当前位置:文档之家› 非接触式逻辑加密卡读写控制实验(一)

非接触式逻辑加密卡读写控制实验(一)

非接触式逻辑加密卡读写控制实验(一)

西安邮电大学

智能卡技术及应用

课内实验报告

实验名称:非接触式逻辑加密卡读写控制实验(一)专业名称:智能科学与技术

班级:

学生姓名:

学号:

指导教师:

实验日期:2016年5月23日

第6章 非接触卡

第6章 非接触卡 内容提纲 1、非接触卡的电磁场基础 2、在ISO/IEC14443标准中,定义了两种射频调幅调制的信号类型TYPE A :TYPE B : 了解两种卡片的工作基波,副载波,数据速率、调制波形、调制系数 3、TYPE A 中Miller 编码的数据表示方法 4、 TYPE A 的IC 卡命令集、状态集,和状态转换 5、TYPE A 防冲突算法—二进制树搜索算法 6、负载调制 7、Mifare 1系列中,目前只有S50和S70两个型号 ,简述S50卡片内部16个分区,每个分区的功能职责划分 2.1射频识别的电磁场理论 射频识别系统中读写器与卡片之间的能量和数据传输的理论基础是电磁场理论,交变的电场产生磁场,交变的磁场产生电场。麦克斯韦方程组描述了电场与磁场相互转化中产生的对称性。麦克斯韦方程组如下[5]。 B jw E =?? (2.1) D jw J H -=?? (2.2) ρ=??D (2.3)

0=??B (2.4) 其中: E :电场强度(V/m) H :磁场强度(A/m) B :磁感应强度(T) D :电位移矢量(C/m 2) j :电流密度(A/In 2) ρ:电荷密度(C/m 3) 方程组中的四个方程比不完成独立,其中两个三度方程可以从两个旋度方程推导出。为了得到一个完整的系统,4个基本方程的各个矢量满足下面的组成关系。 )(E D D = (2.5) )(E J J = (2.6) )(E B B = (2.7) 上述方程是场的本构关系,表示了场与介质之间的关系,也称之为介质的特性方程或者辅助方程。对于线性媒质有下面的关系。 E D ε= (2.8) i J E J +=σ (2.9) H B μ= (2.10) 其中,ε、σ、μ分别表示媒质的介电常数、电导率、磁导率,此三者统称为媒介的本构参数,对于各向同性媒质他们是标量,对于均匀媒质它们是常量,对于非均匀媒质它们是位 置的函数,对于各向异性媒质它们是张量;i J 是外加电流密度,与电路理论中的电流源是 一致的。 i J 、ρ为产生电磁场E 、H 的源,通常i J 与ρ之间的关系为公式2.11。 0t =??+??ρJ (2.11) 2.2读写器与IC 卡的通信 在ISO/IEC14443标准中,定义了两种射频条幅调制的信号类型,即TYPE A 和TYPE B ,本设计采用的是TYPE A 。TYPE A 的射频调幅调制IC 卡与读写器发送、接收波形分别如图2.2和图2.3所示,图中阴影部分为13.56MHz 的射频基波。数字信号作为副载波搭载于射频基波上,射频基波为IC 卡提供了能量,调幅调制信号传送了数据。在非接触式IC 卡的内部,载于射频基波上的副载波经过检波、滤波和放大等处理之后,即可得到方波。在接收的13.56MHz 的基波中含有847.5kHz 的副载波,由副载波对基波的调制实现了接收信号的传递。每一位数据的传送时间为9.44us ,所以传送速率为106Kbit/s [7]。

文件加密与解密实验报告

HUNAN UNIVERSITY 程序设计训练——文件加密与解密 报告 学生姓名X X X 学生学号20110102308 专业班级建环308 指导老师何英 2012-07-01至 2012-07-13

一、程序设计目的和要求 (3) 二、程序设计内容 (4) 1、总体设计 (4) 1.1主控选择模块 (4) 1.2加密模块 (4) 1.3解密模块 (4) 2、流程图 (5) 三模块详细说明 (6) 四、测试数据及其结果 (7) 五、课程设计总结 (8) 六、附录 (9) 附录1:参考文献 (9) 附录2:程序源代码 (9)

一、程序设计目的和要求 1、目的:为保证个人数据资料不被他人窃取使用,保护个人隐私及个人文件。设计一个基于c语言的文本文件加密及解密软件,可以方便对文本文件的加密与解密。本设计实现了文本文件的解密及解密,运行软件之后只需输入任意一个文本文件的文件名及后缀名即可对该文本文件进行加密或解密操作。本设计的加密与解密系统,使用了面向各类文件的方法,运用Microsoft Visual C++ 6.0实现具有加密、解密、帮助信息、读取文本文件、显示结果、退出等功能的文件加密与解密系统。 2、要求: (1)从键盘输入要进行加密的一行字符串或者需要加密的文件名。 (2)显示菜单: (3)选择菜单,进行相应的操作。加密方法是设置一加密字符串以及对文件的哪些部分进行加密;加密是将原始文件加密并保存到文件中;解密是将加了密的文件还原并保存到文件中,同时应比较与原始文件的一致性; 3、其他要求 (1)变量、函数命名符合规范。 (2)注释详细:每个变量都要求有注释说明用途;函数有注释说明功能,对参数、返回值也要以注释的形式说明用途;关键的语句段要求有注释解释。

