当前位置:文档之家› 第四章圆与方程

第四章圆与方程

第四章圆与方程
第四章圆与方程

2

53 4 53

2

.13

2 第四章圆与方程

、选择题

1 .圆C i : x?+ y2+ 2x + 8y —8= 0与圆C? : x2+ y2_4x+ 4y—2= 0 的位置关系是().

A.相交 B .外切C.内切 D .相离

2. 两圆x2+ y2—4x+ 2y+ 1 = 0 与x2+ y2+ 4x—4y—1 = 0 的公共切线有().

A. 1条 B .2条C. 3条 D . 4条

3. 若圆C与圆(x+ 2)2+ ( y—1) 2= 1关于原点对称,则圆C的方程是().

A. (x—2)2+ (y+1)2= 1

B. (x—2) 2+ (y—1)2= 1

C. (x—1)2+ (y+2)2= 1

D. (x +1)2+ (y—2)2= 1

4.

与直线I : y= 2x+ 3平行,且与圆x2+ y2—2x—4y+ 4 = 0相切的直线方程是().

A. x—y± = ;5 = 0 B . 2x—y+ ■/ 5 = 0

C . 2x—y—'.”5 = 0

D . 2x —y± 5 = 0

5. 直线x—y+ 4= 0被圆x2+ y2+ 4x—4y+ 6= 0截得的弦长等于().

A . 2

B . 2

C . 2 2

D . 4 .. 2

6. 一圆过圆x2+ y2—2x= 0与直线x+ 2y—3= 0的交点,且圆心在y轴上,则这个圆的

方程是().

A . x2+ y2+ 4y —6= 0

B . x2+ y2+ 4x—6= 0

C . x2+ y2—2y= 0

D . x2+ y2+ 4y + 6= 0

7. 圆x? + y2—4x—4y—10= 0上的点到直线x+ y—14= 0的最大距离与最小距离的差是( ).

A. 30

B. 18

C. 6 2

D. 5 . 2

8 .两圆(x—a)2+ (y—b)2= r2和(x —b)2+ (y—a)2= r2相切,则( ).

2 2 2 c 2

A . (a—b) = r

B . (a —b) = 2r

2 2 2 2

C . (a + b) = r

D . (a + b) = 2r

2

9. 若直线3x—y+ c= 0,向右平移1个单位长度再向下平移1个单位,平移后与圆x

+ y2= 10相切,则c的值为().

10 .设A(3, 3, 1) , B(1 , 0, 5) , C(0, 1, 0),则AB 的中点M 到点C 的距离| CM| =

( ).

A . 14 或一6

B . 12 或一8

C . 8 或—12

D . 6 或一14

二、填空题

11. 若直线3x —4y+ 12 = 0与两坐标轴的交点为A, B,则以线段AB为直径的圆的一般

方程为______________________ .

12. 已知直线x= a与圆(x—1)2+ y2= 1相切,则a的值是______________ .

13. _________________________________________________________ 直线x= 0被圆x2+ y2—6x—2y—15= 0所截得的弦长为__________________________________ .

14. 若A(4,—7, 1), B(6, 2, z) , | AB| = 11,则z= ______________________ .

15. 已知P是直线3x+ 4y+ 8= 0上的动点,PA, PB是圆(x—1)2+ ( y—1)2= 1的两条

切线,A, B是切点,C是圆心,则四边形PACB面积的最小值为 ________________ .

三、解答题

16. 求下列各圆的标准方程:

(1) 圆心在直线y= 0上,且圆过两点A(1, 4) , B(3, 2);

(2) 圆心在直线2x+ y= 0上,且圆与直线x+ y—1 = 0切于点M(2,—1).

17. 棱长为1的正方体ABCD —A1B1C1D1中,E是AB的中点,F是BB1的中点,G是

AB1的中点,试建立适当的坐标系,并确定E, F, G三点的坐标.

18. 圆心在直线5x—3y—8 = 0上的圆与两坐标轴相切,求此圆的方程.

19. 已知圆C :(x—1)2+ (y —2)2= 2,点P坐标为(2,—1),过点P作圆C的切线,切点为A,

B.

(1) 求直线FA, PB的方程;

(2) 求过F点的圆的切线长;

(3) 求直线AB的方程.

