不同速度的生产线可以采用一个扫描振镜或两个扫描振镜,与前面所述的阵列式打标相比,可以标记更多的点阵信息,对于标记汉字字符具有更大的优势。
光学镜架调节机制和驱动方式介绍光学镜架调节机制和驱动方式介绍镜架是光学实验常用器件,它主要用来固定光学镜片,并调节镜片的倾斜角度。
由于光学实验对环境振动比较敏感,通常情况下,镜架都是固定在光学隔振平台上的。
镜架设计首要考虑的是调节机制,主要有两种:动态调节和万向调节,下面分别就这两种方式做如下介绍。
动态反射镜调节架动态反射镜调节架具有出色的稳定性和相对较低的价格,是目前最chang见的镜架类型。
它满足实验室中绝大多数实验所需性能要求。
然而,它同时也存在一些缺点:光束平移和调节角度限制等。
动态反射镜调节架旋转轴位置通常位于镜片的后面(如下图所示),当调节旋钮时,旋转轴的位置也会随之移动,固定在镜架上的镜片不仅发生旋转,而且还有平移。
其次,由于受弹簧和调节螺丝物理性能的限制,大部分动态反射镜调节架的角度调节范围都不超过+/-10°。
万向反射镜调节架万向反射镜调节架的旋转轴是固定的,并且贯穿光学镜片(如下图所示),调节旋钮只会改变镜片倾斜的角度,镜片不会平移。
万向反射镜调节架的角度调节范围远大于动态反射镜调节架,一些镜架可实现360°旋转。
镜架驱动类型反射镜调节架驱动类型主要有内六角螺杆驱动、旋钮驱动、千分尺驱动和促动器驱动方式,下面简单介绍下各种驱动方式的应用场合。
内六角驱动内六角驱动主要用于光学实验中不需要经常调节的镜架。
由于内六角末端没有调节旋钮,可防止不必要的镜片位置偏移。
此外,当镜架放置空间较狭小而无法用人手调节时,内六角驱动是较为理想的选择。
内六角驱动灵敏度可达0.41µm。
旋钮驱动当需要频繁调节镜片位置时,应选择旋钮驱动方式。
请注意,旋钮的直径直接影响调节灵敏度,大直径旋钮可提供较好的调节灵敏度,但同时会占用更多的空间。
Newport还另外提供旋钮,它可以直接安装到内六角上,使内六角驱动变为旋钮驱动。
旋钮驱动最gao灵敏度可达0.28µm。
扫描电镜的结构与操作透射电子显微镜与光学显微镜一样,照明束穿过样品経过透镜的放大后,整个像是同时形成的。
而扫描电子显微镜(Scanning Electron Microscope,简称扫描电镜或SEM)则以完全不同的方式成像。
其基本要点是:用极狭窄的电子束去扫描样品,即电子束在样品上作光栅运动。
电子束与样品相互作用将会产生各种信息,例如样品的二次电子发射,发射出来的电子称为二次电子。
使用我们下面将讨论的方法,二次电子能产生样品表面放大的形貌像。
这个像是在样品被扫描时按时序地建立起来的,即使用逐点成像的方法获得放大的像。
早在1935年,透射电镜发明后不久,Knoll就提出利用一个扫描电子束从固体表面获得图像的原理。
但由于技术上的原因,直至1965年扫描电镜才成为商品而被利用。
此后,由于扫描电镜具有许多优点,使它在许多学科包括生物学的各个方面获得广泛的应用,成为极有价值的工具。
结构扫描电镜主要是由电子光学系统和显示单元组成,电子光学系统也称为镜筒,它的外观与透射电镜的镜筒相似,实际上相当于透射电镜的照明系统(SEM不需要成像系统),它是由电子枪、几个磁透镜、扫描线圈以及样品室组成(见图2-1)电子枪与透射电镜的电子枪基体相同,只是加速电压较低,一般在40kV以下。
磁透镜一般有三个:第一、二聚光镜和物镜,其作用与透射电镜的聚光镜相同:缩小电子束的直径,把来自电子枪的约30μm大小的电子束经过第一、二聚光镜和物镜的作用,缩小成直径约为几十埃的狭窄电子束。
这是因为扫描电镜的分辨率主要取决于电子束的直径,所以要尽可能缩小它,为此物镜还装备有物镜可动光栏和消散器。
一个带有扫描电路的偏转线圈通以锯齿波的电流,产生的磁场作用于电子束上使它在样品上扫描。
扫描的区域、扫描速率和每厘米的扫描线数都可以选择。
这个电路同时输送锯齿波电流给显示部分的显像管(CRT)的偏转线圈,所以镜筒的电子束与显像管的电子束是严格同步的。
出于与透射电镜同样的理由,镜筒也是被真空系统排气至高真空,一般为10-3Pa的真空度。