信息安全加密实验报告

重庆交通大学实验报告 班级:计信专业2012级2班 学号: 631206060232 姓名:娄丽梅 实验项目名称:DES加解密程序设计与实现 实验项目性质:设计性(验证性) 实验所属课程:信息安全 实验室(中心):软件实验室 指导教师:米波 实验完成时间: 2014 年12月11日

一、实验目的 1、理解DES加密与解密的程序设计算法思想。 2、编写DES加密与解密程序,实现对明文的加密与解密,加深对数据加密与解密的理解,掌握DES加密算法思想,提高网络安全的编程能力。 二、实验主要内容及原理 (一)实验内容 1、掌握DES算法; 2、编写DES算法。 (二)实验原理 1、初始置换 初始置换在第一轮运算之前执行,对输入分组实施如下表所示的变换。此表应从左向右、从上向下读。在将这64位数据分为左右两部分,每部分分别为32位,将左32位留下,将右32位按照下表进行排列 2、密钥置换 一开始,由于不考虑每个字节的第8位,DES的密钥由64位减至56位。每个字节第8位可作为奇偶校验位以确保密钥不发生错误。接着,56位密钥被分成两部分,每部分28位。然后,根据轮数,这两部分分别循环左移l位或2位。在DES的每一轮中,从56位密钥选出48位子密钥(Sub Key)。 3、S盒置换 当产生了48位密钥后就可以和右边32位明文进行异或运算了,得到48位的密文。 再经过下论的S盒跌带,其功能是把6bit数据变为4bit数据,每个S盒是一个4行、16列的表。盒中的每一项都是一个4位的数。S盒的6个位输入确定了其对应的输出在哪一行哪一列。 4、P盒置换 S盒代替运算后的32位输出依照P盒进行置换。该置换把每输入位映射到输出位,任意一位不能被映射两次,也不能被略去,这个置换叫做直接置换。 5、再次异或运算 最后,将P盒置换的结果与最初的64位分组的左半部分异或,然后左、右半部分交换,接着开始另一轮。 6、当进行到16轮后,最终进行一次末置换,形成密文

非对称加密实验

非对称加密实验 【实验环境】 ISES客户端 Microsoft CLR Debugger 2005或其它调试器 【实验内容】 通过运算器工具实现RSA和ElGamal算法的加解密计算 手工计算RSA密钥并检验,将其应用于签名中并验证 对RSA密钥生成、RSA密钥加密、ElGamal参数生成、ElGamal密钥生成和ElGamal加密进行算法跟踪 非对称加密实验 【实验原理】 非对称密码体制又称为公钥密码体制,加解密使用公私钥密钥对,私钥由密钥拥有者保管,公钥可以公开,基于公开渠道进行分发,解决了对称密钥体制中密钥管理、分发和数字签名等难题。 一、 RSA算法 RSA公钥算法由Rivest、Shamir、Adleman于1978年提出的,是目前公钥密码的国际标准。算法的数学基础是Euler定理,是基于Deffie-Hellman的单项陷门函数的定义而给出的第一个公钥密码的实际实现,其安全性建立在大整数因子分解的困难性之上。 RSA算法的明文空间M=密文空间C=Z整数,其算法描述如下: n (1) 密钥生成 随机选择两个大素数p和q,计算n=p?q,;选择一个随机整数e<,满足,计算整数;公开公钥(n,e),安全的销毁p、q和,并保留(d,n)作为私钥。

(2) 加密 (3) 解密 使用中国剩余定理可以加速RSA密码算法的实现。 二、 ElGamal算法 ElGamal算法是Deffie-Hellman单项陷门函数的一个成功应用,把函数转化为公钥加密体制,其安全性建立在有限域上的离散对数问题。 ElGamal算法的描述如下: (1) 密钥生成 随机选择一个素数p,计算p个元素的有限域的乘法群的一个随机乘法生成元g;均匀随机地在模p-1的整数集合中选取x,计算;把(p,g,y)作为公钥公开,把(p,g,x)作为私钥。 (2) 加密 均匀随机地在模p-1的整数集合中选取k,消息m

非接触式IC卡种类详解

非接触式IC卡详解 一、非接触式IC卡种类 IC卡 (按接口方式:接触式,非接触式,双界面卡); (根据内嵌IC:存储器卡,逻辑加密卡,CPU卡) 1、逻辑加密卡 非加密存储器卡:卡内的集成电路芯片主要是EEPROM,具有数据存储功能,不具有数据处理功能和硬件加密功能。 逻辑加密存储卡:在非加密存储卡的基础上增加了加密逻辑电路,加密逻辑电路通过效

