气体动、热练习题(含答案)
- 格式:doc
- 大小:317.00 KB
- 文档页数:4
热 学 习 题 课 (2007.10.18)Ⅰ 教学基本要求 气体动理论及热力学1.了解气体分子热运动的图象。
理解理想气体的压强公式和温度公式。
通过推导气体压强公式,了解从提出模型、进行统计平均、建立宏观量与微观量的联系到阐明宏观量的微观本质的思想和方法。
能从宏观和统计意义上理解压强、温度、内能等概念。
了解系统的宏观性质是微观运动的统计表现。
2.了解气体分子平均碰撞频率及平均自由程。
3.了解麦克斯韦速率分布率及速率分布函数和速率分布曲线的物理意义。
了解气体分子热运动的算术平均速率、方均根速率。
了解波耳兹曼能量分布律。
4.通过理想气体的刚性分子模型,理解气体分子平均能量按自由度均分定理,并会应用该定理计算理想气体的定压热容、定体热容和内能。
5.掌握功和热量的概念。
理解准静态过程。
掌握热力学过程中的功、热量、内能改变量及卡诺循环等简单循环的效率。
6.了解可逆过程和不可逆过程。
了解热力学第二定律及其统计意义。
了解熵的玻耳兹曼表达式。
Ⅱ 内容提要一、气体动理论(主要讨论理想气体) 1.状态方程 pV =( M/M mol )RT pV /T = 常量 p=nkT2.压强公式32 3 322/ n /v /v nm p t ερ=== 3.平均平动动能与温度的关系232/2kT/v m w ==4.常温下分子的自由度 单原子 i=t=3 双原子 i=t+r =3+2=5多原子 i=t+r =3+3=6 5.能均分定理每个分子每个自由度平均分得能量 kT /2 每个分子的平均动能 ()kT i k /2=ε 理想气体的内能:E =( M/M mol ) (i /2)RT ; 6.麦克斯韦速率分律:22232)2(4d d v ekTm v N N )v (f kT mv -==ππmol2rms 33RT/MkT/m v v ===()()mol 88M RT/m kT/v ππ== mol22RT/MkT/m v p ==7.平均碰撞次数 v n d Z 22π= 8.平均自由程 ()n d 221πλ=二、热力学基础 1.准静态过程(略)2.热力学第一定律Q= (E 2-E 1)+A d Q =d E +d A 准静态过程的情况下()⎰+-=21d 12V V V p E E Q d Q=d E +p d V3.热容 C =d Q /d T定体摩尔热容 C V ,=(d Q /d T )V /ν 定压摩尔热容 C p ,=(d Q /d T )p /ν比热容比 γ=C p ,/C V, 对于理想气体:C V ,=(i /2)R C p ,=[(i /2)+1]R C p ,-C V ,=R γ=(i +2)/i4.几个等值过程的∆E 、 A 、 Q 等体过程 ∆E = (M/M mol )C V ,∆T A =0 Q=(M/M mol )C V ,∆T 等压过程 ∆E = (M/M mol )C V ,∆TA = p (V 2-V 1) Q=(M/M mol )C p ,∆T 等温过程 ∆E =0 A =(M/M mol )RT ln(V 2/V 1) Q =(M/M mol )RT ln(V 2/V 1)绝热过程 pV γ=常量Q=0 ∆E= (M/M mol )C V ,∆TA = -(M/M mol )C V ,∆T =(p 1V 1-p 2V 2)/( γ-1) 5.循环过程的效率及致冷系数:η=A /Q 1=1-Q 2/Q 1 w=Q 2/A =Q 2/(Q 1-Q 2) 卡诺循环: ηc =1-T 2/T 1 w c =T 2/(T 1-T 2) 6.可逆过程与不可逆过程(略)7.热力学第二定律两种表述及其等价性(略)8.熵 S=k ln Ω熵增原理 孤立系统中 ∆S >0Ⅲ 练习九至练习十五答案及简短解答练习九 理想气体状态方程热力学第一定律一.选择题B B A D B二.填空题1. 体积、温度和压强;分子的运动速度(或分子运动速度、分子的动量、分子的动能). 2. 166J. 3. (2),(3),(2),(3).三.计算题1. (1)由V =p a ,得p=a 2/V 2,所以A=()()⎰⎰-==21212122211d d V V VVV /V /a V V a V p (2)由状态方程p 1V 1/T 1= p 2V 2/T 2知T 1/T 2=( p 1V 1)/( p 2V 2)= (V 1a 2/V 12)/( V 2 a 2/V 22) = V 2/V 1四.证明题1.两结论均错误.(1).等容吸热过程有Q=∆E=(M/M mol )C V ∆T∆T= Q/[(M/M mol )C V ]而C V (H e )=3R /2, C V (N 2)=5R /2,C V (CO 2)=6R /2.因摩尔数相同,吸热相同,所以∆T (H e ):∆T (N 2):∆T (CO 2) = 1/[C V (H e )] :1/[C V (N 2)] :1/[C V (CO 2)] =1/3:1/5:1/6即 ∆T (H e )>∆T (N 2)>∆T (CO 2)(2)因为等容过程,有p/T =恒量,得∆p/∆T .所以 ∆p (H e )>∆p (N 2)>∆p (CO 2)练习十 等值过程 绝热过程一.选择题A D D B B二.填空题1. 在等压升温过程中,气体膨胀要对外作功,所以比等容升温过程多吸收热量.2. >0; >0.3. 2/(i +2); i /(i +2).三.计算题 1. 容器左右初始体积都为V 0,末了体积左为4V 0/3右为2V 0/3.因等温,气体对外作功为A=[p 1V 1ln(V 2/V 1)]左+[ p 1V 1ln(V 2/V 1)]右=p 0V 0ln[(4V 0/3)/V 0]+ p 0V 0ln[(2V 0/3)/V 0] = p 0V 0ln[(4/3)(2/3)]= p 0V 0ln(8/9) 外力作功为 A '= -A =p 0V 0ln(9/8)四.证明题1.过C 再作一条绝热线CM,过D 作一条等容线DM,构成一个循环.因C 在绝热线AB 的下方,依热力学第二定律,知绝热线不能相交,故M 必在绝热线AB 的下方,即M 在D 的下方.因DM 为等容线,有 T D >T A E D >E M 循环CDMC 为正循环,对外作正功,即A=A CD-A CM>0而Q CD=E D-E C+A CDQ CM=E M-E C+A CM=0所以Q CD=Q CD-Q CM =E D-E M+ A CD- A CM>0练习十一循环过程热力学第二定律卡诺定理一.选择题A B A D C二.填空题1. 33.3%; 50%; 66.7%.2. 200J.3. V2; (V1/V2)γ-1T1; (RT1/V2)(V1/V2)γ-1三.计算题1. 单原子分子i=3, C V=3R/2, C p=5R/2. ca等温T a=T cab等压V a/T a=V b/T bT b=(V b/V a)T a=(V b/V a)T c(1)ab等压过程系统吸热为Q ab=(M/M mol)C p(T b-T a)= (5R/2)(V b/V a-1) T c=-6232.5Jbc等容过程系统吸热为Q bc=(M/M mol)C V(T c-T b)= (3R/2)(1-V b/V a)T c=3739.5Jca等温过程系统吸热为Q ca=(M/M mol)RT c ln(V a/V c)= RT c ln2=3456J (2)经一循环系统所作的净功A=Q ab+ Q bc+ Q ca=963J循环的效率η=A/Q1= A/( Q bc+ Q ca)=13.4%2.