动力型锂离子电池的研究进展
- 格式:doc
- 大小:33.50 KB
- 文档页数:4
收稿:1997年3月,收修改稿:1997年5月锂离子电池电极材料研究进展周恒辉 慈云祥(北京大学化学与分子工程学院 北京100871)刘昌炎(中国科学院化学研究所 北京100080)摘 要 本文综述了锂离子电池中正、负电极材料的制备、结构与电化学性能之间的关系。
正极材料包括嵌锂的层状Li x M O 2和尖晶石型Li x M 2O 4结构的过渡金属氧化物(M=Co 、Ni 、M n、V ),负极材料包括石墨、含氢碳、硬碳和金属氧化物。
侧重于阐述控制锂离子电池循环过程中可逆嵌锂容量和稳定性的嵌锂电极材料的结构性质。
给出118篇参考文献。
关键词 锂离子电池 嵌锂材料 正极 负极Progress in Studies of the ElectrodeMaterials for Li -Ion BatteriesZhou Henghui Ci Yunxiang(College o f Chemistry &Mo lecula r Engineering ,Peking Univ ersity,Beijing 100871,China )Liu Changyan(Institute of Chemistry ,The Chinese Academy of Sciences ,Beijing 100080,China )Abstract This paper review s the rela tionship betw een synthesis,structures and properties of intercala tio n electrodes with lay ered Li x M O 2a nd spinel Li x M 2O 4structures (M =Co 、Ni 、M n 、V )as cathodes ,and g raphite ,disordered ca rbo n a nd m etal o xide as an-odes in Li-ion batteries.Em phasis is focused on the structural pro perties o f intercalatio n electrode m aterials w hich a re related to the recharg eable capacity and stability during cy-cling of Li io ns .118references are giv en .Key words Li -ion batteries ;intercalatio n materials o f Li ions ;catho des ;ano des 自1859年Gaston Plante 提出铅-酸电池概念以来,化学电源界一直在探索新的高比能量、循环寿命长的二次电池。
锂离子电池研究综述—陈欢1 锂离子电池简介离子电池又称为“摇椅电池”,是指以可供锂离子嵌入脱嵌的物质作为正、负极的二次电池。
电解质一般采用溶解有锂盐的有机溶液,根据所用电解质的状态,可分为液态锂离子电池、聚合物锂离子电池和全固态锂离子电池。
1.1 锂离子电池的工作原理[1]一个锂离子电池主要由正极、负极、电解液及隔膜组成,外加正负极引线,安全阀,PTC(正温度控制端子),电池壳等。
虽然锂离子电池种类繁多,但其工作原理大致相同。
充电时,锂离子从正极材料中脱嵌,经过隔膜和电解液,嵌入到负极材料中,放电以相反过程进行。
再充电,又重复上述过程。
以典型的液态锂离子为例,当以石墨为负极材料,以LiCoO2为正极材料时,其充放电原理为:充电时,Li+从LiCoO2中发生脱嵌,释放一个电子,C3+被氧化为C4 +,与此同时,Li+经过隔膜和电解液迁移到负极石墨表面,进而插入到石墨结构中,石墨结构同时得到一个电子,形成锂—碳层间化合物Li x C6,放电时过程则相反,Li+从石墨结构脱插,嵌入到正极LiCoO2中。
图1 锂离子电池从放电示意图1.2 锂离子电池的优缺点[2](1)能量密度高,输出功率大。
(2)平均输出电压高(约3.6V),为Ni-Cd、Ni-MH电池的三倍。
(3)工作温度范围宽,一般能在-20-45℃,期望值为-40-70℃。
(4)无记忆效应。
(5)可快速充放电,充放电效率高,可达100%。
(6)没有环境污染,称为绿色电池。
(7)使用寿命长,可达1200次左右。
当然,目前的锂离子电池还存在一些不足。
(1)成本较高,主要是正极材料的价格高,随着正极材料的研究开发不断深入一些新的更廉价的正极材料,如LiMnZO4、LiFePO4等己经初步商品化。
(2)过充电的安全问题还需要进一步解决;(3)与普通电池的相容性差,一般要在用3节AA电池(3.6V)的情况下才可以用锂离子电池代替。
2. 锂离子电池的正极材料为了提高锂离子电池的输出电压、比容量、循环使用寿命,目前正在开发的正极材料主要是具有层状结构、尖晶石结构和橄榄石结构的嵌入化合物,主要有氧化钻锂、氧化镍锂、氧化锰锂、磷酸亚铁锂、三元复合材料等。
高功率锂离子电池用新型纳微分级结构Li_4Ti)5O_(12)负极材料的研究锂离子电池具有开路电压高、能量密度大、使用寿命长、少污染等优点,它在总体性能上优于其它传统二次电池。
电动汽车(EV、HEV)等环境负荷较低的“新一代汽车”要求搭载的储能器件具备高速充放电能力,所以动力型锂离子电池高功率化的研发不可或缺也十分紧迫。
实现高功率锂离子电池的关键是开发性能优异的电池材料。
Li4Ti5O12负极材料具有充放电过程中体积变化小、可逆性好等优点。
然而,作为高功率动力型锂离子电池负极材料,其倍率性能还有待进一步提高。
纳微分级结构不仅能够提供大的比表面积和短的离子扩散路径,而且热力学稳定,易于制备,是一种较为理想的结构体系,可有效提高电极材料的倍率性能。