验密码方式来保护卡内的数据对于外部访问是否开放,但是是低层次的安全保护,无法防范恶意性的攻击。 2、CPU卡 也称智能卡,卡内的集成电路中带有微处理器CPU、存储单元(包括随机存储器RAM、程序存储器ROM(FLASH)、用户数据存储器EEPROM)以及芯片操作系统COS。装有COS 的CPU卡相当于一台微型计算机,不仅具有数据存储功能,同时具有命令处理和数据安全保护等功能。 3、双界面卡 ◆双界面卡定义 双界面CPU卡(TimeCOS/DI)是基于单芯片的、集接触式与非接触式接口为一体的智能卡,这两种接口共享同一个微处理器、操作系统和EEPROM。卡片包括一个微处理器芯片和一个与微处理器相连的天线线圈,由读写器产生的电磁场提供能量,通过射频方式实现能量供应和数据传输。 ◆产品型号 目前,TimeCOS/DI卡有两种:一种是基于飞利浦公司的Mifare PRO—MF2ICD80双接口芯片开发的,其接触部分符合ISO7816和《中国金融集成电路IC卡规范》的要求,非接触部分符合ISO14443规范中的TYPE A类标准。另一种是即将推出的基于西门子公司的SLE66CLXX系列双接口芯片开发的,接触部分符合ISO7816和《中国金融集成电路IC卡规范》,非接触部分支持ISO14443—TYPE A或TYPE B的双界面卡。卡片容量有8K BYTE 、16K BYTE可选。 ◆产品参数芯片技术性能参数

数据加密实验报告

实验报告 课程:计算机保密_ _ 实验名称:数据的加密与解密_ _ 院系(部):计科院_ _ 专业班级:计科11001班_ _ 学号: 201003647_ _ 实验日期: 2013-4-25_ _ 姓名: _刘雄 _ 报告日期: _2013-5-1 _ 报告评分:教师签字:

一. 实验名称 数据加密与解密 二.运行环境 Windows XP系统 IE浏览器 三.实验目的 熟悉加密解密的处理过程,了解基本的加密解密算法。尝试编制基本的加密解密程序。掌握信息认证技术。 四.实验内容及步骤 1、安装运行常用的加解密软件。 2、掌握加解密软件的实际运用。 *3、编写凯撒密码实现、维吉尼亚表加密等置换和替换加解密程序。 4、掌握信息认证的方法及完整性认证。 (1)安装运行常用的加解密软件,掌握加解密软件的实际运用 任务一:通过安装运行加密解密软件(Apocalypso.exe;RSATool.exe;SWriter.exe等(参见:实验一指导))的实际运用,了解并掌握对称密码体系DES、IDEA、AES等算法,及非对称密码体制RSA等算法实施加密加密的原理及技术。 ?DES:加密解密是一种分组加密算法,输入的明文为64位,密钥为56位,生成的密文为64位。 ?BlowFish:算法用来加密64Bit长度的字符串或文件和文件夹加密软件。 ?Gost(Gosudarstvennyi Standard):算法是一种由前苏联设计的类似DES算法的分组密码算法。它是一个64位分组及256位密钥的采用32轮简单迭代型加密算法. ?IDEA:国际数据加密算法:使用128 位密钥提供非常强的安全性; ?Rijndael:是带有可变块长和可变密钥长度的迭代块密码(AES 算法)。块长和密钥长度可以分别指定成128、192 或256 位。 ?MISTY1:它用128位密钥对64位数据进行不确定轮回的加密。文档分为两部分:密钥产生部分和数据随机化部分。 ?Twofish:同Blowfish一样,Twofish使用分组加密机制。它使用任何长度为256比特的单个密钥,对如智能卡的微处理器和嵌入在硬件中运行的软件很有效。它允许使用者调节加密速度,密钥安装时间,和编码大小来平衡性能。 ?Cast-256:AES 算法的一种。 (同学们也可自己下载相应的加解密软件,应用并分析加解密过程) 任务二:下载带MD5验证码的软件(如:https://www.doczj.com/doc/f03142797.html,/downloads/installer/下载(MySQL):Windows (x86, 32-bit), MSI Installer 5.6.11、1.5M;MD5码: 20f788b009a7af437ff4abce8fb3a7d1),使用MD5Verify工具对刚下载的软件生成信息摘要,并与原来的MD5码比较以确定所下载软件的完整性。或用两款不同的MD5软件对同一文件提取信息摘要,而后比较是否一致,由此可进行文件的完整性认证。

AES加密解密实验报告

信息安全工程课程 实验报告 AES加密解密的实现 课程名称:信息安全工程 学生姓名:黄小菲 学生学号: 3112041006 专业班级:系统工程2038班 任课教师:蔡忠闽 2012年11月22日