(1)CA等容过程p C/T C=p A/T AT C= (p C/p A)T A=75KBC等压过程V B/T B=V C/T CT B=(V B/V C)T C=(V B/V C)(p C/p A)T A=225K (2)由γ= 1.40可知气体分子为双原子,所以i=5, C V=5R/2, C p=7R/2CA等容吸热过程A CA=0Q CA=∆E CA=(M/M mol)C V(T A-T C)=(M/M mol)( 5R/2)(T A-T C)= (5/2)(p A-p C)V C=1500JBC等压放热过程A BC=p B(V C-V B)=-400J∆E BC=(M/M mol)C V(T C-T B)=(5/2)(V C-V B)p C=-1000JQ BC=∆E BC+ A BC=-1400JAB过程A BC=(1/2)(p A+p B)(V B-V A)=1000J ∆E BC=(M/M mol)C V(T B-T A)= (5/2)(p B V B-p C V C)=-500JQ BC= A BC+∆E BC=500J练习十二热力学第二定律卡诺定理(续)熵一.选择题 D A B A C二.填空题1. 500K.2. 7.8 .3. 不能, 相交, 1.三.计算题1.(1) T1/T2=Q1/Q2T2=T1Q2/Q1=320K(2) η=1-Q2/Q1=20%2.(1)A da=p a(V a-V d)= -5.065⨯10-3J (1)∆E ab=(M/M mol)(i/2)R(T b-T a)= (i/2)(p b-p a)V a=3.039⨯104J(2)A bc=(M/M mol)RT b ln(V c/V b)=p b V b ln(V c/V b)=1.05⨯104JA=A bc+A da=5.47⨯103J(3)Q1=Q ab+Q bc=∆E ab+A bc=4.09⨯104Jη=A/Q1=13.4%练习十三物质的微观模型压强公式一.选择题C B D A B二.填空题4. 1.33×105Pa.5.210K; 240K.6.物质热现象和热运动的规律; 统计.三.计算题1. (1) 因T等,有()2O kε=()2H kε=6.21×10-21Jmvkε22==4.83m/s(2) T=2kε/(3k)=300K2.kε=3kT/2p=2nkε/3=2n(3kT/2)/3=nkT= (N/V) kT =[(M/M mol)N A/V] kT=(M/M mol)RT/V得pV =(M/M mol)RT练习十四理想气体的内能分布律自由程一.选择题A B D B C1 1 2) 1) a(T 1二.填空题1. 5/3; 10/3.2. 1.04kg/m3.3. 温度为T 时每个气体分子每个自由度平均分得的能量.三.计算题1.依状态方程:pV= (M/M mol )RT ,有M=( pV/RT ) M mol因氢气氦气的压强、体积、温度相等, 有M (H 2)/ M (H e )= M (H 2)mol /M (H e )mol =1/2 依 E=(i/2)(M/M mol )RT=(i/2)pV 注意到压强、体积相等, 有E (H 2)/ E (H e )=[(5/2) pV ]/[(3/2) pV ]= 5/32. 平均平动动能的总和E t =(3/2)(M/M mol ) RT =(3/2)(ρV /M mol )RT =7.31×106J 内能增加 ∆E=(i /2)(M/M mol ) R ∆T=(i /2)(ρV/M mol )R ∆T =4.16×104J2v 的增量 ∆(2v )=∆(mol 3M RT )=()[]T RT/Md 3d mol∆T=()[1mol 13T M R ∆T/2=0.856m/s练习十五 热学习题课一.选择题B A C B B二.填空题1. mu 2/(3k ).2. 速率区间0~v p 的分子数占总分子数的百分比; ()()⎰⎰∞∞=ppv v v v f vv vf v d d3. 1.5; 1; 3.25R .三.计算题1. (1)CA 等容过程 p C /T C =p A /T A 有T C = (p C /p A )T A =100KBC 等压过程 V C /T C =V B /T B 有T B = (V B /V C )T C = (V B /V C )(p C /p A )T A =300K (2)各过程对外作功A →B A AB = (p A +p B )( V B -V A )/2=400J B →C A BC = p B ( V C -V B )=-200J C →A A BC =0(3)因循环过程 ∆E=0 所以气体吸热为Q=∆E+A=A= A AB +A BC +A BC =200J2.(1)理想循环的p —V 图曲线如图:ab 绝热线,bc 等容线,ca (2) ab 绝热,有 V 1γ -1T 1= V 2γ -1T 2T 2=(V 1/V 2) γ -1T 1=2γ -1T 1一次循环系统吸热:bc 等容过程Q bc =(M/M mol )C V (T c -T b )=C V (T 1- T 2)= (5R /2)(1-2γ -1)T 1 =-5(1-2γ -1)T 1R /2ca 等温过程Q ca =(M/M mol )RT c ln(V a /V c )= RT 1ln2所以 Q = Q bc +Q ca =-5(1-2γ -1)T 1R /2+RT 1ln2=-5(1-20.4)T 1R /2+RT 1ln2=-240J 即一次循环系统放热 Q '=239.6J n=100次循环系统放热熔解冰的质量 m=n Q '/λ=7.15×10-2kgⅣ 课堂例题一.选择题1.在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V . (C) 温度T . (D) 平均碰撞频率Z .2. 在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的. (3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的. 中,哪些是正确的?(A) (1)、(4). (B) (2)、(3). (C) (1)、(2)、(3)、(4). (D) (1)、(3).3.如图所示,一定量的理想气体,沿着图中直线从状态a ( 压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4L ).则在此过程中:(A) 气体对外作正功,向外界放出热量.(B) 气体对外作正功,从外界吸热. (C) 气体对外作负功,向外界放出热量. (D) 气体对外作正功,内能减少.4. 下列各说法中确切的说法是: (A) 其它热机的效率都小于卡诺热机的效率.(B) 热机的效率都可表示为η = 1 – Q 2 / Q 1,式中Q 2表示热机循环中工作物向外放出的热量(绝对值),Q 1表示从各热源吸收的热量(绝对值). (C) 热机的效率都可表示为η = 1 – T 2 / T 1,式中T 2为低温热源温度,T 1为高温热源温度. (D) 其它热机在每一循环中对外作的净功一定小于卡诺热机每一循环中对外作的净功. 