当前位置:文档之家› 高二数学曲线和方程(教师版)

高二数学曲线和方程(教师版)

高二数学曲线和方程(教师版)
高二数学曲线和方程(教师版)

学科教师辅导讲义

x

江苏省宿迁市高中数学第二章圆锥曲线与方程第14课时曲线与方程1导学案无答案苏教版选修

第14课时曲线与方程 【学习目标】 1?了解曲线方程的概念 2 ?能根据曲线方程的概念解决一些简单问题 【问题情境】 前面我们用f(x,y)=O或y=f(x)来表示一条曲线,例如直线的方程,圆的方程以及圆锥曲线 的方程,那么什么是曲线的方程? 1、曲线的方程,方程的曲线 在直角坐标系中,如果某曲线 C (看作点的集合或适合某种条件的点轨迹)上的点与一 个二元方程f (x, y)=0的实数解建立了如下关系: (1)曲线C上的点的坐标都是___________________ ? (2) ________________________________________________ 以方程f( x, y)=0的解(x,y)为坐标的点都在_______________________________________________ ,那么,方程f (x, y)=0叫做曲 线C的方程,曲线C叫做方程f(x, y)=0的曲线. 1.点与曲线 如果曲线C的方程是f(x,y)=0,那么点P(x o, y o)在曲线C上的充要条件是f (x o, y o)=0 ? 【合作探究】 问题1:观察下表中的方程与曲线,说明它们有怎样的关系?

问题2…若曲线C的方程为k x2+2x+(1+k) y+3=0,(k € R),则曲线C过定点_____________ 问题3.方程x2+xy-x=0表示的曲线是 ________________ . 问题4?至俩个坐标轴距离相等的点所满足的方程是_____________________ .

例1?判断下列结论的对错,并说明理由: (1)过点A ( 3,0 )且垂直于x轴的直线的方程为x=3; (2)到x轴距离为2的点轨迹方程为y=2; (3)到两坐标轴距离乘积等于k的点的轨迹方程为xy=k. 例2. (1)判断点(2,2迈),(3,1)是否在圆x2y216上; (2)已知方程为x2y225的圆过点C ( *''7 , m ,求m的值. 例3.设圆C: (x 1)2y2 1,过原点0作圆的任意弦,求所作弦的中点的轨迹 方程. 变式:过P( 2,4 )作两条相互垂直的直线「J,若l i交x轴于A点,交y轴于B点, 求线段AB的中点M的轨迹方程. 例4?已知一座圆拱桥的跨度是36m圆拱高为6m,以圆拱所对的弦AB所在直线为x轴,AB的垂直 y 平分线为y轴,建立直角坐标系x O y (如图),求圆拱的方程.*

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

曲线和方程典型例题

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而 在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例4 曲线4)1(2 2=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分

高中数学 2.1.1曲线与方程(1)导学案 人教A版选修2-1

2.1.1 曲线与方程(1) 【学习目标】 1.理解曲线的方程、方程的曲线; 2.求曲线的方程. 【重点难点】 重点:曲线的方程、方程的曲线 难点:求曲线的方程. 【学习过程】 一、自主预习 (预习教材理P 34~ P 36,找出疑惑之处) 复习1:画出函数22y x = (12)x -≤≤的图象. 复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程. 二、合作探究 归纳展示 探究任务一:到两坐标轴距离相等的点的集合是什么?写出它的方程. 问题:能否写成y x =,为什么? 三、讨论交流 点拨提升 曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之

间, 如果具有以下两个关系: 1.曲线C 上的点的坐标,都是 的解; 2.以方程(,)0F x y =的解为坐标的点,都是 的点, 那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线. 注意:1? 如果……,那么……; 2? “点”与“解”的两个关系,缺一不可; 3? 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法; 4? 曲线与方程的这种对应关系,是通过坐标平面建立的. 试试: 1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ . 2.曲线220x xy by +-=上有点(1,2)Q ,则b = . 四、学能展示 课堂闯关 ※ 典型例题 例1. 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±. 变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗? 例2.设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.