我们将Li4Ti5O12材料本身所具有的优越的循环性能和安全性能,与纳微分级结构有利于提高电极材料倍率性能的特点结合起来,设计合成出了一系列具有新型纳微分级结构的Li4Ti5O12,从而获得具有高功率、高安全性和长寿命的负极材料。
主要研究内容如下:利用乙二醇-水混合溶剂热法制备了纳米片构成的花状Li4Ti5O12微球。
循环伏安测试结果表明,该结构体系通过缩短锂离子的扩散路径,增强了材料中锂离子嵌/脱动力学性能。
通过充放电测试,花状Li4Ti5O12表现出了高的可逆容量和较好的倍率性能,在8 C倍率下的首次放电容量为165 mAhg-1。
鉴于纳米片自组装结构的良好性能,我们利用无定型水合二氧化钛微球作为前驱体,通过简单的水热合成及后续热处理,制备了新型Li4Ti5O12纳米片自组装空心微球。
所合成的微球直径约400 nm,球体内中空,球壳由厚度约2-5 nm的Li4Ti5O12纳米片组成。
通过考察分级结构空心微球的形成过程,提出其形成过程中可能存在着柯肯达尔效应(Kirkendall effect)。
由于空心结构有利于离子快速传输,该结构Li4Ti5O12展现了更为优异的倍率性能和较高的容量,即使在50 C倍率下材料的放电容量仍可达到131 mAhg-1,显示出应用于高功率锂离子电池的潜力,值得期待。
高电压镍锰酸锂动力电池正极材料研究进展宋植彦; 谢凯; 郑春满【期刊名称】《《电源技术》》【年(卷),期】2012(036)009【总页数】5页(P1405-1409)【关键词】动力电池; 正极材料; 高功率; LiNi0.5Mn1.5O4【作者】宋植彦; 谢凯; 郑春满【作者单位】国防科技大学航天与材料工程学院湖南长沙410073【正文语种】中文【中图分类】TM912.9自日本索尼公司1990年以LiCoO2作为正极材料,石墨作为负极材料的锂离子电池面世以来,全世界锂离子电池产业迅猛发展。
当前,全球能源问题日益突出,各国政府从提高未来国家汽车产业竞争力,保持经济、社会可持续发展的战略高度,积极推动以电动汽车为主的新能源汽车的发展。
动力电池系统是电动汽车的重要组成部分,直接影响着电动汽车的起动、加速、行驶里程等多项性能,因此,锂离子电池作为动力能源电池正在受到广泛的关注。
在动力能源领域的应用,要求锂离子电池具有较高的能量密度、较低的生产成本,最重要的是安全性[1-2]。
尖晶石型LiMn2O4正极材料因其晶体结构中锂离子嵌入、脱嵌速率较快和无毒、成本较低等优点,成为目前动力电池研究开发的重点[3]。
由于尖晶石LiMn2O4材料在使用过程中存在Jahn-Teller效应[4-5]、锰离子在电解液中歧化反应及溶解[6-7]等问题,导致材料的电化学循环性能比较的差。
针对这个问题,目前研究较多的就是对其进行离子掺杂与表面包覆改性[8]。
由于动力电池的应用要求电池功率性能好,工作电压较高,因此,为了改善尖晶石锰酸锂正极材料循环稳定性较差的问题,以及提高材料的放电电压,目前的研究主要集中在金属离子掺入替代部分锰离子,制备新的尖晶石型正极材料。
不同元素掺杂后尖晶石LiMxMn2-xO4(M=Ni,Co,Cr,Cu等)正极材料的电压变化会发生变化[9],掺入镍离子的尖晶石锰酸锂材料表现出较好的循环性能,镍离子掺杂研究中,LiNi0.5Mn1.5O4是目前尖晶石锰酸锂掺杂改性研究中最为广泛的。
锂离子电池的现状与发展趋势新能源技术被公认为21 世纪的高新技术,电池行业作为新能源领域的重要组成部分,已成为全球经济发展的一个新热点。
目前锂离子电池已经作为一种重要的能量源被人们大范围的使用,无论是在电子通讯领域,还是在交通运输领域等,它都担当着极为重要的角色,有着广泛的应用前景。
锂离子电池是一种二次电池,是在锂电池的基础上发展起来的一种新型电池,它主要依靠锂离子在正极和负极之间移动来工作。
自20世纪70年代以来,以金属锂为负极的各种高比能量锂原电池分别问世,并得以广泛应用。
锂离子电池工作电压高、比能量高、容量大、自放电小、循环性好、使用寿命长、重量轻、体积小,是现代高性能电池的代表,是移动电话、笔记本电脑等便携式电子设备的理想电源,并有望成为未来电动汽车、无绳电动工具等的主要动力来源之一。
我国锂离子电池产业发展历史不长,但发展很快,2012年我国锂离子电池的总产量达41.8亿只。
在国际锂离子电池市场上,中国、日本和韩国形成了三足鼎立的态势,但总体而言,我国锂离子电池产业在技术先进程度和市场竞争力方面和日本、韩国还有较大差距。
我国锂离子电池产业的技术发展是从模仿国外成熟技术开始的,在此过程中,工艺创新是我国锂离子电池产业早期发展的主要成绩,最近几年,随着技术创新投入不断加大,我国锂离子电池产业在技术创新方面发展很快,并形成了基本的产业核心竞争力,在某些领域积累了一定的技术优势。
锂离子电池材料的研究现状及发展趋势锂离子电池的主要构造有正极、负极、能传导锂离子的电解质以及把正负极隔开的隔离膜。
锂离子电池的电化学性能主要取决于所用电极材料和电介质材料的结构与性能,尤其是电极材料的选择和质量直接决定着锂离子电池的特性和价格。
目前锂离子电池正极材料的研究主要集中于钴酸锂、镍酸锂等,同时,一些新型正极材料(如Li-Mn-O系材料、导电高聚物)的兴起也为锂离子电池正极材料的发展注入了新的活力,寻找开发具有高电压、高比容量和良好循环性能的锂离子二次电池正极材料新体系是该领域的重要研究内容。
全固态锂电池技术的研究进展与展望周俊飞(衢州学院化学与材料工程学院浙江衢州324000)摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。
薄膜型全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池。
作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。
关键词:储能;全固态锂离子电池;固体电解质;界面调控1 全固态锂电池概述全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。