5.关于热功转换和热量传递过程,有下面一些叙述: (1) 功可以完全变为热量,而热量不能完全变为功; (2) 一切热机的效率都只能够小于1; (3) 热量不能从低温物体向高温物体传递; (4) 热量从高温物体向低温物体传递是不可逆的. 以上这些叙述 (A) 只有(2)、(4)正确. (B) 只有(2)、(3) 、(4)正确.(C) 只有(1)、(3) 、(4)正确. (D) 全部正确.6.设有以下一些过程: (1) 两种不同气体在等温下互相混合. (2) 理想气体在定体下降温. (3) 液体在等温下汽化. (4) 理想气体在等温下压缩. (5) 理想气体绝热自由膨胀. 在这些过程中,使系统的熵增加的过程是: (A) (1)、(2)、(3). (B) (2)、(3)、(4). (C) (3)、(4)、(5). (D) (1)、(3)、(5).p (atm )01234二.填空题1.用公式T C E V ∆=∆ν(式中V C 为定体摩尔热容量,视为常量,ν 为气体摩尔数)计算理想气体内能增量时,此式适用于过程。
第六部分选修系列专题13 分子动理论气体及热力学定律(检测)(满分:120分建议用时:60分钟)每题15分共120分1.(2020·广东省茂名测试)(1)下列说法正确的是()A.温度升高,物体内每一个分子运动的速率都增大B.空气中的小雨滴呈球形是水的表面张力作用的结果C.一定质量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加D.高原地区水的沸点较低,这是高原地区温度较低的缘故E.干湿泡温度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果(2)如图所示,长31 cm内径均匀的细玻璃管,开口向上竖直放置,齐口水银柱封住10 cm长的空气柱,此时气温为27 ℃.若把玻璃管在竖直平面内顺时针缓慢转动半周,发现水银柱长度变为15 cm,继续转动半周,然后对封闭空气柱加热使水银柱刚好与管口相平.求:℃大气压强的值;℃回到原处加热到水银柱刚好与管口相平时气体的温度.【答案】(1)BCE(2)℃75 cmHg℃450 K【解析】(1)温度是分子热运动平均动能的标志,是大量分子运动的统计规律,对单个的分子没有意义,所以温度越高,平均动能越大,平均速率越大,不是所有分子运动速率都增大,故A错误;空气的小雨滴呈球形是水的表面张力作用的结果,故B正确;一定量100 ℃的水变成100 ℃的水蒸气,需要克服分子间的引力,故分子势能增大,故C正确;高原地区水的沸点较低,这是高原地区气压较低的缘故.故D错误;干湿泡温度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果.故E正确;故选BCE.(2)在玻璃管开口向上转到开口竖直向下的过程中,由等温变化可得p1V1=p2V2℃由压强关系可得p1=p0+21 cmHg,p2=p0-15 cmHg℃由℃℃式解得(p 0+21)×(31-10)S =(p 0-15)×(31-15)Sp 0=75 cmHg℃(2)加热至水银与管口相平时p 3=p 0+15 cmHg =90 cmHg℃T 1=t +273 K =300 K℃由气体状态方程得p 1V 1T 1=p 3V 3T 3℃ (75+21)×(31-10)S 300=90×(31-15)S T 3解得T 3=450 K℃2. (2020安徽宣城二调)(1)(5分)对于下面所列的热学现象说法正确的是__________。
物理学《气体动理论》考试题及答案12-1 温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV,气体的温度需多高? 解:=1ε231kT =5.65×2110-J ,=2ε232kT =7.72×2110-J 由于1eV=1.6×1910-J , 所以理想气体对应的温度为:T=2ε/3k =7.73×310 K12-2一容器中储有氧气,其压强为0.1个标准大气压,温度为27℃,求:(1)氧气分子的数密度n ;(2)氧气密度ρ;(3)氧气分子的平均平动动能k ε?(1)由气体状态方程nkT p =得,242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n 3m - (2)由气体状态方程RT M M pV mol =(M , mol M 分别为氧气质量和摩尔质量) 得氧气密度:13.030031.810013.11.0032.05mol =⨯⨯⨯⨯===RT p M V M ρ 3m kg -⋅ (3) 氧气分子的平均平动动能21231021.63001038.12323--⨯=⨯⨯⨯==kT k ε 12-3 在容积为2.0×33m 10-的容器中,有内能为6.75×210J 的刚性双原子理想气体分子,求(1)气体的压强;(2)设分子总数5.4×2210个,求气体温度;(3)气体分子的平均平动动能? 解:(1)由2iRT M m =ε 以及RT M m pV =, 可得气体压强p =iVε2=1.35×510 Pa (2)分子数密度V Nn =, 得该气体的温度62.3===NkpV nk p T ×210K (3)气体分子的平均平动动能为=ε23kT =7.49×2110-J 12-4 2100.2-⨯kg 氢气装在3100.4-⨯m 3的容器内,当容器内的压强为51090.3⨯Pa 时,氢气分子的平均平动动能为多大? 解:由RT M m pV =得 mR MpV T =。
气体动理论选择题(参考答案)1.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为( ):(A) pV / m . (B) pV / (kT ).(C) pV / (RT ). (D) pV / (mT ).答:(B )2.若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了( ) (A)0.500. (B) 400. (C) 900. (D) 2100.答:(B )3.如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气. 当温度相同时,水银滴静止于细管中央,则此时这两种气体中( )(A) 氧气的密度较大. (B) 氢气的密度较大.(C) 密度一样大. (D) 那种的密度较大是无法判断的.答:(A )4. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?( )(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.答:(D )5.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们( )(A) 温度相同、压强相同.(B) 温度、压强都不相同.(C) 温度相同,但氦气的压强大于氮气的压强.(D) 温度相同,但氦气的压强小于氮气的压强.答:(C )6.