目录 1.背景 (1) 1.1 Rijndael密码的设计标准: (1) 1.2 设计思想 (1) 2.系统设计 (2) 2.1系统主要目标 (2) 2.2功能模块与系统结构 (2) 2.2.1字节替换SubByte (2) 2.2.2行移位ShiftRow (2) 2.2.3 列混合MixColumn (3) 2.2.4 轮密钥加AddRoundKey (4) 2.2.5 逆字节替换 (4) 2.2.6逆行移位InvShiftRow (4) 2.2.7 逆列混淆 (4) 3 加密模式 (5) 3.1 电子密码本ECB模式 (5) 3.2加密块链模式CBC模式 (6) 4 系统功能程序设计 (8) 4.1基本加密部分 (8) 4.1.1字节替换 (8) 4.1.2行移位 (8) 4.1.3列混合 (9) 4.1.4轮密钥加 (9) 4.1.5密钥扩展 (10) 4.1.6逆字节替换 (11) 4.1.7逆行移位 (11) 4.1.8逆列混合 (12) 4.1.9加密 (12) 4.1.10解密 (13) 5 实验结果 (14) 5.1 需要加密文件 (14) 5.2 实验加密解密结果 (15) 6 参考资料 (16)

1.背景 AES,密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。AES 有一个固定的128位的块大小和128,192或256位大小的密钥大小。Rijndael算法汇聚了安全性、效率高、易实现性和灵活性等优点,是一种较DES更好的算法。 该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以Rijndael之命名之,投稿高级加密标准的甄选流程。(Rijdael的发音近于"Rhine doll"。)AES在软体及硬件上都能快速地加解密,相对来说较易于实作,且只需要很少的记忆体。作为一个新的加密标准,目前正被部署应用到更广大的范围. 1.1 Rijndael密码的设计标准: ①抵抗所有已知的攻击。 ②在多个平台上速度快,编码紧凑。 ③设计简单。 当前的大多数分组密码,其轮函数是Feistel结构。 Rijndael没有这种结构。 Rijndael轮函数是由3个不同的可逆均匀变换 1.2 设计思想 ?分组和密钥长度可变,各自可独立指定为128、192、256比特。 ?状态 ?算法中间的结果也需要分组,称之为状态,状态可以用以字节为元素的矩阵 阵列表示,该阵列有4行,列数N b为分组长度除32 ?种子密钥 ?以字节为元素的矩阵阵列描述,阵列为4行,列数N k为密钥长度除32

M1卡(S50)资料讲解

S50非接触式IC卡性能简介(M1) 一、主要指标 ●容量为8K位EEPROM ●分为16个扇区,每个扇区为4块,每块16个字节,以块为存取单位 ●每个扇区有独立的一组密码及访问控制 ●每张卡有唯一序列号,为32位 ●具有防冲突机制,支持多卡操作 ●无电源,自带天线,内含加密控制逻辑和通讯逻辑电路 ●数据保存期为10年,可改写10万次,读无限次 ●工作温度:-20℃~50℃(湿度为90%) ●工作频率:13.56MHZ ●通信速率:106 KBPS ●读写距离:10 cm以内(与读写器有关) 二、存储结构 1、M1卡分为16个扇区,每个扇区由4块(块0、块1、块 2、块3)组成,(我们也 将16个扇区的64个块按绝对地址编号为0~63,存贮结构如下图所示: 数据块0 数据块 1 数据块 2 控制块 3 数据块 4 数据块 5 数据块 6 控制块7 数据块60 数据块61 数据块62 控制块63 2、第0扇区的块0(即绝对地址0块),它用于存放厂商代码,已经固化,不可更改。 3、每个扇区的块0、块1、块2为数据块,可用于存贮数据。 数据块可作两种应用: ★用作一般的数据保存,可以进行读、写操作。

★用作数据值,可以进行初始化值、加值、减值、读值操作。 4、每个扇区的块3为控制块,包括了密码A、存取控制、密码B。具体结构如下: 密码A(6字节)存取控制(4字节)密码B(6字节) 5、每个扇区的密码和存取控制都是独立的,可以根据实际需要设定各自的密码及存取 控制。存取控制为4个字节,共32位,扇区中的每个块(包括数据块和控制块)的存取条件是由密码和存取控制共同决定的,在存取控制中每个块都有相应的三个控制位,定义如下: 块0:C10 C20 C30 块1:C11 C21 C31 块2:C12 C22 C32 块3:C13 C23 C33 三个控制位以正和反两种形式存在于存取控制字节中,决定了该块的访问权限(如进行减值操作必须验证KEY A,进行加值操作必须验证KEY B,等等)。三个控制位在存取控制字节中的位置,以块0为例: 对块0的控制: 字节7 字节8 字节9 ( 注:C10_b表示C10取反) 存取控制(4字节,其中字节9为备用字节)结构如下所示: 字节6 字节7 字节8 字节9 ( 注:_b表示取反) 6、数据块(块0、块1、块2)的存取控制如下:

加密技术及密码破解实验报告

第九章、实验报告 实验一、设置Windows启动密码 一、实验目的:利用Windows启动密码保存重要文件。 二、实验步骤: 1、在Windows XP系统中选择开始——运行,在打开输入框中“syskey.exe”,点击确定,打开“保证Windows XP账户数据库的安全”对话框。 2、单击【更新】,打开【启动密码】对话框,然后输入密码,在【确认】文本框中再次输入密码,单击【确定】