高中数学《曲线与方程》公开课优秀教学设计

课题:2.1.1曲线与方程(第1课时)(人教A版普通高中课程标准实验教科书数学选修2—1第二章第一节) 一、内容和内容解析 1.教学内容 《曲线与方程》共分两小节,第一小节主要内容是曲线的方程、方程的曲线的概念;第二小节内容是如何求曲线的方程.本课时为第一小节内容.2.地位与作用 本小节内容揭示了几何中的“形”与代数中的“数”相统一的关系,体现了解析几何这门课的基本思想——数形结合思想,对解析几何教学有着指导性的意义.其中,对曲线的方程和方程的曲线从概念上进行明确界定,是解析几何中数与形互化的理论基础和操作依据.《曲线与方程》作为《圆锥曲线与方程》的第一节,一方面,该部分内容是建立在学生学习了直线的方程和圆的方程的基础上对曲线与方程关系认识的一次飞跃;另一方面,它也为下一步学习圆锥曲线方程奠定了模型的基础.因此,它在高中解析几何学习中起着承前启后的关键作用. 二、目标和目标解析 本课时的教学目标是结合已学曲线及其方程的实例,了解曲线与方程的对应关系,进一步理解数形结合的基本思想.具体目标如下: 1.通过探究“以方程的解为坐标的点”汇集的图形,感知并归纳概括曲线与方程的对应关系; 2.初步理解方程的曲线与曲线的方程的含义; 3.通过经历曲线与方程的对应关系的探究过程,发展抽象概括的能力; 4.能使用曲线的方程(方程的曲线)的概念判断曲线与方程的对应关系,继续理解数形结合思想. 三、教学问题诊断分析 1.问题诊断 学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.但是从直线与方程、圆与方程到曲线与方程的对应关系是一次从感性认识到理性认识的“飞跃”,由于大多数学生对“生活中其他的曲线是否能用、如何使用方程表示”这些问题还未曾有过思考,加之曲线的方程(方程的曲线)这一组概念有着较高的抽象性,所以预计在本课的学习中,学生可能出现以下困难: (1)作图探究结束后,学生独立地归纳概括并写出曲线的方程(方程的曲线)的概念时不规范,不全面; (2)难以理解“曲线上的点的坐标都是方程的解”和“以方程的解为坐标的点都在曲线上”这两句话在揭示“曲线与方程”的关系时各自所起的作用. 2.重难点 重点:曲线的方程(方程的曲线)的概念 难点:曲线的方程(方程的曲线)概念的生成和理解

高二数学02-03曲线和方程练习

高二数学曲线和方程练习 【同步达纲练习】 A 级 一、选择题 1.曲线f(x,y)=0关于直线x-y-2=0时称曲线的方程为( ) A.f(y+2,x)=0 B.f(x-2,y)=0 C.f(y+2,x-2)=0 D.f(y-2,x+2)=0 2.若点M 到x 轴的距离和它到直线y=8的距离相等,则点M 的轨迹方程是( ) A.x=-4 B.x=4 C.y=-4 D.y=4 3.动点P 到x 轴,y 轴的距离之比等于非零常数k ,则动点P 的轨迹方程是( ) A.y= k x (x ≠0) B.y=kx(x ≠0) C.y=-k x (x ≠0) D.y=±kx(x ≠0) 4.方程4x 2-y 2+4x+2y=0表示的曲线是( ) A.一个点 B.两条互相平行的直线 C.两条互相垂直的直线 D.两条相交但不垂直的直线 5.已知点A(0,-1),点B 是抛物线y=2x 2+1上的一个动点,则线段AB 的中点的轨迹是 ( ) A.抛物线y=2x 2 B.抛物线y=4x 2 C.抛物线y=6x 2 D.抛物线y=8x 2 二、填空题 6.已知A(-1,0),B(2,4),且△ABC 的面积是10,则点C 的轨迹方程是 . 7.Rt △ABC 的斜边AB 的长度等于定值C ,顶点A 、B 在x 轴,y 轴上滑动,则斜边AB 的中点M 的轨迹方程为 8.到两平行线3x+2y-1=0和6x+4y-3=0的距离相等的点的轨迹方程为 . 三、解答题 9.已知直线l:4x + 3 y =1,M 是直线l 上的一个动点,过点M 作x 轴,y 轴的垂线,垂足分别为A 、B 求把有向线段AB 分成的比λ=2的动点P 的轨迹方程. 10.经过点P(3,2)的一条动直线分别交x 轴、y 轴于点A 、B ,M 是线段AB 的中点,连结OM 并延长至点N ,使|ON |=2|OM |,求点N 的轨迹方程. AA 级 一、选择题 1.下列各点中,在曲线x 2-xy+2y+1=0上的点是( ) A.(2,-2) B.(4,-3) C.(3,10) D.(-2,5) 2.已知坐标满足方程f(x,y)=0的点都在曲线C 上,则( ) A.曲线C 上的点的坐标都适合方程f(x,y)=0