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系( ):(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.答:( C )7. 在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为( ):(A) 3 / 10. (B) 1 / 2.(C) 5 / 6. (D) 5 / 3.答:(C )8.压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为( ): (A)25pV . (B) 23pV . (C) pV . (D) 21pV . 答:(A )9.在容积V =4×10-3 m 3的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为 ( )(A) 2 J . (B) 3 J .(C) 5 J . (D) 9 J .答:(B )10.下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)( ) (A)pV Mm 23. (B) pV M M mol 23. (C) npV 23. (D)pV N M M A 23mol . 答:(A )11. 一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过E ~V 图的原点),则此直线表示的过程为( ):(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程.答:(B )12.若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过E -p 图的原点),则该过程为( )(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程.答:(C )13.关于平衡态,以下说法正确的是( )(A) 描述气体状态的状态参量p 、V 、T 不发生变化的状态称为平衡态;(B) 在不受外界影响的条件下,热力学系统各部分的宏观性质不随时间变化的状态称为平衡态;(C) 气体内分子处于平衡位置的状态称为平衡态;(D) 处于平衡态的热力学系统,分子的热运动停止.答:(B )p14.关于热量Q,以下说法正确的是()(A) 同一物体,温度高时比温度低时含的热量多;(B) 温度升高时,一定吸热;(C) 温度不变时,一定与外界无热交换;(D) 温度升高时,有可能放热.答:(D)15. 刚性三原子分子理想气体的压强为P,体积为V,则它的内能为( )A.2PVB. 5PV/2C.3PVD. 7PV/2答:(C )16. 一瓶刚性双原子分子理想气体处于温度为T的平衡态,据能量按自由度均分定理,可以断定()A.分子的平均平动动能大于平均转动动能B.分子的平均平动动能小于平均转动动能C.分子的平均平动动能等于平均转动动能D.分子的平均平动动能与平均转动动能的大小视运动情况而定答:(A )17. 1 mol 单原子分子理想气体和1 mol双原子分子理想气体分别处于平衡态,它们的温度相同,则它们的一个分子的平均平动动能( )A.相同,它们的内能相同B.不同,它们的内能相同C.相同,它们的内能不同D.不同,它们的内能不同答:(D)18. 理想气体分子的平均速率与温度T的关系为()A.与T成正比B.与T成反比C D答:(C )19.处于平衡态的双原子气体分子的平均平动动能为0.03eV,则分子的平均转动动能为()A.0.02eV B.0.03 eVC.0.04 eV D.0.05 eV答:(A )20.温度相同的氦气和氧气,它们分子的平均动能ε和平均平动动能tε有如下关系()A.ε和tε都相等B.ε相等,而tε不相等C.tε相等,而ε不相等D.ε和tε都不相等答:(C )21.一瓶单原子分子理想气体与一瓶双原子分子理想气体,它们的温度相同,且一个单原子分子的质量与一个双原子分子的质量相同,则单原子气体分子的平均速率与双原子气体分子的平均速率()A.相同,且两种分子的平均平动动能也相同B.相同,而两种分子的平均平动动能不同C.不同,而两种分子的平均平动动能相同D.不同,且两种分子的平均平动动能也不同答:(B )22.氢气和氧气的温度和压强相同,则它们的()A.分子密度相同,分子的平均动能相同B.分子密度相同,分子的平均动能不同C.分子密度不同,分子的平均动能相同D.分子密度不同,分子的平均动能不同答:(B)23.一瓶单原子分子理想气体的压强、体积、温度与另一瓶刚性双原子分子理想气体的压强、体积、温度完全相同,则两瓶理想气体的()A.摩尔数相同,内能不同B.摩尔数不同,内能不同C.摩尔数相同,内能相同D.摩尔数不同,内能相同答:(A )24. 氦气和氧气的温度相同,则它们的()A.分子的平均动能相同,分子的平均速率相同B.分子的平均动能相同,分子的平均速率不同C.分子的平均动能不同,分子的平均速率相同D.分子的平均动能不同,分子的平均速率不同答:(D )25. 1mol氧气和1mol氢气,它们的( )A.质量相等,分子总数不等B.质量相等,分子总数也相等C.质量不等,分子总数相等D.质量不等,分子总数也不等答:(C )26. 容积恒定的车胎内部气压要维持恒定,那么,车胎内空气质量最多的季节是( )A.春季B.夏季C.秋季D.冬季答:(D )。
第1章 温度习题答案一、 选择题 1. D 2. B二、填空题1. Pa 31008.9⨯ K 4.90 C 08.182-三、计算题1. 解:漏掉的氢气的质量kg T Vp T V p R M m m m 32.0)(22211121=-=-=∆第2章 气体分子动理论答案一、选择题1. B解:两种气体开始时p 、V 、T 均相同,所以摩尔数也相同。
现在等容加热 V C MQ μ=△T ,R C R C V V 25,232H He ==由题意 μM Q =HeR 23⋅△T = 6 J 所以 R M Q 252H ⋅=μ△T =(J)1063535H =⨯=e Q 。
2. C 解:由,)(,)(,He 222O 1112R MT V p R M T V p R MT pV ⋅=⋅==μμμ,,2121T T p p ==又 所以,21)()21He O 2==V V MM μμ( 根据内能公式,2RT i M E ⋅=μ得二者内能之比为65352121=⋅=E E 3. B解:一个分子的平均平动动能为,23kT w =容器中气体分子的平均平动动能总和为3210410523232323-⨯⨯⨯⨯===⋅==pV RT M kT N Mw N W A μμ =3(J)。
4. C解:由RpVC E RT MpV T C ME VV ===得 ,μμ, 可见只有当V 不变时,E ~ p 才成正比。
5. D解:因为)(d v f NN =d v ,所以)(21212v f N mv v v ⋅⋅⎰d ⎰=21221v v mv v d N 表示在1v ~2v 速率间隔内的分子平动动能之和。
6. D 解:由,2,2122v n d z nd ππλ==体积不变时n 不变,而v ∝T , 所以, 当T 增大时,λ不变而z 增大。
二、填空题1. 27.8×10-3 kg ⋅mol -1 解:由RT MpV μ=可得摩尔质量为523mol10013.1100.130031.8103.11⨯⨯⨯⨯⨯⨯====--p RT pV MRT M ρμ )m o l (k g 108.2713--⋅⨯=2. 1.28×10-7K 。