全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。
全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。
放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。
目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。
通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。
CN 11-5904/U J Automotive Safety and Energy, Vol. 11 No. 4, 2020415—427锂离子电池固体电解质的研究与进展穆道斌1,谢慧琳1,吴伯荣1,2*(1. 北京理工大学能源与环境材料系,北京100081,中国;2. 北京市电动汽车协同创新中心,北京100081,中国)摘要:固态锂离子电池因具备能量密度高、安全性能好等优点,已经成为了未来动力电池的主流发展方向。
该文详细梳理了固态锂离子电池的组成和特性以及其核心组成部分─固体电解质的类型与研究进展;简述了当前固态锂离子电池的研发现状,重点阐述了石榴石型锂镧锆氧(Li7La3Zr2O12)基固体电解质在改善锂离子电导率以及界面调控的研究。
该类型固体电解质凭借良好的室温离子电导率、优异的金属锂复合相容性,以及在应用环境下可靠稳定的突出特性,有望成为未来全固态锂离子动力电池的重要组成单元。
指出固体电解质材料的研发势将会对未来固态锂离子动力电池乃至电动汽车领域的发展提供巨大的推力,前景广阔。
关键词:电动汽车;固态锂离子电池;固体电解质;锂镧锆氧(Li7La3Zr2O12);安全性中图分类号: TQ 152 文献标识码: A DOI: 10.3969/j.issn.1674-8484.2020.04.001Research and development of solid electrolytes for lithium ionbatteriesMU Daobin1, XIE Huilin1, WU Borong1,2*(1. Department of Energy & Environmental Materials, Beijing Institute of Technology, Beijing 10081, China2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 10081, China)Abstract: Solid-state lithium-ion batteries have become the promising development direction of power batteriesdue to their high energy density and excellent safety performance. This paper reviews the component andcharacteristics of solid-state lithium-ion batteries in detail, as well as the types and research progress of solidelectrolytes. Moreover, this review also briefly describes the current status of solid-state lithium-ion batteries,and focuses on the garnet-type lithium lanthanum zirconium oxide (Li7La3Zr2O12-based) solid electrolytes whichhave outstanding advantages in lithium ion conductivity and interface regulation. As one important componentof all-solid lithium ion power batteries, the garnet-type Li7La3Zr2O12-based solid electrolytes have good ionicconductivity at room temperature, excellent metal-lithium interface compatibility, and outstanding stability underapplication environment. The breakthrough and development of solid electrolytes will inevitably provide a hugethrust for the future development of solid-state lithium-ion power batteries and even electric vehicles.收稿日期 / Received :2020-09-16。
锂离子电池正极材料磷酸铁锂研究现状一、本文概述随着全球对可持续能源需求的日益增长,锂离子电池作为一种高效、环保的能源储存系统,已经在便携式电子设备、电动汽车、储能电站等领域得到了广泛应用。
而磷酸铁锂(LiFePO4)作为锂离子电池的正极材料,因其高安全性、长寿命、环保性等优点,正逐渐受到业界的广泛关注。
本文旨在综述磷酸铁锂作为锂离子电池正极材料的研究现状,包括其化学性质、合成方法、改性研究、应用前景等方面,以期为磷酸铁锂材料的研究和发展提供有益的参考和启示。
文章首先介绍了磷酸铁锂的基本化学性质,包括其晶体结构、电化学性能等。
