锂离子电池电极材料研究进展
- 格式:ppt
- 大小:345.50 KB
- 文档页数:15
收稿:1997年3月,收修改稿:1997年5月锂离子电池电极材料研究进展周恒辉 慈云祥(北京大学化学与分子工程学院 北京100871)刘昌炎(中国科学院化学研究所 北京100080)摘 要 本文综述了锂离子电池中正、负电极材料的制备、结构与电化学性能之间的关系。
正极材料包括嵌锂的层状Li x M O 2和尖晶石型Li x M 2O 4结构的过渡金属氧化物(M=Co 、Ni 、M n、V ),负极材料包括石墨、含氢碳、硬碳和金属氧化物。
侧重于阐述控制锂离子电池循环过程中可逆嵌锂容量和稳定性的嵌锂电极材料的结构性质。
给出118篇参考文献。
关键词 锂离子电池 嵌锂材料 正极 负极Progress in Studies of the ElectrodeMaterials for Li -Ion BatteriesZhou Henghui Ci Yunxiang(College o f Chemistry &Mo lecula r Engineering ,Peking Univ ersity,Beijing 100871,China )Liu Changyan(Institute of Chemistry ,The Chinese Academy of Sciences ,Beijing 100080,China )Abstract This paper review s the rela tionship betw een synthesis,structures and properties of intercala tio n electrodes with lay ered Li x M O 2a nd spinel Li x M 2O 4structures (M =Co 、Ni 、M n 、V )as cathodes ,and g raphite ,disordered ca rbo n a nd m etal o xide as an-odes in Li-ion batteries.Em phasis is focused on the structural pro perties o f intercalatio n electrode m aterials w hich a re related to the recharg eable capacity and stability during cy-cling of Li io ns .118references are giv en .Key words Li -ion batteries ;intercalatio n materials o f Li ions ;catho des ;ano des 自1859年Gaston Plante 提出铅-酸电池概念以来,化学电源界一直在探索新的高比能量、循环寿命长的二次电池。
可编辑修改精选全文完整版锂离子电池的研究进展及应用前景近年来,新能源电池市场的发展迅猛,尤其是锂离子电池,在家用电器、电动车、太阳能等领域得到了广泛的应用。
对于锂离子电池的研究,不仅能够提高电池的性能,同时也能够为其更进一步的应用提供技术支持。
本文介绍了锂离子电池的研究进展以及其应用前景。
一、研究进展1. 电极材料改进电池的性能主要取决于电极材料的性质,因此在锂离子电池的研究中,电极材料的改进是必不可少的。
传统的电极材料为石墨,但石墨有低比容量、低导电性、易热化等问题。
近年来,锂离子电池的革新主要是基于正极和负极材料之间的平衡。
目前用于正极的材料有LiFePO4、LiCoO2、LiMn2O4等,用于负极的材料主要有石墨、金属锂、硅材料等。