气体状态方程 热力学定律理想气体的状态方程:(1)理想气体:能够严格遵守气体实验定律的气体,称为理想气体。
理想气体是一种理想化模型。
实际中的气体在压强不太大,温度不太低的情况下,均可视为理想气体。
(2)理想气体的状态方程:C TPVT V P T V P ==或222111 一定质量的理想气体的状态发生变化时,它的压强和体积的乘积与热力学温度的比值保持不变。
即此值为—恒量。
热力学第一定律:(1)表达式为:ΔE=W+Q1.改变内能的两种方式:做功和热传递都可以改变物体的内能。
2.做功和热传递的本质区别:做功和热传递在改变物体内能上是等效的。
但二者本质上有差别。
做功是把其他形式的能转化为内能。
而热传递是把内能从一个物体转移到另一个物体上。
3.功、热量、内能改变量的关系——热力学第一定律。
①内容:在系统状态变化过程中,它的内能的改变量等于这个过程中所做功和所传递热量的总和。
②实质:是能量转化和守恒定律在热学中的体现。
③表达式:∆E W Q=+ ④为了区别不同情况,对∆E 、W 、Q 做如下符号规定: ∆E > 0 表示内能增加∆E < 0 表示内能减少Q > 0 表示系统吸热 Q < 0 表示系统放热 W > 0 表示外界对系统做功W < 0 表示系统对外界做功能的转化和守恒定律:1.物质有许多不同的运动形式,每一种运动形式都有一种对应的能。
2.各种形式的能都可以互相转化,转化过程中遵守能的转化和守恒定律。
3.能的转化和守恒定律:能量既不能凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。
应注意的问题:1.温度与热量:①温度:温度是表示物体冷热程度的物理量。
从分子动理论观点看,温度是物体分子平均动能的标志。
温度是大量分子热运动的集体表现,含有统计意义,对个别分子来说,温度是没有意义的。
温度高低标志着物体内部的分子热运动的剧烈程度。
一、选择题[ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同;② ∵kT n V kTNV E k 2323==,而n ,T 均相同,∴V E k 相同;③ RT M MpV mol=→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。
[ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.(B) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线;②23,3210(/)mol O M kg mol -=⨯, 23,210(/)mol H M kg mol -=⨯,得()()22Ov v p p H14=[ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为(A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /0()d f v v ∞⎰ .【提示】① f (v )d v ——表示速率分布在v 附近d v 区间内的分子数占总分子数的百分比;② ⎰21)(v v dv v Nf ——表示速率分布在v 1~v 2区间内的分子数总和;③21()v v vNf v dv ⎰表示速率分布在v 1~v 2区间内的分子的速率总和,因此速率分布在v 1~v 2区间内的分子的平均速率为22112211()()()()v v v v v v v v vNf v dv vf v dvNf v dvf v dv=⎰⎰⎰⎰[ B ]4、(基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B) Z 减小而λ增大. (C) Z 增大而λ减小. (D) Z 不变而λ增大.【提示】①2Z d n =,其中v =不变;N n V =,当V 增大时,n 减小; ∴Z 减小。
大学物理测试卷(气体动理论)text6一、选择题(共24分)1.(3’)已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A )氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强;(B )氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度;(C )氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大;(D )氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大。
2.(3’)在一个容积不变的容器中,储有一定时的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0z ,平均自由程为0λ,当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞次数z 和平均自由程λ分别为:(A )v =40v ;z =40z ;λ=40λ(B )v =20v ;z =20z ;λ=0λ(C )v =20v ;z =20z ;λ=40λ(D )v =40v ;z =20z ;λ=0λ3.(3’)有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能ΑV E )/(和ΒV E )/(的关系(A )为ΑV E )/(<ΒV E )/((B )为ΑV E )/(>ΒV E )/((C )为ΑV E )/(=ΒV E )/((D )不能确定4.(3’)给定理想气体,从标准状态(p 0 , V 0 , T 0 )开始作绝热膨胀,体积增大到3倍,膨胀后温度T 、压强p 与标准状态时T 0 、p 0之关系为(γ为比热比)(A )T=0)31(T γ;p=01-)31(p γ (B )T=01-)31(T γ;p=0)31(p γ(C )T=0-)31(T γ;p=01-)31(p γ (D )T=01-)31(T γ;p=0-)31(p γ5.(3’)三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为2A v :2B v :2C v =1:2:4,则其压强之比p A : p B : p C 为(A )1:2:4 (B )4:2:1 (C )1:4:16 (D )1:4:86.(3’)若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了。