20. 求与x轴相切,圆心C在直线3x—y= 0上,且截直线x—y= 0得的弦长为2 , 7的

圆的方程.

参考答案

、选择题

1. A

解析:0的标准方程为(x+ 1) 2+ ( y+ 4)2= 52,半径r1 = 5; C2的标准方程为(x —2)2+ (y+ 2严=(..10) 2,半径匕=,10?圆心距d= .(2 + 1)2+(2 —4)2= .13 .

因为C2的圆心在C1内部,且「1 = 5V「2+ d,所以两圆相交.

2. C

解析:因为两圆的标准方程分别为(x—2)2+ (y+ 1) 2= 4, (x+ 2) 2+ ( y—2) 2= 9,

所以两圆的圆心距d= ,(2 + 2)2+( —1—2)2= 5.

因为r 1= 2, r2= 3,

所以d=m +耳=5,即两圆外切,故公切线有3条.

3. A

解析:已知圆的圆心是(一2, 1),半径是1,所求圆的方程是(x—2) 2+ (y+ 1)2= 1 .

4. D

解析:设所求直线方程为y= 2x+ b,即2x—y+ b = 0 .圆x2+ y2—2x—4y+ 4= 0的标准方程为(x—1)2+ (y-2)2= 1.由= 1解得….

故所求直线的方程为2x—y± . 5 = 0.

5. C

解析:因为圆的标准方程为(x+ 2) 2+ (y —2) 2= 2,显然直线x—y+ 4= 0经过圆心.

所以截得的弦长等于圆的直径长.即弦长等于 2.2 .

6. A

解析:如图,设直线与已知圆交于A, B两点,所求圆的圆

心为C.

依条件可知过已知圆的圆心与点C的直线与已知直线垂直.

因为已知圆的标准方程为(x—1) 2+ y2= 1,圆心为(1, 0), 所以过

点(1, 0)且与已知直线x+ 2y—3= 0垂直的直线方程

为y= 2x—2.令x= 0,得C( 0,—2).

联立方程x2+ y2—2x= 0与x+ 2y —3= 0可求出交点A(1, 1).故所求圆的半径r = | AC| =.12+ 32= .10 .

所以所求圆的方程为 X 2 + (y + 2)2= 10,即x 2+ y 2 + 4y — 6 = 0. 7. C

解析:因为圆的标准方程为(x — 2) 2+ (y — 2)2= (3,2)2

,所以圆心为(2, 2) , r = 3.2 .

所以最大距离与最小距离的差等于 (d + r) — (d — r) = 2r = 6 2 .

& B

解析:由于两圆半径均为|r|,故两圆的位置关系只能是外切,于是有 (b — a)2+ (a — b)2= (2r)2. 化简即(a — b)2= 2r 2. 9. A

解析:直线y = 3x + c 向右平移1个单位长度再向下平移

1个单位.

平移后的直线方程为 y = 3( x — 1) + c — 1,即卩3x — y + c — 4 = 0.

2 2 0 - 0 + C - 4 I r --------

由直线平移后与圆 x + y = 10相切,得 ------- , —-=前0,即| c —4| = 10,

V 32 + 12 c = 14 或一6. 10. C

解析:因为C(0, 1, 0),容易求出AB 的中点M

、填空题

2 2

11. x + y + 4x — 3y = 0.

解析:令y = 0,得x =— 4,所以直线与x 轴的交点A( — 4, 0). 令x = 0,得y = 3,所以直线与y 轴的交点B(0, 3). 所以AB 的中点,即圆心为 一2,-.

I 2丿

因为|AB| = , 42 + 32 = 5,所以所求圆的方程为(x + 2) 2+ y —- =空.

I 2丿4

即 x 2 + y 2 + 4x — 3y = 0. 12. 0 或 2.

解析:画图可知,当垂直于 x 轴的直线x = a 经过点(0, 0)和(2, 0)时与圆相切,

设圆心到直线的距离为

d , d =

10 2

所以

所以|CM| =

1, 3

(2 — 0)2 +

2 + (

3 — 0)2

所以a的值是0或2.

13. 8.