人教新课标版数学高二 选修2-1练习 2.1.2曲线与方程求曲线的方程

课时跟踪检测(六)曲线与方程求曲线的方程 层级一学业水平达标 1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)() A.在直线l上,但不在曲线C上 B.在直线l上,也在曲线C上 C.不在直线l上,也不在曲线C上 D.不在直线l上,但在曲线C上 解析:选B将点M(2,1)的坐标代入方程知M∈l,M∈C. 2.方程xy2-x2y=2x所表示的曲线() A.关于x轴对称B.关于y轴对称 C.关于原点对称D.关于x-y=0对称 解析:选C同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称. 3.方程x+|y-1|=0表示的曲线是() 解析:选B方程x+|y-1|=0可化为|y-1|=-x≥0,则x≤0,因此选B. 4.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足|MN|·|MP|+MN·NP =0,则动点P(x,y)的轨迹方程为() A.y2=8x B.y2=-8x C.y2=4x D.y2=-4x 解析:选B设点P的坐标为(x,y),则MN=(4,0),MP=(x+2,y),NP=(x-2,y), ∴|MN|=4,|MP|=(x+2)2+y2,MN·NP=4(x-2). 根据已知条件得4 (x+2)2+y2=4(2-x). 整理得y2=-8x.∴点P的轨迹方程为y2=-8x.

5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0 D .4x -3y +16=0或4x -3y -24=0 解析:选B 由两点式,得直线AB 的方程是 y -0 4-0=x +12+1 ,即4x -3y +4=0, 线段AB 的长度|AB |=(2+1)2+42=5. 设C 的坐标为(x ,y ), 则1 2×5×|4x -3y +4|5 =10, 即4x -3y -16=0或4x -3y +24=0. 6.方程x 2+2y 2-4x +8y +12=0表示的图形为________. 解析:对方程左边配方得(x -2)2+2(y +2)2=0. ∵(x -2)2≥0,2(y +2)2≥0, ∴????? (x -2)2=0,2(y +2)2 =0,解得????? x =2,y =-2. 从而方程表示的图形是一个点(2,-2). 答案:一个点(2,-2) 7.已知两点M (-2,0),N (2,0),点P 满足PM ·PN =12,则点P 的轨迹方程为________________. 解析:设P (x ,y ),则PM =(-2-x ,-y ),PN =(2-x ,-y ). 于是PM · PN =(-2-x )(2-x )+y 2=12, 化简得x 2+y 2=16,此即为所求点P 的轨迹方程. 答案:x 2+y 2=16 8.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________________. 解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 20 +1.

曲线和方程教案

《课堂教学设计》 课题:曲线和方程(1) 一:教学目标 ?知识与技能目标 (1)了解曲线上的点与方程的解之间的一一对应关系; (2)初步领会“曲线的方程”与“方程的曲线”的概念; (3)学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。 ?过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ?情感与态度目标 (1)通过概念的复习引入,从特殊到一般,让学生感受事物的发展规律; (2)通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具; (3)学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。 二:教材分析 1、教学分析:因为学生已有了用方程(有时用函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程。所以本节课采用了复习引入课题,从特殊到一般的方法让学生易于接受。在概念的探索过程中采用了举反例的方法来揭示概念的内涵。在概念的应用即例题的设计方面,着重巩固对概念的两个条件的认识。 2、教学重点 “曲线的方程”与“方程的曲线”的概念。

高二数学教案 曲线与方程

曲线和方程 教学目标 1.使学生了解曲线的点集与方程的解集之间的关系,从而掌握“曲线的方程”与“方程的曲线”这两个概念. 2.使学生掌握证明已知曲线C的方程是f(x,y)=0的方法和步骤. 3.通过曲线和方程概念的知识形成过程,培养学生合情推理能力、数学交流能力、探索能力,确立“数形结合”的思想方法,并进一步提高逻辑思维能力. 教学重点与难点 对“曲线的方程”、“方程的曲线”定个中两个关系的理解. 教学过程 师:解析几何重要内容之一是利用代数方法来研究几何中曲线的问题.即通过建立坐标系,利用平面内点和有序实数对之间一一对应关系,建立曲线的方程,并通过对方程的讨论来研究曲线的几何性质.为此,在第二章“圆锥曲线”的第一节,先建立曲线和方程的关系. 这里,先看上堂课后留的两个思考题.(板书) 例1 (1)画出两坐标轴所成的角在第一、三象限的平分线l,并写出其方程. (2)画出函数y=2x2(-1≤x≤2)的图象C. (选择二位学生自制的计算机软盘或投影片,请二位学生各自操作,展示在投影仪上.取较好的解答定格,如图2-1.)

