ANSYS非稳态热分析及实例详解
- 格式:doc
- 大小:1.28 MB
- 文档页数:31
A N S Y S热分析指南——A N S Y S稳态热分析ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
目录第一章简介 (1)一、热分析的目的 (1)二、ANSYS的热分析 (1)三、A N S Y S热分析分类 (1)四、耦合分析 (1)第二章基础知识 (2)一、符号与单位 (2)二、传热学经典理论回顾 (2)三、热传递的方式 (3)四、稳态传热 (3)五、瞬态传热 (4)六、线性与非线性 (4)七、边界条件、初始条件 (4)八、热分析误差估计 (4)第三章稳态传热分析 (5)一、稳态传热的定义 (5)二、热分析的单元 (5)三、A N S Y S稳态热分析的基本过程 (5)实例1 (9)实例2 (12)第四章瞬态传热分析 (20)一、瞬态传热分析的定义 (20)二、瞬态热分析的单元及命令 (20)三、ANSYS瞬态热分析的主要步骤 (20)四、建模 (20)五、加载求解 (21)六、后处理 (23)七、相变问题 (23)实例1 (24)实例2 (25)第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析∙在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
∙ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
∙ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类∙稳态传热:系统的温度场不随时间变化∙瞬态传热:系统的温度场随时间明显变化四、耦合分析∙热-结构耦合∙热-流体耦合∙热-电耦合∙热-磁耦合∙热-电-磁-结构耦合等第二章 基础知识一、符号与单位W/m 2-℃ 3二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆U ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析·在ANSYS/Multiphysics 、ANSYS/Mechanical 、ANSYS/Thermal 、ANSYS/FLOTRAN 、ANSYS/ED 五种产品中包含热分析功能,其中ANSYS/FLOTRAN 不含相变热分析。
· ANSYS 热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
· ANSYS 热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类·稳态传热:系统的温度场不随时间变化·瞬态传热:系统的温度场随时间明显变化四、耦合分析·热-结构耦合·热-流体耦合·热-电耦合·热-磁耦合·热-电-磁-结构耦合等第二章基础知识一、符号与单位项目国际单位英制单位 ANSYS 代号长度 m ft时间 s s质量 Kg lbm温度℃ oF力 N lbf能量(热量) J BTU功率(热流率) W BTU/sec热流密度 W/m2 BTU/sec-ft2生热速率 W/m3 BTU/sec-ft3导热系数 W/m-℃ BTU/sec-ft-oF KXX对流系数 W/m2-℃ BTU/sec-ft2-oF HF密度 Kg/m3 lbm/ft3 DENS比热 J/Kg-℃ BTU/lbm-oF C焓 J/m3 BTU/ft3 ENTH二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:l 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q D D D = -式中: Q ——热量;W ——作功;DU ——系统内能;DKE——系统动能;DPE ——系统势能;l 对于大多数工程传热问题: 0 == PE KE D D ;l 通常考虑没有做功: 0 = W , 则: U Q D = ;l 对于稳态热分析: 0 = D = U Q ,即流入系统的热量等于流出的热量;l 对于瞬态热分析:dtdU q = ,即流入或流出的热传递速率q 等于系统内能的变化。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章基础知识一、符号与单位W/m2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕式中: Q ——热量;W ——作功;——系统内能;——系统动能;——系统势能;●对于大多数工程传热问题:;●通常考虑没有做功:, 则:;●对于稳态热分析:,即流入系统的热量等于流出的热量;●对于瞬态热分析:,即流入或流出的热传递速率q等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:,式中为热流密度(W/m2),为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
2、热对流热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量的交换。