实验二、为word文档加密解密 一、实验目的:保护数据的安全 二、实验步骤: 1、打开一个需要加密的文档,选择【工具】——【选项】——【安全性】然后输入想要设置打开文件时所需的密码 2、单击【高级(A)】打开加密类型对话框,选中【加密文档属性】复选框,单击【确定】。

3、打开文件的【确认密码】对话框,输入打开文件时需要的密码,单击【确定】,随即打开【确认密码】对话框,输入密码。 4、保存文件后,重新打开Word文档,打开【密码】,输入打开文件所需的密码,单击【确定】输入修改的密码,单击【确定】 破解word密码 (1)安装Advanced Office Password Recovery软件,安装完成后打开需要破解的word 文档,进行暴力破解,结果如图所示: 实验三、使用WinRAR加密解密文件

一.实验目的:加密文件,保证文件的安全性。 二.实验步骤: 1、在需要加密的文件夹上右击,选中【添加到压缩文件】打开【压缩文件名和参数】 2、选中【压缩文件格式】组合框中的【RAR】并在【压缩选项】中选中【压缩后删除源文件】然后切换到【高级】,输入密码,确认密码。 3、关闭对话框,单击确定,压缩完成后,双击压缩文件,系统打开【输入密码对话框】 破解WinRAR加密的文件 (1)安装Advanced RAR Password Recovery软件,打开WinRAR加密文件,进行暴力破解,获得密码。结果如图:

RSA非对称密码算法

RSA非对称密码算法 1、RSA非对称密码算法简介 非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公用密钥向其它方公开;得到该公用密钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。另一方面,甲方可以使用乙方的公钥对机密信息进行签名后再发送给乙方;乙方再用自己的私匙对数据进行验签。甲方只能用其专用密钥解密由其公用密钥加密后的任何信息。非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要。 非对称密码体制的特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。 2、工作原理 1.A要向B发送信息,A和B都要产生一对用于加密和解密的公钥和私钥。 2.A的私钥保密,A的公钥告诉B;B的私钥保密,B的公钥告诉A。 3.A要给B发送信息时,A用B的公钥加密信息,因为A知道B的公钥。 4.A将这个消息发给B(已经用B的公钥加密消息)。 5.B收到这个消息后,B用自己的私钥解密A的消息。其他所有收到这个报文的人都无法解密,因为只有B才有B的私钥。 3、主要功能 非对称加密体系不要求通信双方事先传递密钥或有任何约定就能完成保密通信,并且密钥管理方便,可实现防止假冒和抵赖,因此,更适合网络通信中的保密通信要求。

非接触式IC卡Mifare_S50卡详细介绍

非接触式IC卡Mifare S50卡详细介绍 一、何谓RFID与非接触式IC卡 RFID (Radio Frequency Identification)常称为感应式电子晶片或近接卡、感应卡、非接触智能卡、非接触IC卡等等。 一套完整RFID系统由Reader 与Transponder两部分组成,其动作原理为由Re ader发射一特定频率之无线电波能量给Transponder,用以驱动Transponder 电路将内部之ID Code送出,此时Reader便接收此ID Code。Transponder的特殊在于免用电池、免接触、免刷卡故不怕脏污,且晶片密码为世界唯一无法复制COPY,安全性高、长寿命。 RFID的产品有电容式(Capacatine)、微波式(Microwave)、无线电频率RF(R adioFrequency),因电容式在使用时须与CSC验票机几乎贴近才能感应,而微波式则须与CSC验票机直线对准,只有无线电频率式则无此限制,所以目前CSC 的主流卡片是飞利浦的MIFAER卡片,其材质采用无线电频率式;而以无线电频率不含电池之CSC,其动作原理是经由内部RF天线接收由读写器所发送出来之电波,感应出一微小电源电压来供应内部电路及读写器所需之电力,亦藉由此感应电压来读写、运算、储存卡片内记忆体资料或藉由读写器和外界接触,并进行卡片和读写器彼此间之资料之交换;其卡片特性概述如下: 1、尺寸:信用卡尺寸86mm*54mm*0.76mm。 2、外型:坚固、防潮、不易弯曲变形。 3、电池:无内部电池。 4、读写距离:与读写单元间距离2-10CM内均可正确读写资料。 5、读写角度:与读写单元上方半球幅度内均可正确读写资料。 6、运输方式:无线电调频通信方式。 7、内部构造:固态电子装置(Solid-state Electric Device),有内藏记忆 体、微处理器晶片两种形式。 8、记忆体:半导体记忆体至少1K bytes以上容量。 9、资料传输天线:卡片内藏RF感应线圈。 10、内部构造:固态电晶体装置,无可动元件。 11、卡片寿命:重复写入寿命至少10年或者10万次以上。 12、处理速度:卡片与读写单元间通信转输速度100Kbps以上,读写验证处理 时间少于300ms。 13、安全特性:具高度安全性不易伪造及变造。 14、技术验证:通过 ISO / IEC - 10373国际验证标准卡片测试方法之各项检 验。 二、CSC位定义表 CSC具备有大容量之记忆体,可依实际应用场所(公车、地铁、停车场等)之特性加以规划,每一应用场所有一独立之记忆空间(Sector),在每个记忆空