解析:令圆方程中x= 0,所以y2—2y—15= 0.解得y= 5,或y=—3.

所以圆与直线x= 0的交点为(0, 5)或(0, - 3).

所以直线x= 0被圆x2+ y2—6x—2y—15= 0所截得的弦长等于5—( —3) = 8.

14. 7 或—5.

解析:由..(6 —4)2+(2 + 7)2+( z—1)2= 11 得(z—1)2= 36?所以z= 7,或—5.

三、解答题

16. 解:(1)由已知设所求圆的方程为(x—a)2+ y2= r2,于是依题意,得

广 2 2 广"

(1 —a) +16 = r , a= —1,

\ 解得丿

(3-a)2+ 4 = r2. 『=20.

故所求圆的方程为(x+ 1)2+ y2= 20.

(2)因为圆与直线x+ y—1= 0切于点M(2,—1),

所以圆心必在过点M(2,—1)且垂直于x+ y—1= 0的直线I上.

贝U I的方程为y+ 1 = x—2,即卩y= x—3.

y = x—3, x = 1,

由」解得」

gx+ y=0. y = —2.

即圆心为。1(1,—2),半径r = ..(2 —1)2+( —1+ 2)2=、2 .

故所求圆的方程为(x—1)2+ (y+ 2)2= 2.

17. 解:以D为坐标原点,分别以射线DA, DC, DD1的方向为正方向,以线段DA ,

1 DC , DD1的长为单位长,建立空间直角坐标系Dxyz, E点在平面xDy中,且EA=-.

2

所以点E 的坐标为

又B 和B i 点的坐标分别为(1, 1 , 0) , (1, 1 , 1), 1 ) 一 f 1 1、

-,,同理可得G 点的坐标为 1,一,一 [?

2丿 I 2 2丿

18. 解:设所求圆的方程为(x — a)2+ (y — b)2=r 2, 因为圆与两坐标轴相切, 所以圆心满足|a| = | b|,即a — b = 0,或a + b = 0. 又圆心在直线5x — 3y — 8= 0上, 5a — 3b — 8= 0, 5a — 3b — 8= 0, 所以5a — 3b —8= 0 .由方程组」 或*

a —

b = 0, a + b =0, ]a =4, [a =1

, 解得 或 所以圆心坐标为(4, 4) , ( 1 , — 1). J b = 4, b = — 1. 故所求圆的方程为(x — 4)2+ (y — 4)2= 16,或(x — 1)2+ (y + 1)2= 1. 19. 解:(1)设过P 点圆的切线方程为 y + 1= k (x — 2),即k x — y — 2k — 1 = 0. 因为圆心(1, 2)到直线的距离为42 , I — k - 3 =72 ,解得k = 7,或k = — 1.

Jk 2

+1 所以点F 的坐标为1, 1, 故所求的切线方程为 7x — y —15= 0,或x + y —

1= 0. (2)在 Rt △ PCA 中,因为 | PC| = ,(2 — 1)2 +( — 1— 2)2

= '一 10 , | CA| = .2 , 所以|PA|2

= |PC|2

— | CA| 2

= 8.所以过点P 的圆的切线长为 2?._2 . (3)容易求出k PC =— 3,所以k AB = 1 . 3 如图,由CA 2

= CD ? PC ,可求出 CD = CA 2 PC 2 10 设直线AB 的方程为y = 1 x + b ,即x — 3y + 3b = 0. 3

由备=1 — 6 + 3b |解得b = 1或b = 7

(舍). 10 .1 + 32 3 所以直线AB 的方程为x — 3y + 3= 0. (3)也可以用联立圆方程与直线方程的方法求解.