然后,综述了磷酸铁锂的合成方法,包括固相法、液相法、溶胶-凝胶法等,并对比了各种方法的优缺点。
接着,文章重点讨论了磷酸铁锂的改性研究,包括表面包覆、离子掺杂、纳米化等手段,以提高其电化学性能。
文章还探讨了磷酸铁锂在锂离子电池领域的应用前景,包括其在小型电池、动力电池、储能电池等方面的应用。
通过本文的综述,我们期望能够为读者提供一个全面、深入的磷酸铁锂正极材料研究现状的了解,同时也希望能够为磷酸铁锂材料的进一步研究和应用提供有益的借鉴和指导。
二、磷酸铁锂的基本性质磷酸铁锂,化学式为LiFePO4,是一种广泛应用于锂离子电池的正极材料。
它具有独特的橄榄石型晶体结构,这种结构使得磷酸铁锂在充放电过程中具有较高的稳定性。
磷酸铁锂的理论比容量为170mAh/g,虽然相对于其他正极材料如硅酸铁锂(LFP)和三元材料(NCA/NMC)较低,但其实际比容量仍然可以达到150mAh/g左右,足以满足大部分应用需求。
磷酸铁锂具有极高的安全性。
其橄榄石结构中的PO43-离子形成了一个三维网络,这个网络有效地隔离了锂离子和电子,从而防止了电池在充放电过程中的热失控现象。
同时,磷酸铁锂的高温稳定性和良好的机械强度也使得它成为一种理想的电池材料。
除了安全性和稳定性,磷酸铁锂还具有优良的循环性能。
在多次充放电过程中,其晶体结构能够保持相对稳定,使得电池的容量衰减较慢。
锂离子电池高电压电解液溶剂研究进展提高锂离子电池能量密度的一个途径是开发具有更高电压的正极材料。
目前,高能量密度数码电池的充电截止电压普遍在4.45V以上,4.48V及以上电压的电池体系也在开发应用,这就对电解液提出了很高的要求。
传统的锂离子电池碳酸酯类电解液由于低的电化学稳定窗口,在高电压下易分解,从而影响电池的电化学性能。
所以,寻找合适的高电压电解液溶剂显得就十分迫切。
本文主要总结了氟代、砜类、腈类等高压溶剂和室温离子液体各自的优缺点及在提高电解液电化学稳定窗口、改善电池性能方面的最新进展,并对高电压电解液未来发展进行展望。
1 前言计算机、通讯和消费电子产品的持续繁荣,带来了锂离子电池产业的快速发展。
然而,目前大量使用的传统的正极材料钴酸锂(LiCoO2)能量密度较低(约150Wh/kg)[1,2],限制了锂离子电池在储能、动力汽车等方面的应用。
而储能、纯电动汽车、混合动力汽车市场将是锂离子电池未来发展和应用的主要方向和关键所在。
提高正极材料的工作电压是提高锂离子电池能量密度的其中一种主要方式。
目前研究的高压正极材料,如尖晶石型LiNi0.5Mn1.5O4、磷酸钴锂(LiCoPO4)、磷酸镍锂(LiNiPO4)等都有很高的工作电压,从而有获得高能量密度的可能。
另外,通过提高充电截止电压,获得高的放电比容量,如富锂锰材料等,也有可能获得高的能量密度。
虽然各种高压正极材料研究比较火热,但一直没有得到大规模实际应用,这其中最主要的原因之一是高压电解液的研发虽然取得了不少进步,但没有取得重大突破,无法批量在实践中得到广泛应用,取得客户端对电池性能和安全的认可。
传统的碳酸酯作为电解液溶剂,如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)等由于有高的离子电导率、良好的对锂盐的溶解性以及能形成稳定的固体电解质界面膜(SEI)膜等优点而成为有机电解液溶剂的理想选择。
尽管这类溶剂的氧化电势高达5V,然而受正极材料中过渡金属离子的催化作用,这些溶剂在较低的电势下(约4.5V)即被氧化分解,从而导致电池性能的快速恶化[3,4]。
锂离子电池高镍三元材料的研究进展一、本文概述随着全球能源危机和环境污染问题日益严重,可再生能源的开发和利用受到了广泛关注。
锂离子电池作为一种高效、环保的储能技术,被广泛应用于电动汽车、便携式电子设备等领域。
高镍三元材料(NCA、NMC等)作为锂离子电池正极材料的代表之一,因其高能量密度、低成本等优点,近年来成为了研究的热点。
本文旨在综述锂离子电池高镍三元材料的研究进展,包括其晶体结构、合成方法、性能优化以及应用前景等方面,以期为相关领域的研究提供参考和借鉴。
本文将介绍高镍三元材料的晶体结构和基本性能,阐述其作为锂离子电池正极材料的优势与不足。
将重点综述高镍三元材料的合成方法,包括固相法、溶液法、熔融盐法等,并分析各种方法的优缺点。
在此基础上,本文将进一步探讨高镍三元材料的性能优化策略,如表面包覆、掺杂改性等,以提高其循环稳定性、倍率性能等。
本文将展望高镍三元材料在锂离子电池领域的应用前景,探讨其未来的发展方向和挑战。
通过本文的综述,期望能够为锂离子电池高镍三元材料的研究和应用提供有益的参考和启示,推动该领域的技术进步和发展。
二、高镍三元材料的结构与性能高镍三元材料,通常指的是NCA(镍钴铝)和NMC(镍锰钴)等富镍正极材料,其中镍的含量通常超过50%。
这些材料因其高能量密度和良好的循环性能而受到广泛关注。
高镍三元材料的晶体结构通常为层状结构,属于α-NaFeO₂型六方晶系。
在这种结构中,镍、钴和锰(或铝)离子占据3a位置,氧离子占据6c位置,形成八面体配位。
镍离子因其较高的氧化态(+3或+4)而占据锂层中的部分位置,这有助于提高材料的能量密度。
然而,高镍含量也带来了结构不稳定性的问题,因为镍离子半径较大,容易引起晶格畸变。
高镍三元材料具有较高的比容量和较高的能量密度,这使得它们成为下一代锂离子电池的理想选择。
例如,NCA材料的理论比容量可以达到275 mAh/g,远高于传统的钴酸锂(LCO)材料(约140 mAh/g)。
锂离子电池用电解质锂盐的研究进展摘要:近年来,锂离子电池作为一种高性能、可重复充放电的电池系统,在移动电子设备、电动车辆和储能领域得到了广泛应用。
电解质是锂离子电池中起着关键作用的组成部分,其中锂盐作为电解质的核心材料,直接决定了电池的性能和稳定性。
因此,研究改进锂盐在电解质中的配位环境,具有重要意义和应用价值。
本文综述了关于锂离子电池用电解质锂盐的研究进展。