师:这二位同学解答很好.请大家对照直线l及方程,对照抛物线的一倍分C及方程,谈谈符合某种条件的点的集合L和C分别与其方程是怎样地联系起来的?(鼓励学生观察、联想,进行数学交流.学生讨论后选其两个回答,再口述一遍.) 生甲:如果M(x0,y0)是l上的任意一点,它到两个坐标轴的距离一定相等,因此x0=y0,那么它的坐标(x0,y0)是方程x-y=0的解;反过来,如果(x0,y0)是方程x-y=0的解,即x0,y0,那么以这个解为坐标的点到两坐标轴的距离相等,它一定在这条平分线l上.为此把直线l与方程x-y=0密切地联系了起来. 生乙:如果点M(x0,y0)是C上的点,那么(x0,y0)一定是y=2x2的解;反过来,如果(x0,y0)是方程y=2x2的解,那么以它为坐标的点一定在C上. 师:学生甲的回答清楚地说明了直线l完整地表示方程x-y=0,而方程x-y=0完整地表示了直线l.但学生乙的回答是否完满,请同学们思考,发表见解,并用最短的语言写在投影片上.(老师巡视后选一张投影展示定格.) 学生乙的回答忽略了-1≤x≤2,从而点集C与方程y=2x2的解的集合G无法建立一一对应关系. 师:请这位同学进一步阐明自己的见解. 生:就本题而言,如(3,18)∈G,但P(3,18)∈C.方程漏掉了制约条件-1≤x≤2.为此正确的理解是:如果点M(x0,y0)是C上的点,那么(x0,y0)一定是y=2x2(-1≤x≤2)的解;反过来,如果(x0,y0)是方程y=2x2(-1≤x≤2)的解,那么以它的坐标为点一定在C上. 师:这样的见解才确切地反映了点集C与方程y=2x2(-1≤x≤2)的解集G是一一对应的.从而,抛物线的一部分C完整地表示了方程y=2x2(-1≤x≤2),而方程 y=2x2(-1≤x≤2)完整地表示了C.现在我们来考虑以下这个问题:点集C还是抛物线

7.5曲线和方程(三)

7.5曲线和方程(三) 班级 学号 姓名 一、 课堂目标: 进一步掌握已知曲线求方程的方法和步骤 二、要点回顾: 1、 求曲线的方程的一般步骤是: (1) 建立_________的坐标系,用______________________表示曲线上任意一点的坐标 (2) 写出适合条件P 的点M 的集合P=_________________ (3) 用_________表示条件P(M),列出方程f(x,y)=0 (4) 化方程f(x,y)=0为___________形式 (5) 证明已化简后的方程的解为坐标的点都是_______________上的点 2、求曲线方程的五个步骤中,哪几步是可以省略的_________________ 三、 目标训练: 1、 到直线01=+-y x 的距离等于42的动点P 的轨迹方程是 ( ) A. 09=+-y x B. 07=+-y x C. 0709=--=+-y x y x 或 D. 07=-+y x 2、 方程12=+y x 表示的图形围成的面积等于 ( ) A.1 B.2 C.3 D.4 3、 若ABC ?的顶点B 、C 的坐标分别是(0,0)和(4,0),AB 边上的中线长为3,则顶点A 的轨迹 方程是 ( ) A.()3682 2 =+-y x B. ())0(3682 2 ≠=+-y y x C. ()982 2 =++y x D. ())0(982 2 ≠=+-y y x 4、已知直线L:2x+4y+3=0,P 为L 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为 ( ) A.2x+4y+1=0 B.2x+4y+3=0 C.2x+4y+2=0 D.x+2y+1=0 5、曲线0),(=y x f 关于直线 x-y-3=0对称的曲线方程为 ( ) A. 0),3(=-y x f B. 0),3(=+x y f C. 0)3,3(=+-x y f D. 0)3,3(=-+x y f 6、已知A(-1,0),B(2,0),动点P 满足 2 1 = PB PA ,则P 点的轨迹方程是_____________________

高中数学选修1_1圆锥曲线与方程资料知识点讲义全

第二章圆锥曲线与方程一、曲线与方程的定义: (), 设曲线,方程=0,满足以下两个条件: C F x y ()() ①曲线上一点的坐标满足=0; ? C x y F x y ,, ()() 则曲线称是方程=0的曲线,方程=0是曲线的方程 C F x y F x y C ,,.二、求曲线方程的两种类型: 椭圆 一、椭圆及其标准方程 1、画法