这些材料科技的不断创新进步,使得锂离子电池的性能得到不断提升。
2. 电解质电解质是电池中极为重要的部分,因为它赋予电池主要的性能(如循环性能、电池容量、能量密度等)。
在传统的锂离子电池中,一般使用液态电解质,但液态电解质有泄漏的风险,而且易于氧化和燃烧。
为了提高电池的安全性和循环性能,目前锂离子电池中主要使用固态电解质。
固态电解质中,最为主流的是氧化铝、氧化锆等陶瓷材料。
固态电解质具有优异的化学稳定性,与高无效性的锂电求得更高电化学性能和更安全性的使用。
3. 电池系统除了电极材料和电解质的改进之外,电池系统的研究也是锂离子电池中一个必不可少的研究领域。
在电池工作过程中,电极和电解质之间的变化会影响电池的循环性能。
而电池系统从整体的角度出发,可以有效的解决这一问题。
电池系统研发的一个核心是电池管理系统(BMS),BMS在锂离子电池中起着重要的作用,它将对电池的使用和维护起到至关重要的作用。
同时,电池系统的研究还包括了钝化处理、电极的表面改性等专业技术的研发。
这些研究都可以有效的提高锂离子电池的研发与应用。
二、应用前景随着汽车、家用电器、通讯等领域的快速发展,锂离子电池在各个领域得到了广泛的应用。
锂离子电池负极材料的研究进展摘要:当前全球范围内的石油和其他传统能源越来越稀缺,迫切需要有效开发和利用可再生能源,例如太阳能、风能和潮汐能。
但是,这些新能源供应不稳定且持续不断,因此需要先转换成电能再输出,这促进了可充电电池的研究。
传统的铅酸电池,镍镉电池和镍氢电池存在使用寿命短、能量密度低和环境污染等问题,极大地限制了它们的大规模应用。
当前,电池行业的首要任务是找到可替代传统铅酸电池和镍镉电池的可充电电池,迫切需要开发无毒、无污染的电极材料和电池隔膜以及无污染的电池。
与传统的二次化学电池相比,锂离子电池由于其吸引人的特性已经在电子产品中占主导地位,显示出广阔的发展前景。
关键词:锂离子电池;负极材料;研究进展引言国际能源结构正从传统化石能源的主导地位逐渐转变为低碳、清洁和安全的能源,以二次电池为代表的电化学储能技术已成为最有前途的储能技术之一。
锂离子电池因其比能量高、工作电压高、循环寿命长和体积小等特点得到了广泛关注。
锂离子电池主体由正极、隔膜、负极、封装壳体四部分组成,就提高电池的比能量而言,提高负极的性能相对于改进正极、隔膜、封装壳体更为容易。
负极又包括了电流集流体(通常是铜箔)、导电剂(通常是乙炔黑)、粘结剂(通常是聚偏氟乙烯)和具有与锂离子可逆反应的活性材料。
电极的性能几乎取决于活性材料的性能。
1嵌入型负极材料嵌入型负极材料嵌入机制可以描述为,材料结构中可以容纳一定的外来的锂离子,相变形成新的含锂的化合物,并且能在随后的充放电过程中脱出外来的锂离子,恢复到先前的原始结构。
嵌入型负极材料,包括已经商业化锂离子电池负极材料石墨、非石墨化的碳材料(如石墨烯、碳纳米管、碳纳米纤维)、TiO2以及钛酸锂等。
其中碳质材料的优点包括良好的工作电压平台,安全性好以及成本低等。
但是也存在一些问题,如高电压滞后、高不可逆容量的缺点。
钛酸盐负极材料具有优异的安全性、成本低、长循环寿命的优点,但能量密度低。
石墨作为层状碳材料,是首先被商业化和人们所熟知的LIB负极材料,也是最成功的嵌入型负极材料,锂离子嵌入后可生成层状LiC6,其放电平台在0.2V(vs.Li+/Li)以下,有优异的嵌/脱锂动力学性能,是比较完美的LIB负极材料。
锂离子电池正极材料的研究进展锂离子电池正极材料的研究进展随着清洁能源的发展,锂离子电池作为一种高能量、高功率密度的电池,已被广泛应用于移动物体、电动汽车、储能系统等方面,锂离子电池中的正极材料是实现高性能锂离子电池的关键。