关键词:锂离子电池;电解质锂盐;研究进展随着电动汽车和可再生能源等领域的快速发展,锂离子电池的需求不断增加。
作为锂离子电池的核心组成部分之一,电解质锂盐的研究变得尤为重要。
本文旨在综述近年来锂离子电池用电解质锂盐的研究进展,为相关领域的研究者提供参考和启示。
1电解质锂盐性质分析晶体结构:电解质锂盐的晶体结构对其物理和化学性质具有重要影响。
常见的电解质锂盐晶体结构包括闪石状、纤锂石状、立方状等。
不同的晶体结构会影响离子的迁移能力和盐类的溶解度。
导电性能:电解质锂盐在锂离子电池中扮演着离子导体的角色。
其导电性能直接影响电池的性能和效率。
电解质锂盐应具有足够高的离子迁移率,低电阻和较高的离子传输数。
溶解反应:电解质锂盐的溶解性对电池的循环寿命和性能至关重要。
在锂离子电池运行过程中,电解质锂盐与电极材料发生反应,产生可溶性锂盐。
理解电解质锂盐的溶解反应动力学和稳定性可以帮助提高电池的电化学性能。
熔点:熔点是电解质锂盐的一个关键物理性质。
较低的熔点有助于提高电池的工作温度范围和性能。
常用的锂盐如LiPF6、LiBF4、LiClO4等具有适当的熔点范围[1]。
2锂盐在锂离子电池中的应用2.1锂盐酸盐(LiPF6)锂盐酸盐(LiPF6)作为锂离子电池中的电解质,是锂离子电池中最常用的锂盐之一,并在商业化锂离子电池中得到广泛应用。
它的主要作用是在锂离子电池充放电过程中实现锂离子的传输和导电。
锂盐酸盐具有良好的溶解性和稳定性,因此常溶解在有机溶剂(如碳酸酯和碳酸酯醚)中作为电解质的主要成分。
锂离子电池正极材料磷酸铁锂:进展与挑战3蒋志君(科学技术部高技术研究发展中心,北京100044)摘 要: 磷酸铁锂(Li FePO4)由于安全性能好、循环寿命长、原材料来源广泛、无环境污染等优点被公认为是最具发展潜力的锂离子动力与储能电池正极材料。
经过10余年的深入研究,LiFePO4已经进入实用化阶段,综述了磷酸铁锂材料近年来在基础和应用研究方面的最新进展。
关键词: 磷酸铁锂;锂离子电池;正极材料;产业化中图分类号: TB152文献标识码:A 文章编号:100129731(2010)03203652041 引 言随着能源与环境问题的日显突出,电动汽车特别是纯电动汽车的发展势在必行。
目前,制约电动汽车发展的瓶颈是能否开发出价廉、安全、环境友好的二次电池。
作为电动汽车的动力源,二次电池的性能直接关系到整车的各项技术指标,如加速性能、爬坡性能、续行里程、最高时速等。
锂离子电池由于兼具高比能量及高比功率等特点,被公认为是最具发展潜力的电动车动力电池。
根据美国先进电池联合体(U SABC)的发展计划,锂离子电池是目前为止最能满足电动汽车中远期发展目标的二次电池体系。
对于锂离子电池来说,正极材料是决定其电化学性能、安全性能以及价格成本的关键因素。
在各种储锂正极材料中,磷酸铁锂(Li FePO4)由于安全性能好、循环寿命长、原材料来源广泛、无环境污染等优点脱颖而出,自1997年John B.G oodenough教授[1]首次发现其可逆嵌锂2脱锂特性以来就一直是锂离子电池正极材料研究开发的热点。
特别是近几年来,随着各种改善其倍率性能研究的深入,该类材料的电化学性能已经达到实用水平,被公认为是大容量动力和储能电池的首选材料。
本文系统综述Li FePO4材料在基础和应用研究方面的最新进展。
2 磷酸铁锂的性能优势Li FePO4为橄榄石结构,属于正交晶系(Pnmb空间群),材料充电时发生氧化反应,锂离子从FeO6层面间迁移出来,经过电解液进入负极,电子则经外电路到达负极,铁从Fe2+变成Fe3+,发生氧化反应。
锂离子动力电池系统热失控扩展特性试验研究郑腾飞朱顺良谢欢朱强沈驰(上海机动车检测认证技术研究中心有限公司,上海201805)【摘要】锂离子动力电池系统热失控扩展是造成电动汽车火灾事故的主要原因之一,文章以由圆柱形电池构成的动力电池系统对象,热触发单个电芯热失控的方式,通过采集电芯和模组的电压、温数,对电芯热失控及在模组和系统内热扩析与研究。
结果表明,电热失控诱发热扩展过程较为短暂,约5s引发第二节电芯热失控;热失控发生前,触发电芯的负极采样温度高极,且负极温变速稳;热失控发生后,受极喷射火焰影响,直接串接模组存在更高风险,在热扩展中受影响最大。
-Abstract]Thermae runaway expansion of lithium-ion power battery system is one of the main couses of electhc vehide fire accigents.In this papee,the power batere system composed of cylindri-cd lithium一ion batere i s taken as the tesi object.The therma runaway of singee ceU is triggered by heating.By collecting the voltage,temperature and othee characteristio parametere of celi and moduie,the thermai runaway and thermai expansion characteristicc within tee range of moduie and system are tested and anaeyeed.Theeesuetsshowthatthepeooesottheemaeeunawayonduoed bytheemaeeunaway is short,oniy after5seconds the thermai runaway of the second core is ccused.Before thermai runaway occuia,the sampling temperature of tee necativv electrode of tee thgger celi is higher than that of the positivv electrode,and tee necativv temperature rate is stable;dfter the thermal runaway occuia,the module directly connected witli the positivv electrode has higher risk due te the influencc of eie positivv jet tlame,and is most atected in the thermal expansion.