热对流可以分为两类:自然对流和强制对流。
热对流用牛顿冷却方程来描述:,式中h为对流换热系数(或称膜传热系数、给热系数、膜系数等),为固体表面的温度,为周围流体的温度。
目录第1章–介绍–概述–相关讲座&培训–其他信息来源第2章–基本概念第3章–稳态热传导(n o m a s s t r a n s p o r t o f h e a t)第4章–附加考虑非线性分析第5章–瞬态分析1-3 1-5 1-12 1-132-13-14-15-1第6章–复杂的,时间和空间变化的边界条件第7章–附加对流/热流载荷选项和简单的热/流单元第8章–辐射热传递–例题-使用辐射矩阵的热沉分析第9章–相变分析–相变分析例题-飞轮铸造分析第10章–耦合场分析6-1 7-18-1 8-43 9-1 9-14 10-1目录(续)第1章先决条件1章节内容概述12章节内容概述213章节内容概述310124章节内容概述43546章节内容概述6571章节内容概述7689章节内容概述1072相关讲座&培训2tT c h K Q qq E============t i m e t e m p e r a t u r e d e n s i t y s p e c i f i c h e a t f i l m c o e f f i c i e n t e m i s s i v i t y S t e f a n -B o l t z m a n n c o n s t a n t t h e r m a l c o n d u c t i v i t y h e a t f l o w (r a t e ) h e a t f l u x i n t e r n a l h e a t g e n e r a t i o n /v o l u m e e n e r g y ρεσ*&&&fA N S Y S()3223注,对于结构热容量,密度/G c和比热*G c经常使用该单位。
其中G c=386.4(l b m-i n c h)/(l b f-s e c2)A N S Y S(S I)3223–传导–对流–辐射•传导的热流由传导的傅立叶定律决定�•负号表示热沿梯度的反向流动(i .e ., 热从热的部分流向冷的).q K T n K T T n n n n n *=−∂∂=∂∂=h e a t f l o w r a t e p e r u n i t a r e a i n d i r e c t i o n n Wh e r e , = t h e r m a l c o n d u c t i v i t y i n d i r e c t i o n n= t e m p e r a t u r e t h e r m a l g r a d i e n t i n d i r e c t i o n n Tnq*dT d n•对流的热流由冷却的牛顿准则得出:•对流一般作为面边界条件施加qh T T h T T f S B f S B *()=−=h e a t f l o w r a t e p e r u n i t a r e a b e t w e e n s u r f a c e a n d f l u i d W h e r e , = c o n v e c t i v e f i l m c o e f f i c i e n t= s u r f a c e t e m p e r a t u r e = b u l k f l u i d t e m p e r a t u r e TB Ts•从平面i 到平面j 的辐射热流由施蒂芬-玻斯曼定律得出: •在A N S Y S 中将辐射按平面现象处理(i .e ., 体都假设为不透明的)。
第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元单元维数形状及特点自由度PLANE35 二维六节点三角形单元温度(每个节点)PLANE55 二维四节点四边形单元温度(每个节点)PLANE75 二维四节点谐单元温度(每个节点)PLANE77 二维八节点四边形单元温度(每个节点)PLANE38 二维八节点谐单元温度(每个节点)表3-2三维实体单元单元维数形状及特点自由度SOLID70 三维八节点六面体单元温度(每个节点)SOLID87 三维十节点四面体单元温度(每个节点)SOLID90 三维二十节点六单元温度(每个节点)表3-3辐射连接单元单元维数形状及特点自由度LINK31 二维或三维二节点线单元温度(每个节点)表3-4传导杆单元单元维数形状及特点自由度LINK32 二维二节点线单元温度(每个节点)LINK33 三维二节点线单元温度(每个节点)表3-5对流连接单元单元维数形状及特点自由度LINK34 三维二节点线单元温度(每个节点)表3-6壳单元单元维数形状及特点自由度SHELL57 三维四节点四边形单元温度(每个节点)表3-7耦合场单元单元维数形状及特点自由度PLANE13 二维四节点热-应力耦合单元温度、结构位移、电位、磁矢量位CONTACT48 二维三节点热-应力接触单元温度、结构位移CONTACT49 三维热-应力接触单元温度、结构位移FLUID116 