本文将从锂离子电池正极材料的发展历程、材料的结构与性能、新型材料的研究和应用等方面展开详细的介绍和分析。
一、锂离子电池正极材料的发展历程20世纪80年代中后期,最早的锂离子电池是由四种材料构成的:平板石墨负极、聚乙烯隔膜、液态电解质和金属氧化物正极。
但是,由于金属氧化物正极的电化学性能不佳,限制了锂离子电池的应用,于是人们开始研究新型的锂离子电池正极材料。
1990年,日产汽车公布了采用碳酸锂电解液和三元材料(LiCoO2)的锂离子电池作为电动汽车动力源的计划。
1997年,索尼公司发布了使用锰酸锂(LiMn2O4)作为正极材料的锂离子电池,在实验室内能够实现高达1000次充放电循环,在国际市场上得到了广泛的推广。
之后,锂离子电池正极材料的研究进入了全新的阶段,市场上出现了一大批新型材料,如LiFePO4、LiNi0.33Mn0.33Co0.33O2等,已成为锂离子电池领域中的热门研究方向。
二、锂离子电池正极材料的结构与性能锂离子电池正极材料的结构一般是层状结构、尖晶石结构、钠层化合物结构、硅基嵌入化合物结构、钙钛矿结构和氧化物渗透缺陷结构,其物理化学性质也有所不同。
LiCoO2是最早应用于锂离子电池的材料之一,其具有较高的理论容量和电化学效率,但是由于其参数退化、安全性差以及高的成本等问题,不断推进了对新型的锂离子电池正极材料的研究。
LiFePO4是一种锂离子电池正极材料,它具有高的理论容量、低的电化学电位和充电的极高可逆性,但是其电导率较低,电量功率较低,在高功率环境下却发生了否决性的出现。
LiMn2O4是一种高性能的锂离子电池正极材料,其较高的电化学反应速度能够有效提高锂离子电池的安全性,但是容易发生相关的氧化还原反应,导致容量的降低。
锂离子电池技术的研究进展锂离子电池是一种经典的可充电电池,其具有体积小、重量轻、能量密度高等优势,在移动通信、电动车、储能、航空航天等领域得到广泛应用。
随着科技的发展和需求的不断增加,锂离子电池技术在结构设计、电极材料、电解液等方面都得到了很大的改进和创新。
本文将介绍锂离子电池技术的研究进展,从多个角度探究其发展趋势和前景。
一、锂离子电池的结构设计电池的结构设计是决定其性能和循环寿命的关键。
一般来说,锂离子电池的结构主要包括正极、负极、电解质等组件。
近年来,随着材料科学的不断进步,锂离子电池结构设计也得到了极大的发展。
在正极材料方面,过渡金属氧化物正极材料(例如LiCoO2、LiMn2O4、LiFePO4等)是锂离子电池的主流正极材料,其中LiFePO4正极材料具有很好的安全性和较高的电化学性能,正在成为锂离子电池领域的一个新兴研究方向。
在负极材料方面,将碳材料的石墨化应用于锂离子电池负极材料是减轻电池重量和提高电池能量密度的有效途径。
最近,为了提高电池的性能,石墨化碳材料的晶体结构进行了改进,例如采用硬碳、微米纤维等材料来改善石墨化碳的性能。
电解质是电池中的重要组成部分,一般使用电解液来实现离子的传导。
新型电解液材料的出现,能够提高电池的韧性、抗干扰性、安全性和电化学性能。
现在,固态电解质被认为是提高电池的稳定性和循环寿命的最有前途的电解质方向之一。
二、锂离子电池的电极材料电极材料是锂离子电池中起到媒介传导作用的关键组成部分。
近年来,针对锂离子电池中的电极材料进行了很多研究。
正极材料方面,磷酸铁锂是新兴的正极材料,具有较高的比容量(170mAh/g)、较高的放电平台电压3.45V(vs Li/Li+)以及优良的循环寿命。
二氧化钛正极材料则是另一种热门材料,其通过改变二氧化钛的结构和化学组成来增加其电容量,进一步提高了电量的密度。
负极材料方面,石墨负极材料是目前应用最广泛的负极材料。