3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 .a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是 12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大. 24.AB F ABF a V ⑤为过焦点的弦,则的周长为 ()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为: ()( )2 22 121 2 12114l k x x k x x x x ?? =+-= ++-?? ()2 12121222110114k l y y y y y y k k ??=+ -=+?+-??或当存在且不为时, ()2210,0. Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为

高中数学曲线与方程经典考点例题及其讲解

曲线与方程 考纲解读 1.利用曲线与方程的关系辨认曲线;2.求动点的轨迹(方程). [基础梳理] 1.曲线与方程 一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点. 那么这个方程叫作曲线的方程;这条曲线叫作方程的曲线. 2.求动点轨迹方程的一般步骤 (1)建立坐标系,用(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0,并化简; (4)查漏补缺. [三基自测] 1.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2 B .y =-16x 2 C .x 2=16y D .x 2=-16y 答案:C 2.在△ABC 中,A (0,3),B (-2,0),C (2,0),则中线AO (O 为原点)所在的方程为________. 答案:x =0(0≤y ≤3) 3.已知方程ax 2+by 2=2的曲线经过点A ????-5 4,0和B (1,1),则曲线方程为________. 答案:1625x 2+9 25 y 2=1 4.已知A (-5,0),B (5,0),则满足k AC ·k BC =-1的点C 的轨迹方程为________. 答案:x 2+y 2=25(去掉A 、B 两点) 考点一 坐标法(直接法)求解曲线方程|模型突破 [例1] (2018·成都模拟)动点P 与两定点A (a,0),B (-a,0)连线的斜率的乘积为k ,试求点P 的轨迹方程,并讨论轨迹是什么曲线. [解析] 设点P (x ,y ),则k AP = y x -a ,k BP =y x +a . 由题意得y x -a ·y x +a =k ,即kx 2-y 2=ka 2.

高二数学曲线与方程练习题

高二(2)部数学《曲线与方程 》同步训练 班级____姓名_____ 1. 若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A. 曲线C 的方程是(,)0f x y = B. 方程(,)0f x y =的曲线是C C. 坐标不满足方程(,)0f x y =的点都不在曲线C 上 D. 坐标满足方程(,)0f x y =的点都在曲线C 上 2. 方程|2|||y x =表示的图形是 ( ) A. 两条平行直线 B. 两条相交直线 C. 有公共端点的两条射线 D. 一个点 3. “点M 在曲线x y 42=上”是“点M 的坐标满足方程x y 2-=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 4. 若直线022=--k y x 与k x y +=的交点在曲线2522=+y x 上,则k 的值是( ) A. 1 B. -1 C. 1或-1 D. 以上都不对 5. 求方程c bx ax y ++=2的曲线经过原点的充要条件是 。 6. 已知:[0,2)απ∈,点(cos ,sin )P αα在曲线22(2)3x y -+=上,则α的值是 ; 7. 方程2222 (4)(4)0x y -+-=表示的图形是 。 8. 曲线2244x y +=关于直线y x =对称的曲线方程为____________________。 9. 已知线段AB ,B 点的坐标为(6,0),A 点在曲线y=x 2+3上运动,求AB 的中点M 的轨迹方程。 10. 已知点A (-1,0)、B (2,0),求使∠MBA=2∠MAB 的动点M 的轨迹方程

曲线和方程

例1如果命题“坐标满足方程f x, y 0的点都在曲线C上”不正确,那么以下正确的命题是 (A)曲线C上的点的坐标都满足方程f x, y 0 ? (B)坐标满足方程f x, y 0的点有些在C上,有些不在C上. (C)坐标满足方程f x, y 0的点都不在曲线C上. (D)—定有不在曲线C上的点,其坐标满足方程 f x, y 0 . 分析:原命题是错误的,即坐标满足方程f x, y 0的点不一定都在曲线C上,易知答案为D. 典型例题二 例2说明过点P(5, 1)且平行于x轴的直线|和方程| y 1所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可?其中“曲线上的点的坐标都是方程f(x, y) 0的解”,即纯粹性;“以方程的 解为坐标的点都是曲线上的点”,即完备性?这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P且平行于x轴的直线|的方程为y 1,因而在直线I上的点的坐标都满足y 1,所以直线I上的点都在方程|y 1表示的曲线上?但是以|y 1这个方程的解为坐标的点不会都在直线I上,因此方程|y 1不是直线I的方程,直线I只是方程y 1所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不 都在曲线上,即不满足完备性.