-关键词】电池系统热失控温度特性电动汽车doi:10.3969/j.issn.1007-4554.2021.01.020引言大力推进新能源汽车发展,是我国在转:源消费结构、改善环境、提升能源效面做出的选择,也是推动我国汽车产业转型升级,实现我国从汽车大国迈向汽车强国的必:路。
锂离子电池负极材料的研究进展化学与生物工程学院化工08-1 3080313115 班继航摘要:锂离子电池的石墨负极材料已商品化,但还存在一些难以克服的弱点,所以寻找性能更为优良的非碳负极材料仍然是锂离子电池研究的重要课题。
本文综述了在锂离子电池中已实际使用的碳素类负极材料的特点和研究进展情况,并且介绍了正在探索中的锂离子电池非碳负极材料的研究现状。
关键词:锂离子电池负极材料非碳负极材料研究进展锂离子电池与其它二次电池相比具有电压高、比能量大、质量轻、环境友好等优点,目前已经广泛应用于便携式电子产品和电动工具等领域,并有望成为未来混合动力汽车和纯动力汽车的能源供给之一。
负极材料是决定锂离子电池综合性能优劣的关键因素之一,锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成的。
锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。
目前商业化石墨类碳负极材料虽然具有较好的循环性能,但由于存在较低的质量比容量(理论值为372 mAh/g )和较差的高倍率充放电性能,尤其是体积比容量相当有限。
因此进一步提高其容量的空间很小,远不能满足未来高容量长寿命电子设备的需求。
近年来,金属及合金类材料是研究得较多的新型高效储锂负极材994 料体系,其中锡金属与锡合金具有高质量比容量(锡的理论值为mAh/g)和低成本的优势,特别是具有高体积比容量(锡的理论值为7200 mAh/cm3,是碳材料体积比容量的10倍,因此现已成为目前国际上研究的主流负极材料之一。
然而,传统的建立在实验基础之上的研究方法浪费了大量的人力、物力和财力,由于锡基候选电极材料的多样性,因此从理论上去寻求锡基嵌锂材料,探索一种合金理论设计方法,并用于指导实验和分析实验结果,以及模拟和预测锡基材料的各种电化学性能,对未来合金电极材料的研究发展具有重要的指导意义。
一般来说,选择一种好的负极材料应遵循以下原则:比能量高;相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(小于10m2/g),真密度高(大于2.0g/cm3);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。
锂离子研究现状与进展曾亚峰〔湘潭大学材料与光电物理学院,新能源材料与器件专业,学号:2021700322)摘要: 锂离子电池以其比能量高、功率密度高、循环寿命长、自放电小、性能价格比高等优点已经成为当今便携式电子产品的可再充式电源的主要选择对象。
与此同时,为缓解环境压力.世界各国竞相开发电池和机械动力并用的混合电动汽车(HEV)。
本文对对锂离子电池的正极材料方面的研究现状进展讨论。
锂离子电池能否实现商业化将主要取决于性能和价格在锂离子电池的开展过程中,正极材料可能成为制约其大规模推广应用的瓶颈,因此制得性能优越、价格廉价的正极是锂离子商业化进程中的关键性因素。
关键词:锂离子电池正极材料磷酸铁锂三元材料正极材料锂离子电池主要构成材料中的正极材料是制约我国高性能锂离子电池开展的瓶颈正极材料大约占锂电池本钱的30% "主要材料有钴酸锂 ! 锰酸锂 ! 镍酸锂 ! 钴镍锰酸锂以及磷酸铁锂 "但是, 用作动力电池的正极材料, 那么以锰酸锂 !磷酸铁锂和三元材料为主常规的电池正极材料是:磷酸铁锂磷酸铁锂动力蓄电池在功率 ! 平安性等方面具有优异的特性, 但其材料制备和蓄电池消费工艺等技术还不够成熟; 对蓄电池的一致性的要求差距较大; 虽然单体电池性能优异, 但组合后的性能问题突出,诸如动力蓄电池包能量密度 ! 功率密度等参数达不到单体电池设计程度和使用寿命较单体电池缩短几倍甚至几十倍 "导致系统维护和使用本钱增加 , 能量密度和一致性的难题是目前制约磷酸铁锂离子蓄电池在电动车上的。
相对于其他正极材料而言,LiFeP04的构造特征使其具有两个显著优点:1. 优异的平安性能,这是因为该材料热稳定性好,与电解质之间有高度相容性;2.特别优异的循环稳定性,这是因为该材料构造稳定。
LiFeP04正极材料的缺乏之处主要有:1.电导率较低。
磷酸铁锂是一种半导体化合物,禁带宽度为0.3 eV。
锂离子电池在航天器领域的应用状况综述锂离子电池(Lithium-ion battery,简称Li-ion电池)是一种应用广泛的可充电电池,具有高能量密度、长寿命、低自放电率等优点,因此在航天器领域有着重要的应用。
本文将对锂离子电池在航天器领域的应用状况进行综述。
一、锂离子电池在航天器领域的应用概述锂离子电池在航天器领域的应用主要包括卫星、航天飞机和空间站等。
其主要应用方面包括电力系统、控制系统、科学实验等。
在这些领域中,锂离子电池能够提供可靠的能量供应,并且具备重量轻、体积小的特点,适应航天器对电池的高能量密度和重量要求。
二、卫星应用卫星通常需要长时间在太空中工作,稳定的能量供应是其运行和任务实现的基础。