近年来,人们通过增加石墨负极材料的粗度和孔隙度来提高电池的效率和循环寿命。
锂离子电池正极材料研究进展锂离子电池是目前广泛应用于移动电子设备和电动车辆等领域的重要能量存储设备,其正极材料的性能对电池的性能和循环寿命有着至关重要的影响。
近年来,针对锂离子电池正极材料的研究逐渐受到了广泛关注。
在这篇文章中,将介绍一些最新的研究进展。
首先,锂离子电池正极材料的研究主要集中在提高材料的能量密度和循环寿命。
目前市面上常见的锂离子电池正极材料是钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)和锂铁磷酸锂(LiFePO4)。
然而,这些材料在使用过程中存在着一些问题,比如钴酸锂存在着资源稀缺和价格昂贵的问题,锰酸锂的电化学性能相对较差,锂铁磷酸锂的能量密度较低等。
因此,研究人员开始寻找替代材料。
一种备受关注的材料是含有镍的过渡金属氧化物,比如锂镍钴锰氧化物(Li(Ni1/3Co1/3Mn1/3)O2)。
这种材料具有较高的能量密度和较长的循环寿命。
另外,研究人员还探索了硅和硫等材料作为锂离子电池正极材料的替代品。
其次,锂离子电池正极材料的微观结构调控也成为一个研究热点。
通过控制正极材料的粒径、纳米结构和晶体结构等参数,可以调节材料的电化学性能。
比如,一些研究表明,通过控制锂离子电池正极材料的晶体结构,可以实现更高的能量密度和更好的循环稳定性。
此外,锂离子电池正极材料的表面改性也引起了广泛关注。
通过在正极材料的表面形成一层保护膜,可以提高材料的循环稳定性和抗固相界面反应能力。
一些研究表明,通过硅、氟等元素的表面覆盖,可以显著改善正极材料的循环性能和容量保持率。
总体来说,锂离子电池正极材料的研究进展主要包括寻找新的材料、微观结构调控和表面改性。
通过这些研究,可以不断提高锂离子电池的能量密度和循环寿命,进一步推动锂离子电池在移动电子设备和电动车辆等领域的广泛应用。
随着移动电子设备和电动车辆市场的不断扩大,对锂离子电池正极材料的需求也越来越迫切。
因此,研究人员在锂离子电池正极材料的改进和创新上投入了大量的精力。
锂离子电池的研究进展综述锂离子电池的研究进展刘文 2015200807近十年以来,通过对新电极材料和新存储机理的开发研究,基于锂的可重复充电电池技术得到了飞跃发展,电池性能不断提高。
得益于纳米技术的不断探索发现,传统电池材料存在的许多重难点基础问题极有希望得到解决。
一、纳米技术致力于解决传统电池领域的哪些重大问题?1. 体积变化导致活性颗粒和电极的开裂与破碎传统嵌入式电极材料在充放电过程中的体积变化较小。
而对于新型的高容量电极材料而言,由于充放电过程中,大量Li物种嵌入和脱嵌,发生巨大的体积变化。
经过多次循环之后,活性颗粒和电极材料会开裂和破碎,影响电学传导,并造成容量降低,最终导致电池失效,大大缩短了电池的使用寿命。
据报道,合金型负极材料的体积膨胀率中,Si为420%,Ge和Sn为260%,P为300%。
而传统的石墨负极只有10%。
图1. 活性颗粒和电极材料在充放电过程中开裂和破碎的过程硅极负极的解决方案纳米材料一个天然优势就在于,其尺寸较小,可以在颗粒和电极层面上有效抵抗力学上的破坏。
高容量电极材料有一个基本参数,叫做临界破碎尺寸。
这个参数值取决于材料的反应类型(譬如合金反应,转化反应)、力学性能、结晶度、密度、形貌以及体积膨胀率等一系列参数。
而且,电化学反应速率对于颗粒的开裂和破碎影响重大,充放电速率越快,产生的应力就越大。
当颗粒尺寸小于这个临界尺寸时,锂化反应引起的应力就能得到有效控制,从而缓解颗粒的的开裂和破碎行为。
研究表明,Si纳米柱的临界尺寸是240-360 nm,Si纳米线的临界尺寸是300-400 nm,这一区间范围主要是受到电化学发宁速率的影响。