20.解:因为圆心 C 在直线3x — y = 0上,设圆心坐标为(a , 3a),

第四章 圆与方程知识点总结及习题答案

第四章 圆与方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的 半径。 2、圆的方程 (1)标准方程()()22 2 r b y a x =-+-,圆心 ()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系: 当2200()()x a y b -+->2 r ,点在圆外 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内 (2)一般方程022=++++F Ey Dx y x 当042 2 >-+F E D 时,方程表示圆,此时圆心为? ? ? ? ? --2,2 E D ,半径为 F E D r 42 122-+= 当0422 =-+F E D 时,表示一个点; 当042 2<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离 为2 2B A C Bb Aa d +++= ,则有相离与C l r d ?>; 相切与C l r d ?=;相交与C l r d ?< (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

人教版数学必修二第四章 圆与方程 知识点总结

第四章 圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 1.以(3,-1)为圆心,4为半径的圆的方程为( ) A .(x +3)2+(y -1)2=4 B .(x -3)2+(y +1)2=4 C .(x -3)2+(y +1)2=16 D .(x +3)2+(y -1)2=16 2.一圆的标准方程为x 2+(y +1)2=8,则此圆的圆心与半径分别为( ) A .(1,0),4 B .(-1,0),2 2 C .(0,1),4 D .(0,-1),2 2 3.圆(x +2)2+(y -2)2=m 2的圆心为________,半径为________. 4.若点P (-3,4)在圆x 2+y 2=a 2上,则a 的值是________. 5.以点(-2,1)为圆心且与直线x +y =1相切的圆的方程是____________________. 6.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1 7.一个圆经过点A (5,0)与B (-2,1),圆心在直线x -3y -10=0上,求此圆的方程. 8.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( ) A .|a |<1 B .a <1 13 C .|a |<1 5 D .|a |<1 13 9.圆(x -1)2+y 2=25上的点到点A (5,5)的最大距离是__________. 10.设直线ax -y +3=0与圆(x -1)2 +(y -2)2 =4相交于A ,B 两点,且弦AB 的长为

圆与方程基础练习题.

直线与圆的方程练习题 1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( ) A 、(1,-1) B 、(21,-1) C 、(-1,2) D 、(-2 1,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为( ) A .(x -3)2+(y+1)2=4 B .(x -1)2+(y -1)2=4 C .(x+3)2+(y -1)2=4 D .(x+1)2+(y+1)2=4 3.方程()22()0x a y b +++=表示的图形是( ) A 、以(a,b)为圆心的圆 B 、点(a,b) C 、(-a,-b)为圆心的圆 D 、点(-a,-b) 4.两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为( ) A .x+y+3=0 B .2x -y -5=0 C .3x -y -9=0 D .4x -3y+7=0 5.方程 052422=+-++m y mx y x 表示圆的充要条件是( ) A .141<m 6.圆x 2+y 2+x -y -32 =0的半径是( )A .1 B . 2 C .2 D .2 2 7.圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2 -4y =0的位置关系是( )A .外离 B .相交C .外切 D .内切 8.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4 B .3 C .2 D .1 9.设直线过点(a,0),其斜率为-1,且与圆x 2+y 2=2相切,则a 的值为( )A .± 2 B .±2C.±2 2 D .±4 10.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0 D .x 2+y 2-2x -4y =0 11.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( ) A .6 B .4 C .3 D .2 12.已知三点A(1,0),B(0,3),C(2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53 B .213C .253 D .43 13.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0 14.圆22220x y x y +-+=的周长是( )A . B .2π C D .4π 15.若直线ax+by+c=0在第一、二、四象限,则有( ) A 、ac>0,bc>0 B 、ac>0,bc<0 C 、ac<0,bc>0 D 、ac<0,bc<0 16.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1

必修二圆的方程

圆的方程 ()() 2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()222 0x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 2.2 2 40D E F +->常可用来求相关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