分子动理论 气体及热力学定律热点视角备考对策本讲考查的重点和热点:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小.命题形式基本上都是小题的拼盘. 由于本讲内容琐碎,考查点多,因此在复习中应注意抓好四大块知识:一是分子动理论;二是从微观角度分析固体、液体、气体的性质;三是气体实验三定律;四是热力学定律.以四块知识为主干,梳理出知识点,进行理解性记忆.`一、分子动理论 1.分子的大小(1)阿伏加德罗常数N A =×1023 mol -1.(2)分子体积:V 0=V molN A (占有空间的体积).(3)分子质量:m 0=M molN A.(4)油膜法估测分子的直径:d =VS . (5)估算微观量的两种分子模型 【①球体模型:直径为d =36V 0π.②立方体模型:边长为d =3V 0. 2.分子热运动的实验基础(1)扩散现象特点:温度越高,扩散越快.(2)布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈.3.分子间的相互作用力和分子势能(1)分子力:分子间引力与斥力的合力.分子间距离增大,引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快.(2)分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增加;当分子间距为r 0时,分子势能最小. —二、固体、液体和气体1.晶体、非晶体分子结构不同,表现出的物理性质不同.其中单晶体表现出各向异性,多晶体和非晶体表现出各向同性.2.液晶是一种特殊的物质,既可以流动,又可以表现出单晶体的分子排列特点,在光学、电学物理性质上表现出各向异性.3.液体的表面张力使液体表面有收缩到最小的趋势,表面张力的方向跟液面相切. 4.气体实验定律:气体的状态由热力学温度、体积和压强三个物理量决定. (1)等温变化:pV =C 或p 1V 1=p 2V 2.(2)等容变化:p T =C 或p 1T 1=p 2T 2.(3)等压变化:V T =C 或V 1T 1=V 2T 2.*(4)理想气体状态方程:pV T =C 或p 1V 1T 1=p 2V 2T 2.三、热力学定律 1.物体的内能 (1)内能变化温度变化引起分子平均动能的变化;体积变化,分子间的分子力做功,引起分子势能的变化. (2)物体内能的决定因素2.热力学第一定律 #(1)公式:ΔU =W +Q .(2)符号规定:外界对系统做功,W >0,系统对外界做功,W <0;系统从外界吸收热量,Q >0,系统向外界放出热量,Q <0.系统内能增加,ΔU >0,系统内能减少,ΔU <0. 3.热力学第二定律(1)表述一:热量不能自发地从低温物体传到高温物体.(2)表述二:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.(3)揭示了自然界中进行的涉及热现象的宏观过程都具有方向性,说明了第二类永动机不能制造成功.热点一 微观量的估算?命题规律:微观量的估算问题在近几年高考中出现的较少,但在2015年高考中出现的概率较大,主要以选择题的形式考查下列两个方面: (1)宏观量与微观量的关系;(2)估算固、液体分子大小,气体分子所占空间大小和分子数目的多少.1.若以μ表示水的摩尔质量,V 表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水蒸气的密度,N A 为阿伏加德罗常数,m 、Δ分别表示每个水分子的质量和体积,下面五个关系式中正确的是( )A .N A =VρmB .ρ=μN A ΔC .m =μN AD .Δ=V N AE .ρ=μV^[解析] 由N A =μm =ρVm ,故A 、C 对;因水蒸气为气体,水分子间的空隙体积远大于分子本身体积,即V ≫N A ·Δ,D 不对,而ρ=μV ≪μN A·Δ,B 不对,E 对.[答案] ACE2.某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M =0.283 kg·mol -1,密度ρ=×103 kg·m -3.若100滴油酸的体积为1 mL ,则1滴油酸所能形成的单分子油膜的面积约是多少(取N A =×1023 mol -1,球的体积V 与直径D 的关系为V =16πD 3,结果保留一位有效数字)[解析] 一个油酸分子的体积V =MρN A分子直径D =36M πρN A最大面积S =V 油D代入数据得:S =1×101 m 2. [答案] 1×101 m 2 $3.(2014·潍坊二模)空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥,若有一空调工作一段时间后,排出液化水的体积V =×103 cm 3.已知水的密度ρ=×103 kg/m 3、摩尔质量M =×10-2 kg/mol ,阿伏加德罗常数N A =×1023 mol -1.试求:(结果均保留一位有效数字) (1)该液化水中含有水分子的总数N ; (2)一个水分子的直径d .[解析] 水是液体,故水分子可以视为球体,一个水分子的体积公式为V ′0=16πd 3.(1)水的摩尔体积为V 0=Mρ①该液化水中含有水分子的物质的量n =VV 0②水分子总数N =nN A ③由①②③得N =ρVN AM `=错误!≈3×1025(个).(2)建立水分子的球模型有:V 0N A=16πd 3得水分子直径d =36V 0πN A= 36××10-5××1023m≈4×10-10m. [答案] (1)3×1025个 (2)4×10-10 m[方法技巧] 解决估算类问题的三点注意1固体、液体分子可认为紧靠在一起,可看成球体或立方体;气体分子只能按立方体模型计算所占的空间.2状态变化时分子数不变. ^3阿伏加德罗常数是宏观与微观的联系桥梁,计算时要注意抓住与其有关的三个量:摩尔质量、摩尔体积和物质的量.)热点二 分子动理论和内能命题规律:分子动理论和内能是近几年高考的热点,题型为选择题.分析近几年高考命题,主要考查以下几点:(1)布朗运动、分子热运动与温度的关系.(2)分子力、分子势能与分子间距离的关系及分子势能与分子力做功的关系. :1.(2014·唐山一模)如图为两分子系统的势能E p 与两分子间距离r 的关系曲线.下列说法正确的是( )A .当r 大于r 1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r1时,分子间势能E p最小D.当r由r1变到r2的过程中,分子间的作用力做正功E.当r等于r2时,分子间势能E p最小[解析]由图象知:r=r2时分子势能最小,E对,C错;平衡距离为r2,r<r2时分子力表现为斥力,A错,B对;r由r1变到r2的过程中,分子势能逐渐减小,分子力做正功,D对.[答案]BDE,2.(2014·长沙二模)下列叙述中正确的是()A.布朗运动是固体小颗粒的运动,是液体分子的热运动的反映B.分子间距离越大,分子势能越大;分子间距离越小,分子势能也越小C.两个铅块压紧后能粘在一起,说明分子间有引力D.用打气筒向篮球充气时需用力,说明气体分子间有斥力E.温度升高,物体的内能却不一定增大[解析]布朗运动不是液体分子的运动,而是悬浮在液体中的小颗粒的运动,它反映了液体分子的运动,A正确;若取两分子相距无穷远时的分子势能为零,则当两分子间距离大于r0时,分子力表现为引力,分子势能随间距的减小而减小(此时分子力做正功),当分子间距离小于r0时,分子力表现为斥力,分子势能随间距的减小而增大(此时分子力做负功),故B错误;将两个铅块用刀刮平压紧后便能粘在一起,说明分子间存在引力,C正确;用打气筒向篮球充气时需用力,是由于篮球内压强在增大,不能说明分子间有斥力,D错误;物体的内能取决于温度、体积及物体的质量,温度升高,内能不一定增大,E正确.