晶化Si纳米颗粒的临界尺寸大约是150 nm。
图2. Si纳米线负极材料可以适应应力的影响因此,颗粒的破碎问题可以通过使用低于临界尺寸的各种纳米结构材料来实现,譬如纳米柱、纳米线、纳米颗粒、纳米管、纳米棒、以及纳米复合材料等。
至于电极的破碎问题主要是采用一系列胶粘方法将Si纳米颗粒粘结在集流器上实现。
磷酸铁锂作为锂离子电池正极材料的研究进展磷酸铁锂作为锂离子电池正极材料的研究进展锂离子电池是现代电子产品中最常用的电池之一,其高能量、高比能力、长寿命和环保等特点,使得其应用范围越来越广泛。
锂离子电池由负极和正极组成,因此正极材料的性能对电池的能量密度、功率密度、循环寿命等方面都有着关键的影响。
磷酸铁锂作为一种新型的锂离子电池正极材料,其具有结构稳定、容量高、寿命长等优点,在锂离子电池研究领域发挥着重要作用。
本文将围绕磷酸铁锂作为锂离子电池正极材料的研究进展展开讨论。
一、磷酸铁锂的基本性质磷酸铁锂(LiFePO4)是一种具有嵌锂过程的锂离子电池正极材料,其晶体结构属于层状结构。
磷酸铁锂的电化学性能稳定,安全性好,具有很高的比容量和长寿命等特点,因此被广泛应用于电动工具、电动车等领域。
二、磷酸铁锂与其他锂离子电池正极材料的比较1、与钴酸锂的比较钴酸锂是当前锂离子电池中使用最广泛的正极材料之一,其具有高能量密度、较高的循环寿命和优秀的高温性能等特点。
但是,钴酸锂的成本高、资源稀缺且存在环境污染问题,因此其替代材料备受关注。
相比之下,磷酸铁锂的成本低、资源丰富且无毒、可回收等环保优势。
而且,磷酸铁锂具有比容量高、循环寿命长、高比功率、安全性好等特点,因此被广泛认为是一种具有广阔应用前景的正极材料。
2、与锰酸锂和三元材料的比较锰酸锂和三元材料是锂离子电池中常用的正极材料,锰酸锂具有高比能力、成本低的优势,但其循环寿命较低;三元材料则具有较高的能量密度、循环寿命和安全性等优点,但其制备过程复杂,成本高。
相比之下,磷酸铁锂具有更高的比容量、更长的循环寿命和更好的安全性,是一种替代锰酸锂和三元材料的新型正极材料。
三、磷酸铁锂制备方法的研究进展1、固相法固相法制备磷酸铁锂是最早的方法之一,其操作简便、制备工艺成熟、产品质量稳定,因此得到了广泛应用。
但是,固相法制备的磷酸铁锂容易出现分布不均匀、晶体尺寸大小不一的问题,从而影响磷酸铁锂的电化学性能。
锂离子电池正极材料的研究进展随着现代社会科学技术的不断发展,电池作为能量存储和转化的一种形式,已经成为了我们日常生活中必不可少的一部分。
其中,锂离子电池由于其重量轻、体积小、储能量大以及循环寿命长等优点,成为了当前最常用的电池类型之一。
而锂离子电池的核心组成部分便是正极材料,其性能的优劣直接决定了电池的性能。
因此,正极材料的研究一直是锂离子电池领域的重要研究课题。
本文将对锂离子电池正极材料的研究进展进行综述。
一、锂离子电池正极材料的种类及其优缺点在锂离子电池的正极材料中,最常见的是锂钴氧化物(LiCoO2)、锂镍钴铝氧化物(NCA)、锂铁磷酸(LiFePO4)、锂锰氧化物(LiMn2O4)和三元材料LiNi0.33Co0.33Mn0.33O2(NCM)等。
这些材料具有不同的结构,性能和成本等特点,它们的使用也会受到电池的应用领域和终端设备的要求等多种因素的影响。
其中,锂钴氧化物作为第一代正极材料,具有高的储能量和较高的系统电压,但其价格昂贵,含有的钴元素资源匮乏,同时热稳定性和安全性能也有所欠缺;NCA具有高能量密度、长寿命和优异的功率性能,并且所含有的材料成分也比较丰富,但其制备成本较高,同时在高温和高电压下易发生失稳和过热等安全问题;LiFePO4的循环寿命长,热稳定性好,同时价格较为低廉,但它的理论储能量低、电导率差,同时在高功率放电和低温放电等情况下其性能明显下降;LiMn2O4具有低成本、高电导率和热稳定性好等优点,但其含有锰元素,易受到水解和氧气氧化等因素的影响,同时循环寿命也不如其他材料长;NCM作为新型锂离子电池材料,具有高能量密度、优异的耐热性和循环寿命等特点,但其价格较高,同时还存在着容量衰减快和失稳的问题。