什么是逻辑加密卡

什么是逻辑加密卡 逻辑加密存储器卡:在非加密存储七点基础上增加了加密逻辑电路,加密逻辑电路同伙校检密码方式来保护卡内的数据对于外部访问是否开放,但只是低层次的保护,无法防范恶意性的攻击。 SLE4442卡特性简介(兼容产品:FM4442、ISSI4442、BL74442) SLE4442卡为256字节加密卡,存在读数据、写数据、保护数据以及密码操作。 电气性能: 256*8位EEPROM 32位保护位 保密特性; 1.三字节的用户密码 2.密码核对正确前,全部数据只可读,不可写。 3.核对密码正确后可以更改数据,包括密码在内。 4.错误计数器,初始值为3,密码核对出错一次,便减1,若计数器值为0,则卡自动锁死, 数据只可读出,不可再进行更改也无法在进行密码核对;若不为0时,有一次密码核对正确,可恢复初始值3,。 5.写保护区(前32字节)的每一字节可单独进行写保护,进行写保护后,内容不可在更 改(即数据固化) SLE4428卡特性简介(兼容产品:FM4428、ISSI4428、BL7448) BLE4428卡为1024字节加密卡,存在读数据、写数据、保护数据以及密码操作。 电气性能: 1.1024*8位EEPROM 2.不可恢复的写保护。 3.1024位保护位。 保密特性: 1.2字节的保护密码。 2.密码核对正确前,全部数据只可读,不可改写。 3.错误计数器,初始值为8,密码核对出错1次,便减1,若计数器的值为0,则卡自动 锁死,数据只可读出,不可再进行更改,也无法进行密码核对;若不为0时,有一次密码核对正确,可恢复到初始值8. 4.数据区每一字节可单独进行写保护,进行写保护后,内容不可再更改。

DES加密算法实验报告

苏州科技学院 实验报告 学生姓名:杨刘涛学号:1220126117 指导教师:陶滔 刘学书1220126114 实验地点:计算机学院大楼东309 实验时间:2015-04-20 一、实验室名称:软件实验室 二、实验项目名称:DES加解密算法实现 三、实验学时:4学时 四、实验原理: DES算法由加密、子密钥和解密的生成三部分组成。现将DES算法介绍如下。1.加密 DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:

图2-1:DES算法加密过程 对DES算法加密过程图示的说明如下: 待加密的64比特明文串m,经过IP置换(初始置换)后,得到的比特串的下标列表如下: 表2-1:得到的比特串的下标列表

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串 f1,f1与L0做不进位的二进制加法运算。运算规则为: f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2……一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。 R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1(终结置换)后所得比特串的下标列表如下: 表2-2:置换后所得比特串的下标列表 经过置换IP-1后生成的比特串就是密文e。 变换f(Ri-1,Ki): 它的功能是将32比特的输入再转化为32比特的输出。其过程如图2-2所示:

计算机网络安全实验报告--非对称密码算法RSA

实验二非对称密码算法RSA 一、实验目的 通过实际编程了解非对称密码算法RSA的加密和解密过程,加深对非对称密码算法的认识。 二、实验环境 运行Windows或Linux操作系统的PC机,具有gcc(Linux)、VC(Windows)等C语言编译环境。 三、实验内容和步骤 1)编写一个程序,随机选择3个较大的数x、e、n,然后计算xe mod n, 记录程序运行时间。实际中应用的素数为512位,n也就为1024位。 这样的大数在计算机上如何表示、如何进行运算,查阅资料给出简单说明。 RSA依赖大数运算,目前主流RSA算法都建立在512位到1024位的大数运算之上,所以我们在现阶段首先需要掌握1024位的大数运算原理。 大多数的编译器只能支持到64位的整数运算,即我们在运算中所使用的整数必须小于等于64位,即:0xffffffffffffffff也就是 18446744073709551615,这远远达不到RSA的需要,于是需要专门建立大数运算库来解决这一问题。 最简单的办法是将大数当作字符串进行处理,也就是将大数用10进制字

符数组进行表示,然后模拟人们手工进行“竖式计算”的过程编写其加减乘除函数。但是这样做效率很低,因为1024位的大数其10进制数字个数就有数百个,对于任何一种运算,都需要在两个有数百个元素的数组空间上做多重循环,还需要许多额外的空间存放计算的进位退位标志及中间结果。当然其优点是算法符合人们的日常习惯,易于理解。 另一种思路是将大数当作一个二进制流进行处理,使用各种移位和逻辑操作来进行加减乘除运算,但是这样做代码设计非常复杂,可读性很低,难以理解也难以调试。 (2)计算机在生成一个随机数时,并不一定就是素数,因此要进行素性检测。 是否有确定的方法判定一个大数是素数,要查阅资料,找出目前实际可行的素数判定法则,并且比较各自的优缺点。 所谓素数,是指除了能被1和它本身整除而不能被其他任何数整除的数。 根据素数的定义,只需用2到N-1去除N,如果都除不尽则N是素数,结束知其循环。由此得算法1。 (1)flay=0,i=2. /*flay为标志,其初值为0,只要有一个数除尽,其值变为1. (2)If n mod i=0 then flay=l else i=i+1/* n mod i是n除以i的余数. (3)If flay=0 and I<=n-1 then(2) else go (4) (4)If flay=0 then write“n是素数。”else write“不是素数” 最坏的情形下,即N是素数时,算法1需要执行N-2次除法,时间复杂