[答案]ACE¥3.对一定量的气体,下列说法正确的是()A.气体的体积是所有气体分子的体积之和B.气体的体积大于所有气体分子的体积之和C.气体分子的热运动越剧烈,气体温度就越高D.气体对器壁的压强是由大量气体分子对器壁不断碰撞产生的E.当气体膨胀时,气体分子之间的势能减小,因而气体的内能减小[解析]气体分子间的距离远大于分子直径,所以气体的体积远大于所有气体分子体积之和,A项错,B项对;温度是物体分子平均动能大小的标志,是表示分子热运动剧烈程度的物理量,C项对;气体压强是由大量气体分子频繁撞击器壁产生的,D项对;气体膨胀,说明气体对外做功,但不能确定吸、放热情况,故不能确定内能变化情况,E项错误.[答案]BCD;[方法技巧]1分子力做正功,分子势能减小,分子力做负功,分子势能增大,两分子为平衡距离时,分子势能最小.2注意区分分子力曲线和分子势能曲线.)热点三热力学定律的综合应用命题规律:热力学定律的综合应用是近几年高考的热点,分析近三年高考,命题规律有以下几点:(1)结合热学图象考查内能变化与做功、热传递的关系,题型为选择题或填空题.(2)以计算题形式与气体性质结合进行考查.(3)对固体、液体的考查比较简单,备考中熟记基础知识即可.】1.(2014·南昌一模)下列叙述和热力学定律相关,其中正确的是()A.第一类永动机不可能制成,是因为违背了能量守恒定律B.能量耗散过程中能量不守恒C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性E .物体从单一热源吸收的热量可全部用于做功[解析] 由热力学第一定律知A 正确;能量耗散是指能量品质降低,反映能量转化的方向性仍遵守能量守恒定律,B 错误,D 正确;电冰箱的热量传递不是自发,不违背热力学第二定律,C 错误;在有外界影响的情况下,从单一热源吸收的热量可以全部用于做功,E 正确. 。
初三物理分子热运动试题1.在医院等公共场所设有“禁止吸烟”的标志,这是因为在公共场所“一人吸烟,多人被动吸烟”,这种说法的依据是:组成物质的分子在不停息地做.冬天手冷时,我们用搓手的方式使手变暖和,这是采用的方式来增加手的内能.【答案】无规则运动做功【解析】物质是由大量分子组成的,组成物质的分子在永不停息地做无规则运动,这是在公共场所“一人吸烟,多人被动吸烟”,的依据;改变物体内能的方式:做功和热传递.冬天手冷时搓手,是克服摩擦做功,机械能转化为内能,这是采用做功的方式来增加手的内能.【考点】分子的热运动;改变物体内能的方法2.2013年6月20日,王亚平在太空授课。
她授课的直播视频信号是利用__________波传回地球的。
她在“天宫一号”空间站做了一个水球,她通过水球成的像如图所示,该像是__________(虚/实)像。
她在水球中注入红色液体,整个水球变成红色,这一现象表明分子是__________的。
【答案】电磁波实像运动【解析】太空是真空,声音无法直接传播,并且声音传播距离很短,所以授课的音视频信号是通过电磁波传递到地球上的。
通过水球可以看到王亚平倒立缩小的头像,根据凸透镜成像规律,此像为实像,并且王亚平到水球的距离大于2倍焦距。
在水球中注入红墨水,红墨水分子在不停地做无规则运动,所以一会儿可以看到整个水球都变成红色。
【考点】电磁波、凸透镜成像、分子动理论3.科学家研制了一种新型装甲飞车——飞行悍马(如图所示),它是汽车和直升飞机的结合体。
(1)“飞行悍马”在加油时,驾驶员会闻到柴油的气味,这是现象。
(2)在水平地面上匀速行驶的“飞行悍马”5s内通过125m,在这段时间内牵引力做功3.5×l05J,发动机的功率是 W,此时“飞行悍马”的牵引力是 N。
【答案】扩散 7×l04 2800【解析】(1)“飞行悍马”在加油时,驾驶员会闻到柴油的气味,因为柴油分子在不停的做无规则运动,这是扩散现象。
(温度、气体动理论及热力学基础)1.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强为 。
2. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于。
3.已知f (v )为麦克斯韦速率分布函数,v p 为分子的最概然速率.则()⎰p f v v v 0d 表示 ;速率v >v p 的分子的平均速率表达式为 .4. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J·mol -1·K -1 )5. 设以氮气(视为刚性分子理想气体)为工作物质进行卡诺循环,在绝热膨胀过程中气体的体积增大到原来的两倍,求循环的效率.6. 一瓶氦气和一瓶氮气分子数密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则氦气的温度 氮气的温度,氦气的压强 氮气的压强。
(选填:相等、大于、小于)7. 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是(A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0.(C) Q 1<0,Q 2>0. (D) Q 1>0,Q 2<0.8.给定理想气体(比热比为γ),从标准状态(p 0,V 0,T 0)开始作绝热膨胀,体积增大到2倍.膨胀后温度T 、压强p 与标准状态时T 0、p 0之关系为 (A) 021T T γ)(=; 0121p p -=γ)(. (B) 0121T T -=γ)(;021p p γ)(=. (C) 021T T γ-=)(;0121p p -=γ)( (D) 0121T T -=γ)(;021p p γ-=)(.9.对一定质量的理想气体进行等温压缩.若初始时每立方米体积内气体分子数为1.96×1024,则当压强升高到初始值的两倍时,每立方米体积内气体分子数应为__________.10.一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的4倍;再经过等温过程使其体积膨胀为原来的2倍,则分子的平均碰撞频率变为原来的__________倍.11.一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量是_____________________,而随时间不断变化的微观量是_______________________. 12.当氢气和氦气的压强、体积和温度都相等时,求它们的质量比()()e H H 2M M 和内能比()()e H H 2E E .(将氢气视为刚性双原子分子气体)13.计算下列一组粒子的平均速率和方均根速率.14.如果一定量的理想气体,其体积和压强依照2 p a V =的规律变化,其中a 为已知常量.试求: (1) 气体从体积V 1膨胀到V 2所作的功; (2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.15.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED 是任意过程,组成一个循环。