总的来说,各种材料都具有各自的特点和适用范围,根据实际需求选择合适的正极材料十分必要。
二、锂离子电池正极材料的研究进展随着人们对新能源和环境保护要求的不断提高,锂离子电池在挑战和追求更高性能的过程中,锂离子电池正极材料也在不断地进行研究和改进。
锂离子电池负极材料的研究进展摘要:锂离子电池作为一种电源应用很广泛,但是在应用中存在一些不足,选取电化学性能良好的正负极材料是提高和改善锂离子电池电化学性能最重要的因素。
简单介绍锂离子电池的电化学反应原理和从新型碳材料、硅基负极材料、锡基负极材料三方面锂离子电池的研究状况,并展望了锂离子电池负极材料的发展趋势。
关键词:锂离子电池;负极材料;研究现状0 引言目前全球最具潜力的可充电电池是锂离子电池。
用碳负极材料的商品化的锂离子电池可逆比容量已达350 mA∙h/g,快接近理论比容量372mA∙h/g[1]。
随着全球化的加快,科技日新月异,电子产品日益普及,发展中的电动汽车等对电池能源提出了更高的要求,其中主要包括能量密度、使用寿命等[2]。
开发新型、廉价的负极材料是锂离子电池研究的热点课题之一。
就目前而言,主要有新型碳材料、锡基材料、硅基材料等,本文研究了这些新型负极材料的研究现状及未来的发展方向。
1锂离子电池的电化学反应原理锂离子电池是指用锂离子嵌入化合物作为正负极的二次电池.锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如LixCoO2,LixNiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到 4 V以上(vs.Li+/Li)[3].负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6等的有机溶液。
锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构成.充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态.锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关[3]。
2新型碳材料在新型碳负极方面,未来的发展将主要集中在高功率石墨类负极及非石墨类高容量碳负极,以满足未来动力和高能电池的需求。
锂离子电池高镍三元材料的研究进展一、本文概述随着全球能源危机和环境污染问题日益严重,可再生能源的开发和利用受到了广泛关注。
锂离子电池作为一种高效、环保的储能技术,被广泛应用于电动汽车、便携式电子设备等领域。
高镍三元材料(NCA、NMC等)作为锂离子电池正极材料的代表之一,因其高能量密度、低成本等优点,近年来成为了研究的热点。
本文旨在综述锂离子电池高镍三元材料的研究进展,包括其晶体结构、合成方法、性能优化以及应用前景等方面,以期为相关领域的研究提供参考和借鉴。
本文将介绍高镍三元材料的晶体结构和基本性能,阐述其作为锂离子电池正极材料的优势与不足。
将重点综述高镍三元材料的合成方法,包括固相法、溶液法、熔融盐法等,并分析各种方法的优缺点。
在此基础上,本文将进一步探讨高镍三元材料的性能优化策略,如表面包覆、掺杂改性等,以提高其循环稳定性、倍率性能等。