而锂离子电池能够在宽温度范围内运行,适应卫星在太空中的恶劣环境。
因此,锂离子电池被广泛应用于卫星的供能系统。
此外,卫星航电、姿态控制等系统,对电池的电流输出要求高,锂离子电池高的放电能力可以满足这些需求。
三、航天飞机应用航天飞机在进入宇宙轨道之前,航天器的动力系统主要依靠化学电池提供。
而在进入太空后,航天飞机需要长时间进行科学实验和任务执行,因此需要可靠的能源供应。
锂离子电池能够提供较高的电能,可以满足航天飞机对能量密度的要求。
同时,锂离子电池具备长寿命和低自放电率的特点,可以在长期航天任务中提供稳定的电能。
四、空间站应用空间站是人类长期在太空中居住和作业的基地,因此对电力系统的要求较高。
锂离子电池作为空间站的主要能源供应之一,广泛用于电力系统和控制系统。
空间站的电力系统需要提供稳定的电能,以支持日常生活和科学实验。
而锂离子电池能够在长期循环充放电中保持较高的能量密度和稳定性,因此被广泛应用于空间站的电力系统中。
同时,空间站上许多的科学实验和仪器也需要电池作为能源供应,锂离子电池的高能量密度和重量轻的特点可满足这些实验的要求。
五、锂离子电池的发展趋势及挑战随着航天技术的不断推进,航天器对电池的要求也在不断提高。
动力型锂离子电池的研究进展锂离子电池的应用主要在移动通讯、笔记本电脑、MP3、手持影碟机等小型电器方面,但在电动汽车、大型动力电源等领域的应用还处于研究开发阶段。
动力型锂离子电池由正极、隔膜、负极和电解液等构成。
这种电池的正负极均采用可供锂离子(Li+)自由嵌脱的活性物质,充电时,Li+从正极逸出,嵌入负极;放电时,Li+则从负极脱出,嵌入正极。
这种充放电过程,恰似一把摇椅。
因此,这种电池又称为“摇椅电池(Rocking Chair Batteries)”。
电池的特性取决于包括在其中的电极、电解质和其它电池材料。
具体地说,电极的特性取决于电极活性材料、导电剂和粘结剂等。
因此通过电极的特性,如从活性材料、导电剂、粘结剂、电解液等多方面研究,来提高动力型锂离子电池大电流或快速充放电性能,高温以及安全性能等。
1锂离子电池的研究1.1正极材料在动力型锂离子电池的研究中,正极材料是关键,也是引发锂离子动力电池安全隐患的主要原因。
因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。
普遍使用的正极材料是LiCoO2、LiFePO4和LiMn2O4。
商品化的LiCoO2虽广泛应用,但仍存在着一些需解决的问题,如平均放电电压只有3.6V,最高也未达到4.0V;实际比容量为140mhA·g-1;过充电会迅速恶化电极的循环性能;在45℃以上使用时自放电增加,容量下降,也不宜快速充电。
显然,如果LiCoO2作为动力型电池的正极材料,抗过充,自放电等这些需解决的问题若不解决,电池的一致性很差,一旦组合成动力电池,整体电池的性能将受到严重的影响。
为了能进一步完善LiCoO2材料的性能,研究者们把重点转移到LiCoO2材料的掺杂、包覆等。
LiCoO2材料虽然占据着市场,但其昂贵的价格,也限制了它的广泛应用。
LiMn2O4具有放电电压高,安全性好,具有其他层状结构正极材料所不能比拟的高倍率充放电能力等优点,因而目前在推广锂离子动力电池方面,其具有很大优势。
目前有很多研究者如杨娟玉,把LiMn2O4作为动力电池正极材料进行研究。
但LiMn2O4也存在容量衰减快(特别是在高温条件下),循环寿命短的缺点,阻碍了其实用进程。
为了改进LiMn2O4的性能,可以掺杂半径和价态与Mn相近的金属离子如Co,F、Th、Ni等或加入少量的锂;也可以通过包覆来提高循环性能。
虽然LiMn2O4比容量相对较低,但动力电池本身体积较大并不构成明显弱点。
LiFePO4因具有原料来源丰富、价格低廉、较高的比容量以及优良的高温循环性能和极高的安全性能等优点,是很有发展前景的动力电池正极材料。
作为动力型锂离子电池正极备选材料,LiFePO4具有自身的优点:(1)相对较高的理论容量; (2)平稳的充放电电压平台,使有机电解质在电池应用中更为安全;(3)电极反应的可逆性;(4)良好的化学稳定性与热稳定性;(5)廉价且易于制备等。
但因LiFePO4的导电率低,大电流倍率性能差等缺点,使之商业化受到了阻碍。
为了解决这些问题,许多研究者采用不同的合成方法,如有高温固相法、水热法和溶胶-凝胶法等。
也有些研究者通过掺杂或是包覆来解决这些问题。
国内众多的锂离子生产厂家对磷酸铁锂动力电池投入了研发生产。
1.2负极材料负极碳材料应具备大容量、良好的充放电特性、高度可逆的嵌入反应、热力学稳定以及对电解液稳定的性能。
商业化的锂离子电池多数使用碳负极材料,如天然石墨,人工石墨,MCMB等。
Amine K等采用Li 或MCMB石墨作负极,对LiFePO4作正极材料的锂离子电池做了研究。
研究发现,Li作负极,在室温和55℃,放电容量达140mAh/g和158mAh/g。
在55℃,循环100次,容量有所降低。
MCMB石墨作负极,在室温、37℃和55℃循环充放电,循环100次,在室温具有很好的循环性能;而在37℃和55℃,容量损失很大。
Li4Ti5O12为尖晶石结构的白色物质,相对于锂电极的电位为1.55V,理论比容量为175mAh/g,实际比容量为150~160mAh/g。
在Li+嵌入或脱出过程中,晶型不发生变化,体积变化小于1%,因此被称为“零应变材料”,因此能够避免充放电循环中,由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数增加而带来比容量大幅度的衰减,使Li4Ti5O12具有比碳更优良的循环性能。
在25℃下,Li4Ti5O12的化学扩散系数为2×10-8cm2/s,高的扩散系数使其可以快速、多循环充电,但其导电性很差,相对于金属锂的电位较高,容量较低,因此人们对其进行掺杂、包覆改性来提高电导率和可逆循环容量。