接触式与非接触式IC卡选型对比

接触式与非接触式IC 卡选型对比 1 接触式与非接触式IC 卡参数对比 指标 详情 接触式IC 卡 非接触式IC 卡 外形尺寸 IS0标准卡85.5×54×0.76卡/异形卡(自定义尺寸) IS0标准卡85.5×54×0.76卡/ 异形卡(自定义尺寸)/更小尺 寸电子射频标签 存储结构 EEPROM (CPU 卡中会有RAM 、FLASH 等) EEPROM (CPU 卡中会有 RAM 、FLASH 等) 存储容量 1KB 到数十KB 不等 1KB 到数十KB 不等 读写距离 必须与读写器零距离接触 一般2.5~10cm ,大功率读写设 备可以做到数米距离,如电子 不停车收费系统(ETC ) 供电方式 无源IC 卡需通过接触读写器从而获得电能工作。 无需接触,通过线圈天线耦合 获取电能工作。 通讯方式 有线通讯:使用国际标准协议ISO7816通讯或通过IIC 等协议 无线通讯:通过一定频率的调 制无线电波(一般为13.56MHz ) 通讯,标准协议为ISO14443A 、 ISO14443B 、ISO15693等 使用环境 由于卡座的存在和卡片铜片的裸露,接触式IC 卡需要在使用环境比较好的地方,恶劣的环境会加速卡片及读写器的损坏。 无机械接触,卡片电路和读写 器电路都是被外壳完全封装, 从而避免了由使用环境造成的 各种故障。故适合恶劣环境中 的使用。 器件成本 接触式IC 卡在阿里巴巴上以10K 的量单价大约0.5元。 读写器是卡座加芯片,在实际应用中MCU 可以自主模拟通RFID 可贴式电子标签在阿里巴 巴上以10K 的量单价大于1元, 如果做成钥匙扣等其他形状程 序要再加。

DES加密与解密C实现+实验报告

DES加密与解密算法 课程名称:工程实践 学生姓名: xxxx 学生学号: xxxx 专业班级: xxxx 任课教师: xxxx 论文提交日期: xxxx

DES加密与解密算法 摘要 本世纪五十年代以来,密码学研究领域出现了最具代表性的两大成就。其中之一就是1971年美国学者塔奇曼(Tuchman)和麦耶(Meyer)根据信息论创始人香农(Shannon)提出的“多重加密有效性理论”创立的,后于1977年由美国国家标准局颁布的数据加密标准。 DES密码实际上是Lucifer密码的进一步发展。它是一种采用传统加密方法的区组密码。它的算法是对称的,既可用于加密又可用于解密。 1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非机密数据的正式数据加密标准(DES枣Data Encryption Standard)。 目前在这里,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。 关键词:DES算法,加密,解密

Abstract This century since fifty time, cryptography research field is the most representative of the two Achievement. One was the 1971 USA scholar Tuchman (Tuchman) and Meyer (Meyer) based on information theory founder Shannon (Shannon) proposed "multiple encryption effectiveness theory" was founded, in 1977 after the National Bureau of standards promulgated by the America data encryption standard.The DES password is actually a further development of the Lucifer password. It is a traditional encryption method of block cipher. The algorithm is symmetric, which can be used for encryption and decryption can be used. In 1977 January, the government promulgated American: adopted IBM design as a non official data confidential data encryption standard (DES - Data Encryption Standard). At present here, along with three gold project especially golden card project startup, DES algorithm in POS, ATM, magnetic card and intelligent card (IC card), gas station, highway toll station and other fields are widely used, so as to realize the security of key data encryption transmission, such as credit card holders PIN, IC card and POS mutual authentication, financial transaction data package of MAC check and so on, are used in DES algorithm. Keywords: DES algorithm, encryption, decryption

实验五 数据加密与解密实验

实验五数据加密与解密实验(3学时) 一、实验目的 1、了解OPENSSL开放源程序的应用; 2、熟悉用对称加密的方法加密和解密。 3、熟悉利用RSA非对称密钥对文件进行加密与解密的整个过程方法。 二、实验设备及软件环境 (一)实验设备 服务器、交换机和PC机组成NT网络。 (二)软件环境 1.服务器采用Microsoft Windows 2003 Server 操作系统; 2.学生客户端采用Windows XP系统、IE6.0以上浏览器。 3.OPENSSL开放源程序 三、实验内容与步骤(整个实验共分五个部分) (一)准备工作 步骤一下载OPENSSL安装包到C盘根目录下。 (下载地址:https://www.doczj.com/doc/f03142797.html,/openssl.rar) 步骤二在C盘中右击压缩包,使用“解压到openssl\”方式来解压 软件包,在C盘根目录下,自动生成OPENSSL文件夹。 步骤三点击“开始”、“程序”、“附件”、“命令提示符”,打开“命令提示符”窗口。如图8-1。 图8-1 命令提示符