本文将展望高镍三元材料在锂离子电池领域的应用前景,探讨其未来的发展方向和挑战。
通过本文的综述,期望能够为锂离子电池高镍三元材料的研究和应用提供有益的参考和启示,推动该领域的技术进步和发展。
二、高镍三元材料的结构与性能高镍三元材料,通常指的是NCA(镍钴铝)和NMC(镍锰钴)等富镍正极材料,其中镍的含量通常超过50%。
这些材料因其高能量密度和良好的循环性能而受到广泛关注。
高镍三元材料的晶体结构通常为层状结构,属于α-NaFeO₂型六方晶系。
在这种结构中,镍、钴和锰(或铝)离子占据3a位置,氧离子占据6c位置,形成八面体配位。
镍离子因其较高的氧化态(+3或+4)而占据锂层中的部分位置,这有助于提高材料的能量密度。
然而,高镍含量也带来了结构不稳定性的问题,因为镍离子半径较大,容易引起晶格畸变。
高镍三元材料具有较高的比容量和较高的能量密度,这使得它们成为下一代锂离子电池的理想选择。
例如,NCA材料的理论比容量可以达到275 mAh/g,远高于传统的钴酸锂(LCO)材料(约140 mAh/g)。
锂离子电池负极材料Li4Ti5O12研究进展摘要:各种锂离子电池电极材料作为十分重要的新能源材料近些年来受到前所未有的广泛关注。
尖晶石Li4Ti5O12由于其特殊的零应变性能近来成为研究热点,是一种具有潜力的锂离子电池负极材料。
本文介绍了钛酸锂的结构和性能,同时详细比较了各种制备方法的优缺点,并从掺杂改性等方面概述了国内外对于Li4Ti5O12材料的研究进展。
关键词:负极材料,Li4Ti5O12,零应变材料目前商用锂离子电池负极材料大多采用各种嵌锂碳/石墨材料。
尽管相对于金属锂而言,碳材料在安全性能、循环性能等方面有了很大的改进,但仍存在不少缺点:在第一次充放电时,会在碳表面形成钝化膜,造成容量损失;碳电极与金属锂的电极电位相近;在电池过充电时,仍可能会在碳电极表面析出金属锂,而形成枝晶造成短路;以及可能在高温时热失控等。
尖晶石型钛酸锂Li4Ti5O12由于其具有优良的安全性能和独特的结构稳定性(“零应变”材料),可以克服传统碳材料的一些缺点,成为近年来研究的热点。
Li4Ti5O12理论容量为175 mAhg-1,在嵌入或脱出锂离子时其晶格常数和体积变化都很小,被称为“零应变插入材料”。
在充放电循环中,这种“零应变”性能够避免由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少循环带来的比容量衰减,具有非常好的耐过充、过放特征。
但是,Li4Ti5O12电子电导率和离子传导率(固有电导率仅为10-9scm-1)非常低, 导致其电流倍率性能差,极大地限制了其实用化的进程。
尖晶石型Li4Ti5O12理论容量为175 mAhg-1,实际循环容量为150~160 mAhg-1,且有着十分平坦的充放电平台。
Li4Ti5O12相对Li/Li+电对的还原电位高达1.5 V, 高于大多数有机液体电解质的分解电压,从而避免了充放电过程中电解液逐渐减少的现象,同时也可以避免金属锂的沉积。
一、Li4Ti5O12的结构Li4Ti5O12晶体为尖晶石型结构,是面心立方体结构,空间群为Fd3m ,如图1所示。
锂离子电池负极材料的研究进展化学与生物工程学院化工08-1 3080313115 班继航摘要:锂离子电池的石墨负极材料已商品化,但还存在一些难以克服的弱点,所以寻找性能更为优良的非碳负极材料仍然是锂离子电池研究的重要课题。
本文综述了在锂离子电池中已实际使用的碳素类负极材料的特点和研究进展情况,并且介绍了正在探索中的锂离子电池非碳负极材料的研究现状。
关键词:锂离子电池负极材料非碳负极材料研究进展锂离子电池与其它二次电池相比具有电压高、比能量大、质量轻、环境友好等优点,目前已经广泛应用于便携式电子产品和电动工具等领域,并有望成为未来混合动力汽车和纯动力汽车的能源供给之一。