第一章激光器原理可以肯定地说:本世纪最后的伟大发明之一是激光技术。
它自一九五八年问世以来,已经逐步地然而是坚定地渗透到了科研、军事、工业等各个领域。
不是吗?看看我们的周围,你就可以轻易地找到它应用的实例:医院中的激光诊断及激光治疗机、商店中的条码识别器、办公室中的激光打印机、把我们与世界各地联结在一起的光纤等等, 就是在我们的家中也有它的身影:激光唱机、激光影碟机。
人类发明了多种多样的激光器。
诸如:气体激光器 (He-Ne 激光器、 CO 2激光器等、固态晶体激光器(红宝石激光器、钕玻璃激光器等、离子激光器(氪离子激光器、氩离子激光器等、染料激光器(甲酚紫激光器、萤光素激光器等、超辐射激光器(氮分子激光器等以及半导体激光器(砷化镓半导体二极管等等等。
在世界的许多地方,几乎所有的商品激光器都在制造业中得到越来越广泛的应用。
CO 2激光器的主要用途就是各类工业激光加工设备,作为固态晶体激光器的Nd: YAG(掺钕钇铝石榴石激光器的最大应用便是在激光打标领域。
1.1 激光原理我们知道,物质是由原子组成的,而原子是由带正电的原子核和带负电的核外电子组成的(见图 1.1 。
每一个电子都沿着自己特定的轨道绕原子核高速旋转,其旋转半径决定于电子所处的能级。
原子吸收能量后,电子的旋转半径会增加,电子的能级就会提高;原子释放能量后,电子的旋转半径会减小,电子的能级就会降低。
每个能级对应着一个特定的能量。
电子所具有的能量是不连续的,也就是说原子的能级是量子化的。
原子只有吸收了两个能级之间差值的能量才会提高一个能级,电子在能级之间的变动现象称为跃迁。
同样,当原子跃迁到较低能级时,会释放出两个能级之间差值的能量。
原子的最低能级为 E0,高的能级依次为 E1、 E2、 E3、… … ,高的能级称为上能级,低的能级为下能级。
处在能级 E0的原子称为基态原子,其它能级称为激发态(见图 1.2 。
原子可以吸收光子来获得能量,当然这个光子必须具有与原子能级差相1等的能量(例如:E1-E0原子只能吸收带有几个能量的光子。
“体验科学”流动科技馆展品讲解培训资料一、声光体验区1、光的路径按下启动按钮,转动转盘,使激光对向所选光学元件。
转动手轮调节光学元件的角度,观察光线通过光学元件的路径变化。
为什么光线在不同光学元件中的传播路径不同呢?光线在同种均匀介质里沿直线传播。
但光线从一种介质射向另一种介质时,在两介质交界处,会发生折射或反射。
而展品中的这些光学元件如凹凸透镜、凹凸反光镜、直角三棱镜、楔形镜、五棱镜和平行玻璃砖都由光学玻璃制成。
所以当平行光线由空气射向光学元件时,光的路径发生改变就不奇怪了。
应用:凹透镜和凸透镜可以用于制作近视镜、老花镜和放大镜。
透镜和反射镜也是组成照相机、望远镜、显微镜等光学系统的最基本光学元件。
2、窥视无穷按下按钮后,箱体内LED灯及汽车模型就会亮起,转动手轮,后端的反射镜开始摆动,我们就会看到一条无尽的弯曲光隧道。
为什么会出现弯曲的光隧道呢?这是因为箱体的前端是一面半透半反镜,后端是反射镜,灯光发出的光线被反射镜反射回来,一部分透过半透半反镜被看到,另一部分被半透半反镜再次反射到反射镜,经过多次反射,无线重复的影像,一个比一个远,就形成了一条无尽的隧道。
当摆动后端反射镜时,光的反射路径发生了变化,就会看到弯曲的光隧道。
应用:反射镜在生活中有广泛的应用,家庭用的穿衣镜、汽车的后视镜等都是平面反射镜。
3、幻像将圆牌投进“投入口”,会看到观察窗内的青蛙叼住圆牌,推动手柄青蛙吞下了圆牌,同时圆牌落入取出口。
这是怎么回事呢?其实这是利用凹面镜成像原理而产生的效果。
当物体位于2倍焦距以外时,通过凹面镜可成倒立、缩小的实像。
展项中,青蛙模型倒置安装于展台下方,并位于凹面镜的2倍焦距以外,经凹面镜反射后在观察口处成正立的实像。
当我们把圆牌放进“投入口”,圆牌经过凹面镜所成的“像”恰巧位于青蛙嘴部,这样,我们就看到了青蛙叼住圆牌的效果。
应用:凹面镜不仅可以反射成像,它对光线还起到会聚作用,凹面镜的特性应用于太阳灶、卫星天线、雷达、反射式望远镜等。