圆的切点弦方程的九种求法

圆的切点弦方程的解法探究 在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再运用所学知识解决问题,是解题的关键所在。本文仅通过一个例题,圆的部分的基本题型之一,分别从不同角度进行观察,用不同的知识点和九种不同的解法,以达到介绍如何观察、分析、解决关于圆的切点弦的问题。 一、预备知识: 1、在标准方程 2 22)()r b y a x =-+-(下过圆上一点),00y x P (的切线方程为: 200))(())r b y b y a x a x =--+--(( ; 在一般方程02 2 =++++F Ey Dx y x (042 2>-+F E D ) 下过圆上 一点),00y x P (的切线方程为: 02 20 000=++++++F y y E x x D yy xx 。 2、两相交圆01112 2=++++F y E x D y x (0412 12 1>-+F E D )与 022222=++++F y E x D y x (0422 22 2>-+F E D ) 的公共弦所在的直线方程为:0)()()(212121=-+-+-F F y E E x D D 。 3、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,其切线长公式为:F Ey Dx y x PA ++++=112121||。 4、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,切点弦AB 所在直线的方程为:211))(())r b y b y a x a x =--+--(((在圆的标准方程下的形式); 0221 111=++++++F y y E x x D yy xx (在圆的一般方程下的形式) 。 二、题目 已知圆04422 2=---+y x y x 外一点P (-4,-1),过点P 作圆 的切线PA 、PB ,求过切点A 、B 的直线方程。 三、解法 解法一:用判别式法求切线的斜率 如图示1,设要求的切线的斜率为k (当切线的斜率存在时),那么过点P (-4,-1)的切线方程为:)]4([)1(--=--x k y 即 014=-+-k y kx 由 ???=---+=-+-0 4420 142 2y x y x k y kx 消去y 并整 理得 0)12416()268()1(2222=+-+--++k k x k k x k ① 令 0)12416)(1(4)268(2 2 2 2 =+-+---=?k k k k k ② 解②得 0=k 或8 15= k

人教版数学必修二第四章 圆与方程 知识点总结

第四章圆与方程 4.1 圆得方程 4.1、1 圆得标准方程 1.以(3,-1)为圆心,4为半径得圆得方程为() A.(x+3)2+(y-1)2=4 B.(x-3)2+(y+1)2=4 C.(x-3)2+(y+1)2=16 D.(x+3)2+(y-1)2=16 2.一圆得标准方程为x2+(y+1)2=8,则此圆得圆心与半径分别为() A.(1,0),4 B.(-1,0),2 2 C.(0,1),4 D.(0,-1),2 2 3.圆(x+2)2+(y-2)2=m2得圆心为________,半径为________. 4.若点P(-3,4)在圆x2+y2=a2上,则a得值就是________. 5.以点(-2,1)为圆心且与直线x+y=1相切得圆得方程就是____________________. 6.圆心在y轴上,半径为1,且过点(1,2)得圆得方程为() A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 7.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆得方程. 8.点P(5a+1,12a)在圆(x-1)2+y2=1得内部,则a得取值范围就是() A.|a|<1 B.a<1 13 C.|a|<1 5 D.|a|<1 13 9.圆(x-1)2+y2=25上得点到点A(5,5)得最大距离就是__________. 10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB得长为 2 3,求a得值. 4、1、2 圆得一般方程 1.圆x2+y2-6x=0得圆心坐标就是________. 2.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径得圆,则F=________、 3.若方程x2+y2-4x+2y+5k=0表示圆,则k得取值范围就是() A.k>1 B.k<1 C.k≥1 D.k≤1 4.已知圆得方程就是x2+y2-2x+4y+3=0,则下列直线中通过圆心得就是() A.3x+2y+1=0 B.3x+2y=0 C.3x-2y=0 D.3x-2y+1=0 5.圆x2+y2-6x+4y=0得周长就是________. 6.点(2a,2)在圆x2+y2-2y-4=0得内部,则a得取值范围就是()

新人教A版必修二第四章《圆与方程》word练习题

第四章综合检测题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下面表示空间直角坐标系的直观图中,正确的个数为() B. 2个 D. 4个 x + y+ m= 0表示圆,则实数 ) 1 A. mv 厂 1 C. m> 3. 已知空间两点 P1(— 1,3,5), P2(2,4,— 3),则IPRI等于( ) A. 74 B. 3. 10 C. 14 D. 53 4.圆x2 + y2 + 2x— 4y= 0的圆心坐标和半径分别是_( ) A . (1,— 2), 5 B . (1,— 2), 5 C . (— 1,2),5 D . (— 1,2), 5 5.圆心为(1 , — 1),半径为2的圆的方程是() A . (x— 1)2 + (y+ 1)2= 2 B . (x+ 1)2 + (y — 1)2= 4 C . (x+ 1)2 + (y —1)2= 2 D . (x— 1)2 + (y+ 1)2 = 4 6.直线I: x — y= 1与圆C: x2 + y2— 4x= 0的位置关系是( ) A .相离 B.相切 A. 1个 C. 3个 2 .若方程x2+y2m的取值范围为 B. mv 0 D. m< 1