负极材料是决定锂离子电池综合性能优劣的关键因素之一,锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成的。
锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。
目前商业化石墨类碳负极材料虽然具有较好的循环性能,但由于存在较低的质量比容量(理论值为372 mAh/g )和较差的高倍率充放电性能,尤其是体积比容量相当有限。
因此进一步提高其容量的空间很小,远不能满足未来高容量长寿命电子设备的需求。
近年来,金属及合金类材料是研究得较多的新型高效储锂负极材994 料体系,其中锡金属与锡合金具有高质量比容量(锡的理论值为mAh/g)和低成本的优势,特别是具有高体积比容量(锡的理论值为7200 mAh/cm3,是碳材料体积比容量的10倍,因此现已成为目前国际上研究的主流负极材料之一。
然而,传统的建立在实验基础之上的研究方法浪费了大量的人力、物力和财力,由于锡基候选电极材料的多样性,因此从理论上去寻求锡基嵌锂材料,探索一种合金理论设计方法,并用于指导实验和分析实验结果,以及模拟和预测锡基材料的各种电化学性能,对未来合金电极材料的研究发展具有重要的指导意义。
一般来说,选择一种好的负极材料应遵循以下原则:比能量高;相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(小于10m2/g),真密度高(大于2.0g/cm3);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。
山东化工-66-SHANDONG CHEMICAL ICDUSTRY2020年第49卷聚酰亚胺作为锂电池电极材料的研究进展王淼,徐立环(沈阳化工大学,辽宁沈阳20000)摘要:锂离子电池性能的优越性主要取决于电极材料,目前来看,无机电极材料(二氧化钻锂,磷酸铁锂等)因其理论比容量受限。
因此,开发新一代有机聚合物电极材料是尤为重要的。
其中聚酰亚胺作为电极材料因其自身得失电子后的稳定性,且羰基为活性基团,理论比容量高,结构设计多样性,而受到越来越多研究者的广泛关注。
但是聚酰亚胺作为电极仍然存在超锂化问题,所以本文综述了目前国内外已经开展的聚酰亚胺电极材料超锂化解决的研究工作。
关键词:锂离子电池;聚酰亚胺;超锂化;复合材料;活性物质中图分类号:TQ303.7;TM92文献标识码:A文章编号:208-221X(2222)22-0062-22锂离子电池由于其高能量密度、长循环寿命和高效率而变得引人瞩目,决定锂离子电池的导电性能和循环稳定性能是活性物质,传统的无机导电物质已经不能满足当前市场的需要。
因此有机材料的出现是可以完美代替无极材料的,但是由于有机小分子的溶解性较差,在循环过程中与电解液互溶[2,有机聚合物具有良好的溶解性能可以改善此问题。
本文从锂离子电池与聚酰亚胺的电化学反应机理,聚酰亚胺的制备和发展概况开展。
1锂离子电池与聚酰亚胺电化学反应机理1.3锂离子电池电化学反应机理锂离子电池是由正极材料,负极材料,电解质和隔膜四个部分组成的,一般正极材料的作用是提供锂离子的,它的电极电位很高,其通式一般写为LCOx[]。
负极材料的作用则是吸收锂离子,其具有足够的活性位点与正极提供的锂离子发生电化学反应,所以电极电势需要比较低。
电解质是重要的组成部分之一,锂电池电解质有三种,分别是:液体电解质、聚合物电解质、凝胶电解质,电解液当中包括有六氟磷酸锂。
隔膜是锂电池重要的一部分,聚烯烃微孔膜由于综合性能良好,是目前应用最广泛地薄膜材料。