1.3导电剂锂离子电池的正极材料导电性差,因此在形成电极时,往往加入导电剂来改善其导电性。
锂离子二次电池的负极常采用石墨类材料,这些材料本身就有较好的导电性,原则上不必要加入导电剂改善导电性,但若应用于动力型电池,加入少许导电剂可以改善负极活性材料间的接触电阻,使电极各个部位的导电性一致。
常用导电剂有:石墨、乙炔黑以及炭黑等。
如果充放电速度慢的话,这些导电剂可以发挥性能。
但是在大倍率快速充放电,电极将会产生较大的极化,导致活性物质利用率下降。
因此开发和使用新的导电剂如碳纳米管,对于动力型电池来说是一项很重要的任务。
Thorat等研究了不同的碳导电剂碳纤维(CF),炭黑(CB)和石墨(GR)对LiFePO4电池性能的影响。
经研究发现,CF 与CB混用,正极材料有很高的容量性能,其次是CF,再就是CB与GR混用。
刘等分别采用碳纳米管(CNT)和CB作为导电剂,研究对LiFePO4/C 电池的影响。
经研究发现,添加CNT可提高正极材料的电导率。
经XRD分析发现,循环后的LiFePO4结构多了一些杂质峰,添加CNT的杂质峰的强度比添加CB的弱,这将暗示出循环后的添加CNT的LiFePO4晶体结构比添加CB改变少。
对于活性材料和导电剂的复合物而言,要形成导电网络,导电剂的添加量是必须控制的,这样足够的导电剂颗粒可填充满活性材料颗粒间的空隙,并且提高了导电剂间的有效接触,复合电极的导电性得到根本改善。
金明钢等采用以LiCoO2为正极材料,以添加不同量的乙炔黑为研究对象。
研究发现,1C放电时,导电剂含量为6.3%的材料拥有最好的电池容量和循环性能。
由于制作工艺的不同或是在空气中较长时间的放置,会使导电剂的表面形成一层酯类物质,这在一定程度上将影响其自身的导电性。
如果对其进行表面处理,可以有效地改善导电性。
刘露以LiMn2O4为活性物质,使用丙酮对导电剂石墨和乙炔黑进行表面处理。
结果发现,经丙酮处理的试样比没经丙酮清理过的试样充放电,最高的比容量都有所提高。
经10次循环,容量几乎不衰减。
这是因为:导电剂表面的酯类物质被丙酮除去,而这类物质正是不能传递锂离子也不能导电,加强了导电剂和活性物质的电接触性,同时减小了锂离子迁移的阻力,这使电池的比容量和循环性能都有一定的提高。
1.4粘结剂粘结剂的种类很多,常用的粘结剂为PVDF。
PVDF为结晶性聚合物,粘结能力很强,但弹性不尽人意,因此在电池充放电时,阻止了活性物质的嵌入和迁出,恶化电池的循环寿命。
Guerfi A等研究了一种新的水溶性人造橡胶粘结剂WSB。
经研究发现,WSB链接每个粒子的表面积小,确保了好的粘结和弹性。
在反复充放电时,因弹性的提高,粘结剂吸附活性材料的膨胀和收缩,从而改善电池的循环寿命。
而PVDF连接的表面积大,从而影响电池的弹性和循环寿命。
WSB比PVDF具有氧化稳定性好,惰性粘结好,和与集电体接触好等优点,进行充放电显示出很大的优势,不可逆容量损失很小。
高温60℃进行电化学性能测试,WSB比PVDF具有相对好的循环寿命。
LiFePO4-WSB电池在高倍率表现出良好的性能,以倍率10C充放电,高温60℃,容量可达120mAh/g。
由此可见,粘结剂WSB应用在动力型电池上,有很大的发展空间。
1.5电解液电解液主要采用锂盐和溶剂所组成,如LiClO4/PC(碳酸丙烯酯)+DME(二甲基乙二醇)、PC+DME、PC+DME+EC(碳酸乙烯酯)、EC+DEC(碳酸二乙酯)、LiAsF6/EC+THF(四氢呋喃)等。
LiClO4 是强氧化剂,使用很不安全。
PC 在蓄电池中因反应性强,易进入碳夹层,用于锂离子电池也不可取。
LiPF6 是适宜的用盐,1~2mol/LLiPF6/EC+DMC是理想的电解液。
电解质的稳定性也是当前研究动力型锂离子电池的一个关键技术。
Sauvage F等采用1mol/L LiPF6,LiAsF6,LiTFS,LiClO4 或是LiBF4作为电解液,采用n-Si(001)/Pt、SS304、Ti或Al作为集电体,经研究发现,用LiClO4在电化学动力学具有很大的优势;使用SS304(304不锈钢)的问题是电化学分散;由于铝在电解液中的催化氧化,LiTFS/Al很不理想;采用水性电解液LiNO3没有副反应发生。
LiClO4和LiTFS在n-Si(001)/Pt表现很好,用LiNO3/H2O使界面阻抗下降,且胶片为150nm,容量增加;当胶片70nm循环10次后,容量损失40%。
这是因为镶嵌的缺陷在厚胶片可以提高循环效率,这也说明结构张力对循环的重要性。
Guerfi A等研究了不同电解液对磷酸铁锂电池性能的影响。
以1C循环,使用Py13(FSI)溶剂,比容量高达160mAh/g,盐FSI在EC/DE里,具有很好的可逆比容量达169mAh/g,接近于理论比容量。
采用Py13(FSI)溶剂,以1C倍率放电,比容量为140 mAh/g,而EMI(FSI) IL表现更高的比容量148mAh/g。
使用LiFSI,电池表现很好的电化学性能,说明FSI有待作为离子性溶剂的阴离子。
考虑到安全和可逆容量,石墨/Py13(FSI)-LiFSI/LiFePO4可能是最好的选择,但只能限制在4C倍率。
另外,在离子性溶剂里添加聚合体虽可以改善钝化层的稳定性,但是添加5%的聚合体的界面阻抗相对大。
因此,在高倍率和界面阻抗方面,有待进一步研究。
1.6集电体铜和铝分别是负极和正极集电体最常用的材料。
Masaru等采用了一种新的三维多孔的集电体。
这种集电体是泡沫的聚氨酯和镍镉合金而制成的。
与传统的集电体组装成的电池相比,这种三维集电体的电池表现出出众的高倍率放电容量。
经电化学阻抗测量,利用三维集电体,电荷转移阻抗显示出半圆形的尺度减少,因此也暗示出这种集电体具有良好的电流收集能力,对高容量电池的研究做出了很大贡献。
因此,这种新型集电体可以应用于动力型锂离子电池的研究。
2结语在对动力型锂离子电池的研究中,电极材料是至关重要的因素,考虑到动力电池的成本、安全以及性能等,能够保证这些要求的材料看来只能是锰酸锂和磷酸铁锂。