C .相交 D.无法确定 7.当点P在圆x2+ y2 = 1上变动时,它与定点 Q(3,0)连线段PQ 中点的轨迹方程是() A . (x+ 3)2 + y2=4 B . (x— 3)2 + y2= 1 C. (2x— 3)2 + 4y2 = 1 D. (2x + 3)2 + 电=1 8.(2011?2012北京东城区高三期末检测)直线I过点(—4,0),且与圆(x+ 1)2 + (y — 2)2 = 25交于A, B两点,如果|AB| = 8,那么直线I 的方程为() A . 5x+ 12y + 20= 0 B . 5x— 12y + 20= 0 或 x+ 4 = 0 C. 5x— 12y+ 20= 0 D . 5x+ 12y+ 20= 0 或 x+ 4 = 0 9 .一束光线从点A(— 1,1)发出,并经过x轴反射,至U达圆(x— 2)2 + (y— 3)2= 1上一点的最短路程是( ) A . 4 B. 5 C. 3 2 — 1 D. 2 6 10. (2012 ?东卷)在平面直角坐标系xOy中,直线3x+ 4y— 5= 0 与圆x2 + y2 = 4相交于A, B两点,则弦AB的长等于() A . 3 3 B . 2 3 C. 3 D . 1 11.方程-.:4— x2= lg x的根的个数是() A . 0 B . 1 C . 2 D.无法确定 12.过点M(1,2)的直线I与圆C: (x— 2)2 + y2= 9交于A、B两点, C为圆心,当/ ACB最小时,直线I的方程为() A . x= 1 B . y = 1 C . x— y+ 1 = 0 D . x — 2y + 3= 0 二、填空题(本大题共4个小题,每小题5分,共20分,把正确 答案填在题中横线上) 13.点P(3,4,5)关于原点的对称点是_______ . 14.已知△ ABC 的三个顶点为 A(1,— 2,5), B(— 1,0,1), C(3, —4,5),则边BC上的中线长为__________ . 15.已知圆 C: (x— 1)2 + (y+ 2)2=4,点 P(0,5),则过 P 作圆 C 的切线有且只有 _______ 条. 16.与直线 x+ y — 2= 0 和曲线 x2+ y2— 12x— 12y + 54= 0 都相切 的半径最小的圆的标准方程是 ________ . 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,

圆的方程总结

梗概: 1、关于圆与直线的三种位置关系的判定,分代数法和几何法。三种情况分别各有研究重点。相交时,研究弦长,中点弦,最长最短弦;相切时,研究切线方程,切线段长,切点所在直线方程;相离时,研究圆上动点到直线距离的最值(其它两种位置关系也可研究);直线和圆系方程及圆系方程。 2、圆与圆位置关系的判定,连心线性质(平分公共弦),公切线条数判断(实质及两圆位置关系判断),公共弦所在直线方程及公共弦长,两圆上动点距离的最值,圆系方程。 注:关注各种利用几何意义求最值 求圆的方程 一、已知圆上三点,求圆的方程 例1 、(1,0),1,1),(3,2). A B C -- 解法一:待定系数法,设出圆的标准方程或一般方程,求出a,b,r,或者D,E,F 解法二:垂直平方线的焦点为圆心,两点间距离求半 径。 二、已知两点和圆心所在直线 解法一:待定系数法,设出标准或一般方程。 解法二:垂直平分线与圆心所在直线的交点求圆心,两 点间距离求半径。 三、已知弦长求圆的方程 (2,4)Q3-1 P- 例2、过及(,)两点,且在x轴上 截得的弦长为6的圆的方程。 例3、圆心在直线30 x y -=上,与 x轴相切,且 被直线0 x y -=截得的弦长为,求圆的方程。(课 本132A6) 例4、求与x轴切于(5,0),并在y轴上截得 的弦长为10的圆的方程。 例5、已知圆C过点(1,0),且圆心在x轴的 正半轴上,直线被圆C所截得的弦长为 求过圆心且与直线l垂直的直线方程。 四、已知切点,求圆的方程 例6、直线43350 x y +-=与圆心在原点的圆C相 切,求圆的方程。 例7、圆心在y轴上,半径为5,且与直线6 y= 相切的圆的方程。(课本132A2(2)) 例8、圆心在直线2 y x =-上,且过点A(2,-1), 与直线1 x y +=相切的圆的方程。 五、过直线和圆的交点 直线与圆系方程 六、过两圆交点的圆的方程 圆系方程 例11、圆心在直线40 x y --=上,并且经过圆 22640 x y x ++-=与226280 x y y ++-=的交点的圆的 方程。 例12、经过点M(3,-1),且与圆C: 222650 x y x y ++-+=相切于N(1,2)的圆的方程。 例13、求过两圆222880 x y x y +++-=和 224420 x y x y +---=的交点且面积最小的圆的 方程。 解法一:解出两个交点 解法二 :连心线过圆心且圆心在某直线上,由此得出圆 心,然后设出一般方程,再利用三圆有公共 弦,直线重合求出m 解法三、圆系方程 七、最值问题 (1)点和圆