步骤四在“C:\Documents and Settingsowner>”键入cd c:\openssl\out32dll,输入后按回车键,进入到openssl\out32dll的目录下,如图8-2所示。 (命令的含义:打开C盘目录下,openssl文件夹下的out32dll文件夹) 图8-2 openssl\out32dll的目录 (二)对称加密实验步骤 步骤一用记事本创建一个文本文件,文件名为学生的学号(如026h321f.txt),内容为学生的名字和学号,保存在c:\openssl\out32dll的文件夹下,如图9-1所示。 图9-1用记事本创建的文本文件 步骤二输入命令“openssl enc -des3 -in 026h231f.txt -out out026h231f.des”(注意所有的-符号的前面都有一个空格),输入后按回车键,加密过程中会提示你输入保护密码,按回车键后会再输一次密码进行确认,(注:输入密码时屏幕无任何显示)执行结果如图9-2所示。执行完上述命令完后,在c:\openssl\out32dll目录下会自动生成一个用des3算法加密后out026h231f.des的文件。 (命令的含义:使用DES3算法对数据进行对称加密。

CPU卡和非接触式IC卡的区别

CPU卡和非接触式IC卡的区别 CPU卡定义 CPU卡芯片通俗地讲就是指芯片内含有一个微处理器,它的功能相当于一台微型计算机。人们经常使用的集成电路卡(IC卡)上的金属片就是CPU卡芯片。CPU卡可适用于金融、保险、交警、政府行业等多个领域,具有用户空间大、读取速度快、支持一卡多用等特点,并已经通过中国人民银行和国家商秘委的认证。CPU卡从外型上来说和普通IC卡,射频卡并无差异,但是性能上有巨大提升,安全性和普通IC卡比,提高很多,通常CPU卡内含有随机数发生器,硬件DES,3DES 加密算法等,配合操作系统即cpu芯片上的OS,也称COS,可以达到金融级别的安全等级。 CPU卡简介 CPU卡:也称智能卡,卡内的集成电路中带有微处理器CPU、存储单元(包括随机存储器RAM、程序存储器ROM(FLASH)、用户数据存储器EEPROM)以及芯片操作系统COS。装有COS的CPU卡相当于一台微型计算机,不仅具有数据存储功能,同时具有命令处理和数据安全保护等功能。由于没有掌握关键的生产工艺,原来我国设计的CPU 卡芯片一直在国外生产。目前我国自主设计、制造的CPU卡容量达到了128K。CPU卡可适用于金融、保险、交警、政府行业等多个领域,具有用户空间大、读取速度快、支持一卡多用等特点,并已经通过中国人民银行和国家商秘委的认证。 CPU卡和非接触式IC卡的区别 一、技术方面(非接触式IC卡和CPU卡) 1、逻辑加密卡又叫存储卡,卡内的集成电路具有加密逻辑和EEPROM(电可擦除可编程只读存储器)。 2、CPU卡又叫智能卡,卡内的集成电路包括中央处理器(CPU)、EEPROM、随机存储器(ROM)、以及固化在只读存储器(ROM)中的片内操作系统(COS),有的卡内芯片还集成了加密运算协处理器以提高安全性和工作速度,使其技术指标远远高于逻辑加密卡。 3、CPU卡由于具有微处理功能,使得在交易速度以及数据干扰方面远远高于逻辑加密卡,且允许多张卡片同时操作,具有防冲突机制。 4、两者在技术方面的最大区别在于:CPU卡是一种具有微处理芯片的IC卡,可执行加密运算和其它操作,存储容量较大,能应用于不同的系统;逻辑加密卡是一种单一的存储卡,主要特点是内部有只读存储器,但存储容量较CPU卡小,使其在用途方面没有扩展性。 二、安全保密方面(非接触式IC卡和CPU卡) 1、逻辑加密卡具有防止对卡中信息随意改写功能的存储IC卡,当对加密卡进行操作时必须首先核对卡中密码,只有核对正确,卡中送出一串正确的应答信号时,才能对卡进行正确的操作,但由于只进行一次认证,且无其它的安全保护措施,容易导致密码的泄露和伪卡的产生,其安全性能很低。 2、由于CPU卡中有微处理机和IC卡操作系统(COS),当CPU卡进行操作时,可进行加密和解密算法(算法和密码都不易破解),用户和IC卡系统之间需要进行多次的相互密码认证(且速度极快),提高了系统的安全性能,对于防止伪卡的产生有很好的效果。 综上所述,对于逻辑加密卡和CPU卡来说,CPU卡不仅具有逻辑加密卡的所有功能,更具有逻辑加密卡所不具备的高安全性、灵活性以及支持与应用扩展等优良性能,也是今后IC 卡发展的主要趋势和方向。 三、CPU卡安全系统与逻辑加密系统的比较(非接触式IC卡和CPU卡)

相关主题
文本预览
相关文档 最新文档