若图中EDCE 所包围的面积为70 J ,EABE 所包围的面积为30 J ,过程中系统放热100 J ,求BED 过程中系统吸热为多少?16.关于温度的意义,有下列几种说法: (1) 温度的高低反映物质内部分子运动剧烈程度的不同. (2) 气体的温度是分子平均平动动能的量度.(3) 从微观上看,气体的温度表示每个气体分子的冷热程度.(4) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3). (C) (2)、(3) 、(4). (D) (1)、(3) 、(4). 17. 在下列说法(1) 可逆过程一定是平衡过程. (2) 平衡过程一定是可逆的. (3) 不可逆过程一定是非平衡过程. (4) 非平衡过程一定是不可逆的. 中,哪些是正确的?18. 一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H 2气和O 2气.开始时绝热板P 固定.然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,试比较两边温度的高低。
19.如图,一定量的理想气体,由平衡状态A 变到平衡状态B (p A = p B ),则无论经过的是什么过程,系统必然(A) 对外作正功. (B) 对外作负功. (C) 内能增加. (D) 从外界吸热. (E) 向外界放热.20.气体分子间的平均距离与压强p 、温度T 的关系为______________,在压强为 1 atm 、温度为0℃的情况下,气体分子间的平均距离l =________________m .(玻尔兹曼常量k =1.38×10-23 J·K 1) 21.一定量的理想气体,经等温过程从压强P 0增至2P 0,则描述分子运动的下列各量与原来的量值之比:平均自由程λλ、平均速率0v v 、平均动能0K K εε 各为多少?22.一密封房间的体积为 5×3×3 m 3,室温为20 ℃,室内空气分子热运动的平均平动动能的总和是多少?如果气体的温度升高 1.0K,而体积不变,则气体的内能变化多少?气体分子的方均根速率增加多少?已知空气的密度ρ=1.29 kg/m 3,摩尔质量M mol =29×10-3 kg /mol ,pV OA B EDC且空气分子可认为是刚性双原子分子.(普适气体常量R =8.31 J·mol -1·K -1)23.1 mol 的理想气体,完成了由两个等体过程和两个等压过程构成的循环过程(如图),已知状态1的温度为T 1,状态3的温度为T 3,且状态2和4在同一条等温线上.试求气体在这一循环过程中作的功. 24.试求1 mol 刚性双原子分子理想气体,当温度为T 时的其内能(普适气体常量和玻尔兹曼常量分别用R 和k 表示)25.容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为0λ,平均碰撞频率为0Z ,若气体的热力学温度降低为原来的1/2倍,则此时分子平均自由程λ和平均碰撞频率Z 分别为多少?26.一定量的理想气体,开始时处于压强,体积,温度分别为p 1,V 1,T 1的平衡态,后来变到压强,体积,温度分别为p 2,V 2,T 2的终态.若已知V 2 >V 1,且T 2 =T 1,则以下各种说法中正确的是:(A) 不论经历的是什么过程,气体对外净作的功一定为正值. (B) 不论经历的是什么过程,气体从外界净吸的热一定为正值.(C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D) 因未给定气体所经历具体过程,气体对外净作功和净吸热的正负皆无法判断。
27.质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在(A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 28.一定量的理想气体经历acb 过程时吸热1000 J .则经历acbda 过程时,试求系统吸收的热量。
29.一定量理想气体经历的循环过程用V-T 曲线表示如图.在一次循环过程中,气体从外界纯吸热的过程是 ,纯放热的过程是 。
30.从分子动理论导出的压强公式来看, 气体作用在器壁上的压强, 决定于_____ ____和___________.31.容积为20.0 L(升)的瓶子以速率v =200 m·s -1匀速运动,瓶子中充有质量为100g 的氦气.设瓶子突然停止,且气体的全部定向运动动能都变为气体分子热运动的动能,瓶子与外界没有热量交换,求热平衡后氦气的温度、压强、内能及氦气分子的平均动能各增加多少?(摩尔气体常量R =8.31 J·mol -1·K -1,玻尔兹曼常量k =1.38×10-23 J·K -1)32.一氧气瓶的容积为V ,充了气未使用时压强为p 1,温度为T 1;使用后瓶内氧气的质量减少为原来的四分之一,其压强降为p 2,试求此时瓶内氧气的温度T 2及使用前后分子热运动平均速率之比21/v v .p (×105 Pa) -3 m 3)---------------------------Page 4 (版权属物理教研室•严禁非法复印!)--------------------------“气体动、热学”参考答案: 1. 20p 2.723. 分子速率介于0~v p 间的气体分子数占分子总数的百分比 或 速率介于0~v p 间分子出现的概率;()()⎰⎰∞∞ppf f v v v v v vv d d4.4.81K5. 24.2%6. 相等;相等7. A8. B9. 3.92×1024 m -3 10. 111. p,V ,T ;分子的速度、动能、动量等 12. 1/2;5/313. m/s 83111511.≈==∑∑==i i i N j j v N N v N v ;m/s 73311512122.≈==∑∑==i i i N j j v N N v N v14. (1) )(//23123232V V aW -=; (2)23212123//.⎪⎪⎭⎫⎝⎛=→=-V V T T Const TV 15. (J) 1401003070=+-=+=)(放吸Q W Q16. A17. (1)、(4)18. O 2温度比H 2温度高 19.(C)20. 33 ,p kT l l n nkT p /)(=⇒==-; m 103439-⨯.21.210=λλ; 10=v v ; 0K K εε=1 22. 2710211⨯≈.N ,J 10347J 1007623621⨯⇒⨯≈==-..k kN kT εε J T R M V T R i E m o l 410164252⨯≈∆⋅=∆=∆.ρν0643213222.)()(≈∆→=→=v dT TM Rv d M RT v mol mol m/s 23. 312T T T =,)()())((3131231131222T T T T R T T T R V V p p W -+=-+=--=νν24. RT E 25= 25. 0002221Z Z n n v v =⇒==,,0λλ= 26.D 27. D 28. -200 J29. B A →;A C B →→30.分子数密度n ,分子的平均平动动能kt ε31. T J mv T R i E ∆⇒==∆=∆20002122ν=6.42 K ; 410676⨯≈∆=∆.V T R p ν Pa ;22103312-⨯≈∆=∆.T k ik νε J32. 1224p p T =;21212p p v v=。