第四章圆与方程知识点归纳

高中数学必修2 第四章圆与方程知识点两圆的位置关系. 设两圆的连心线长为I,则判别圆与圆的位置关系的依据有以下几点: 4.1.1圆的标准方程 2 2 2 1、圆的标准方程:(x a) (y b) r 圆心为A(a,b),半径为r的圆的方程 2 2 2 2、点M(x),y0)与圆(x a) (y b) r的关系的判断方法: (1) 当 J I r1r2时,圆C1与圆C2相离;(2)当1r1r2时,圆C1与圆C2外切; (3) 当 i 1A r : 2I I r1r2时,圆C1与圆C2相交; (4) 当i 1 Iq r21时,圆C1与圆C2内切;(5)当1| r, r2| 时,圆C1与圆C2内含; 4.2.3直线与圆的方程的应用 1、利用平面直角坐标系解决直线与圆的位置关 系; 2 (1)(X。a) (y°b)2>r2,点在圆外 2 2 2 (2)(X。a) (y o b) =r2,点在圆上 2 (3)(X。a) (y o b)2

高三第一轮复习圆的方程及求法

圆的方程及求法 【提纲挈领】(请阅读下面文字,并在关键词下面记着重号) 1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题的思想. 主干知识归纳 1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹) 2.圆的方程: 方法规律总结 1.待定系数法求圆的方程 (1) 若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值; (2) 若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 2.几何法求圆的方程: 利用圆的有关几何性质,如“圆心在圆的任一条弦的垂直平分线上”、“半径, 弦心距,弦长的一半构成 直角三角形”等. 3.求与圆有关的轨迹问题的四种方法 【指点迷津】 【类型一】确定圆的方程 【例1】:求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的方程 【解析】: 设圆的标准方程为(x -a )2+(y -b )2=r 2, 由题意列出方程组()()?? ???=++=-+-=+0 1321122 22 22b a r b a r b a ,解之得?????=-==534 r b a , ∴圆的标准方程是(x -4)2+(y +3)2=25. 答案:(x -4)2+(y +3)2=25. 【例2】:已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆的标准方程. 【解析】:法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为??? ?-D 2,-E 2.

高中数学圆的方程典型例题(经典版)

高中数学圆的方程典型例题 类型一:圆的方程 例 1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点 )4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或 )4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或

第四章圆与方程复习教案(教师)

圆与方程复习 【学习目标】 1、通过复习帮助同学们系统掌握本章知识。 2、通过习题帮助同学们熟悉相关知识在解题中的应用 【重点难点】 相关知识的应用 【使用说明及学法指导】 1、先进行知识归类,再做习题 【预习导学】 【知识归类】 1.圆的两种方程 (1)圆的标准方程 222()()x a y b r -+-=,表示_____________. (2)圆的一般方程 022=++++F Ey Dx y x . ①当D 2+E 2-4F >0时,方程 ② 表示(1)当042 2>-+F E D 时,表示__________; ②当0422=-+F E D 时,方程只有实数解2D x - =,2E y -=,即只表示_______; ③当0422<-+F E D 时,方程_____________________________________________. 综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆. 2.点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在_____;(2)2200()()x a y b -+-=2r ,点在______; (3)2200()()x a y b -+-<2r ,点在______. 3.直线与圆的位置关系 设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2 ,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C ______;(2)当r d =时,直线l 与圆C ________; (3)当r d <时,直线l 与圆C ________. 4.圆与圆的位置关系