例3说明到坐标轴距离相等的点的轨迹与方程 y x 所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程y x 所表示的曲线上每一个点都满足到坐标轴距离相等?但是“到坐标轴距 离相等的点的轨迹”上的点不都满足方程 y x ,例如点(3,3)到两坐标轴的距离均为 3, 但它不满足方程y x .因此不能说方程y x 就是所有到坐标轴距离相等的点的轨迹方程, 到坐标轴距离相等的点的轨迹也不能说是方程 y x 所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上” ,即满足完备性,而“轨迹上的点的 坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才 能叫方程 的曲线. 典型例题四 一个交点、无交点,就是由直线与曲线的方程组成的方 也就是由两个方程整理出的关于 x 的一元二次方程的判 别式分别满足 0、 0、 0 . y k(x 2) 4, 解:由 2 x (y 1)2 4. 得(1 k 2)x 2 2k(3 2k)x (3 2k)2 4 0 4k 2(3 2k)2 4(1 k 2)[(3 2k)2 4] 4(4k 2 12k 5) 4(2k 1)(2k 5) .??当 0即 (2k :1)(2k 5) 0,即 1 k 5 时,直线与曲线有两个不同的交点. 2 2 当 0即(2k 1)(2k 5) 0, 即卩 k 1 或k 5时,直线与曲线有一个交点. 2 2 当 0即(2k 1)(2k 5) 0, 即卩 k 1 或k -时,直线与曲线没有公共点. 2 2 说明: 在判断直线与曲线的交点个数时, 由于直线与曲线的方程组成的方程组解的个 数 与由两方程联立所整理出的关于 x (或y )的一元方程解的个数相同,所以如果上述一元方程 是二次的,便可通过判别式来判断直线与曲线的交点个数, 但如果是两个二次曲线相遇,两 曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同, 所 以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 例4曲线x 2 (y 1)2 4与直线y k (x 2) 4有两个不同的交点,求 k 的取值范 围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、 程组分别有两个解、一个解和无解,

高中数学选修2-1《圆锥曲线与方程》知识点讲义上课讲义

第二章 圆锥曲线与方程 一、曲线与方程的定义: (),C F x y 设曲线,方程=0,满足以下两个条件: ()(),,C x y F x y ?①曲线上一点的坐标满足=0; ()(),,. F x y x y C ?②方程=0解都在曲线上 ()(),,. C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程 二、求曲线方程的两种类型: () 1、已知曲线求方程;用待定系数法 ()()() 2,;,x y x y 、未知曲线求方程①设动点②建立等量关系; ③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求

椭圆 一、椭圆及其标准方程 1、画法 {} 121222,2P PF PF a F F a +=<、定义: 3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② () 22 22+10x y a b a b =>>二、几何性质: 1,. x a y b ≤≤、范围: 2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 2224,,a b c a b c =+、之间的关系: () 2 25101c b e e a a ==-<<、离心率: 0, 1e e →→越圆越扁 扩展: ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 .a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是

高中数学选修1-1《圆锥曲线与方程》知识点讲义

高中数学选修1-1《圆锥曲线与方程》知识点讲义

第二章 圆锥曲线与方程 一、曲线与方程的定义: (),C F x y 设曲线,方程=0,满足以下两个条件: ()(),,C x y F x y ?①曲线上一点的坐标满足=0; ()(),,. F x y x y C ?②方程=0解都在曲线上 ()(),,. C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程 二、求曲线方程的两种类型: () 1、已知曲线求方程;用待定系数法 ()()() 2,;,x y x y 、未知曲线求方程①设动点②建立等量关系; ③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求

椭圆 一、椭圆及其标准方程 1、画法 {} 121222,2P PF PF a F F a +=<、定义: 3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② () 22 22+10x y a b a b =>>二、几何性质: 1,. x a y b ≤≤、范围: 2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 222 4,,a b c a b c =+、之间的关系: () 2 25101c b e e a a ==-<<、离心率: 0, 1e e →→越圆越扁

扩展: ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 . a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是 12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大. 24. AB F ABF a V ⑤为过焦点的弦,则的周长为 ()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为: ()( )2 22 121 2 12114l k x k x x x x ?? =+-= ++-?? ()2 12121222110114k l y y y y y k k ??=+ -=++-??或当存在且不为时,()2210,0. Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为

相关主题
文本预览
相关文档 最新文档