高中数学 圆的标准方程教案

第 四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置 : 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究 例(1):写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。

最新人教版数学必修二第四章 圆与方程 知识点总结

第四章圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 1.以(3,-1)为圆心,4为半径的圆的方程为() A.(x+3)2+(y-1)2=4 B.(x-3)2+(y+1)2=4 C.(x-3)2+(y+1)2=16 D.(x+3)2+(y-1)2=16 2.一圆的标准方程为x2+(y+1)2=8,则此圆的圆心与半径分别为() A.(1,0),4 B.(-1,0),2 2 C.(0,1),4 D.(0,-1),2 2 3.圆(x+2)2+(y-2)2=m2的圆心为________,半径为________. 4.若点P(-3,4)在圆x2+y2=a2上,则a的值是________. 5.以点(-2,1)为圆心且与直线x+y=1相切的圆的方程是____________________.6.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为() A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 7.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆的方程.8.点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值范围是() A.|a|<1 B.a<1 13 C.|a|<1 5 D.|a|<1 13 9.圆(x-1)2+y2=25上的点到点A(5,5)的最大距离是__________. 10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB的长为2 3,求a的值. 4.1.2 圆的一般方程

1.圆x 2+y 2-6x =0的圆心坐标是________. 2.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,以4为半径的圆,则F =________. 3.若方程x 2+y 2-4x +2y +5k =0表示圆,则k 的取值范围是( ) A .k >1 B .k <1 C .k ≥1 D .k ≤1 4.已知圆的方程是x 2+y 2-2x +4y +3=0,则下列直线中通过圆心的是( ) A .3x +2y +1=0 B .3x +2y =0 C .3x -2y =0 D .3x -2y +1=0 5.圆x 2+y 2-6x +4y =0的周长是________. 6.点(2a,2)在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1

椭圆方程的几种常见求法

椭圆方程的几种常见求法 对于求椭圆方程的问题,通常有以下常见方法: 一、定义法 例1 已知两圆C1: ,C2: ,动圆在圆C1内部且和圆C1 相内切,和圆C2相外切,求动圆圆心的轨迹方程. 分析:动圆满足的条件为:①与圆C1相内切;②与圆C2相外切.依据两圆相切的充要条件建立关系式. 解:设动圆圆心M( , ),半径为 ,如图所示,由题意动圆M内切于圆C1, ∴ ,圆M外切于圆C2 ,∴ ,

∴ , ∴动圆圆心M的轨迹是以C1、C2为焦点的椭圆, 且 , , 故所求轨迹方程为: . 评注:利用圆锥曲线的定义解题,是解决轨迹问题的基本方法之一.此题先根据平面几何知识,列出外切的条件,内切的条件,可发现利用动圆的半径过度,恰好符合椭圆的定义.从而转化问题形式,抓住本质,充分利用椭圆的定义是解题的关键. 二、待定系数法 例2已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点

,求该椭圆的方程. 分析:已知两点,椭圆标准方程的形式不确定,我们可以设椭圆方程的一般形式: =1( ,进行求解,避免讨论。 解:设所求的椭圆方程为 =1( . ∵椭圆经过两点 , ∴ 解得 ,故所求的椭圆标准方程为 . 评注:求椭圆标准方程,可以根据焦点位置设出椭圆标准方程,用待定系数法求出 的值:若焦点位置不确定,可利用椭圆一般形式简化解题过程.

三、直接法 例3设动直线 垂直于 轴,且交椭圆 于A、B两点,P是 上线段 AB外一点,且满足 ,求点P的轨迹方程. 分析:如何利用点P的坐标与椭圆上A,B两点坐标的关系,是求点P的轨迹的关键,因直线 垂直于 轴,所以P、A、B三点的横坐标相同,由A、B在椭圆上,所以A、B两点的纵坐标互为相反数,因此,紧紧抓住等式 即可求解. 解:设P( , ),A( , ),B(

相关主题
文本预览
相关文档 最新文档