三维二或四节点热-流单元温度、压力SOLID5 三维八节点热-应力和热-电单元温度、结构位移、电位、磁标量位SOLID98 三维十节点热-应力和热-电单元温度、结构位移、电位、磁矢量位PLANE67 二维四节点热-电单元温度、电位LINK68 三维两节点热-电单元温度、电位SOLID69 三维八节点热-电单元温度、电位SHELL157 三维四节点热-电单元温度、电位表3-8特殊单元单元维数形状及特点自由度MASS71 一维到三维一个节点的质量单元温度COMBINE37 一维四节点控制单元温度、结构位移、转动、压力SURF151 二维二到四节点面效应单元温度SURF152 三维四到九节点面效应单元温度MATRIX50 由包括在超单元中的单元类型决定没有固定形状的矩阵或辐射矩阵超单元由包括在超单元中的单元类型决定INFIN9 二维二节点无限边界单元温度、磁矢量位INFIN47 三维四节点无限边界单元温度、磁矢量位COMBINE14 一维到三维两节点弹簧-阻尼单元温度、结构位移、转动、压力COMBINE39 一维两节点非线性弹簧单元温度、结构位移、转动、压力COMBINE40 一维两节点组合单元温度、结构位移、转动、压力.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
实例1:某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。
几何参数:筒外径30 feet总壁厚2 inch不锈钢层壁厚0.75inch玻纤层壁厚1 inch铝层壁厚0.25inch筒长200 feet导热系数不锈钢8.27BTU/hr.ft.o F玻纤0.028 BTU/hr.ft.o F铝117.4 BTU/hr.ft.o F边界条件空气温度70 o F海水温度44.5 o F空气对流系数2.5 BTU/hr.ft2.o F海水对流系数80 BTU/hr.ft2.o F沿垂直于圆筒轴线作横截面,得到一圆环,取其中1 度进行分析,如图示。
/filename,Steady1/title,Steady-state thermal analysis of submarine/units,BFTRo=15 !外径(ft)Rss=15-(0.75/12) !不锈钢层内径ft)Rins=15-(1.75/12) !玻璃纤维层内径(ft)Ral=15-(2/12) !铝层内径(ft)Tair=70 !潜水艇内空气温度Tsea=44.5 !海水温度Kss=8.27 !不锈钢的导热系数(BTU/hr.ft.oF)Kins=0.028 !玻璃纤维的导热系数(BTU/hr.ft.oF)Kal=117.4 !铝的导热系数(BTU/hr.ft.oF)Hair=2.5 !空气的对流系数(BTU/hr.ft2.oF)Hsea=80 !海水的对流系数(BTU/hr.ft2.oF)prep7et,1,plane55 !定义二维热单元mp,kxx,1,Kss !设定不锈钢的导热系数mp,kxx,2,Kins !设定玻璃纤维的导热系数mp,kxx,3,Kal !设定铝的导热系数pcirc,Ro,Rss,-0.5,0.5 !创建几何模型pcirc,Rss,Rins,-0.5,0.5pcirc,Rins,Ral,-0.5,0.5aglue,allnumcmp,arealesize,1,,,16 !设定划分网格密度lesize,4,,,4lesize,14,,,5lesize,16,,,2Mshape,2 !设定为映射网格划分mat,1amesh,1mat,2amesh,2mat,3amesh,3/SOLUSFL,11,CONV,HAIR,,TAIR !施加空气对流边界SFL,1,CONV,HSEA,,TSEA !施加海水对流边界SOLVE/POST1PLNSOL !输出温度彩色云图finish实例2一圆筒形的罐有一接管,罐外径为3 英尺,壁厚为0.2 英尺,接管外径为0.5 英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端部。
ANSYS流体及热场分析 1 第 7 章 非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。
非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤
钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析
本章要点 本章案例 第7章 非稳态热分析
2 7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。
7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。
7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下:
CTKTQ
&
其中,CT&为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下:
CTKTQt&
若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下:
,CTTKTTQTt
&
7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析ANSYS流体及热场分析 3 问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。
2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。 (2)大致估计初始时间步长。 在非稳态热分析中估计初始时间步长,可以使用Biot数和Fourier数。 Biot数是不考虑尺寸的热阻对流和传导比例因子,其定义为: hxBiK
式中:x——名义单元宽度; h——平均表面换热系数;
K——平均导热系数。
Fourier数是不考虑尺寸的时间(/tt),其定义为:
2()oKtFcx
式中:——平均密度; c——比热容;
如果1Bi,可将Fourier数设为常数并求解t来预测时间步长:
22()()cxxt
c
式中:——热耗散。 如果1Bi,时间步长可应用Fourier数和Biot数的乘积预测:
2()thxhtFoBicxKcx
g
求解t得到: cxth
其中,0.10.5 时间步长的预测精度随单元宽度的取值、平均的方法、比例因子的变化而变化。 7.1.4 数值求解过程 当前温度矢量nT假设为已知,可以是初始温度或由前面的求解得到的。定义下一个时间点的温度矢量为: 11(1)nnnnTTtTtT&&
其中称为欧拉参数,默认为1,下一个时间点的温度为: 第7章 非稳态热分析 4
11nnCTKTQ
&
由上面两式可得:
11111nnnCKTQCTTtt
&
1nKTQ
其中1CKKt
111nnQCTTQt
&
欧拉参数的数值在0.5~1之间。在这个范围内,时间积分算法是不明显而且是不稳定的。因此,ANSYS 11.0总是忽略时间积分步的幅值来计算。但是,这样的计算结果并不总是准确的。下面是选择积分参数的一些建议: 当=0.5时,时间积分方法采用“Crank-Nicolson”技术。本设置对于绝大多数热瞬态问题都是精确有效的。 当=1时,时间积分方法采用“Backward Euler”技术。这是缺省的和最稳定的设置,因为它消除了可能带来严重非线性或高阶单元的非正常振动。 本技术一般需要相对Crank-Nicolson较小的时间积分步得到精确的结果。
7.2 非稳态热分析单元 非稳态热分析和稳态热分析使用的分析单元相同,具体请读者参见本书第6章。 7.3 非稳态热分析基本步骤 非稳态热分析的基本步骤主要包括:建模、加载求解和后处理。下面分别对这三个基本步骤进行具体的阐述。
7.3.1 建立有限元模型 就这一步骤而言,并没有稳态和非稳态之分,可参照稳态分析的建模方法进行。因此,在这里不在赘述。
7.3.2 加载求解 1、定义分析类型 如果第一次进行分析或重新进行分析,操作步骤如下: Command: ANTYPE,TRANSIENT,NEW GUI:Main Menu>Solution>Analysis Type>New Analysis>Transient 如果接着上次的分析继续进行(例如增加其它载荷),操作步骤如下: Command: ANTYPE,TRANSIENT,REST ANSYS流体及热场分析 5 GUI:Main Menu>Solution>Analysis Type>Restart 2、获得非稳态热分析的初始条件 (1)定义均匀温度场 如果已知模型的起始温度是均匀的,可设定所有节点初始温度,操作步骤如下: Command: TUNIF GUI: Main Menu>Solution>Loads>Settings>Uniform Temp 如果不在对话框中输入数据,则默认为参考温度,参考温度的值默认为零,但可通过如下方法设定参考温度: Command: TREF GUI: Main Menu>Solution>Loads>Settings>Reference Temp 注意:设定均匀的初始温度,与如下的设定节点的温度(自由度)不同,设定节点温度的操作步骤如下: Command: D GUI: Main Menu>Solution>Loads>Apply>Thermal>Temperature>On Nodes 初始均匀温度仅对分析的第一个子步有效;而设定节点温度将保持贯穿整个瞬态分析过程,除非通过下列方法删除此约束: Command: DDELE GUI: Main Menu>Solution>Loads>Delete>Thermal>Temperature>On Nodes (2)设定非均匀的初始温度 在瞬态热分析中,节点温度可以设定为不同的值,操作步骤如下: Command: C GUI: Main Menu>Solution>Loads>Apply>Initial Condit'n>Define 如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件,步骤如下: ·设定载荷(如已知的温度、热对流等) ·将时间积分设置为OFF: Command: TIMINT, OFF GUI: Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time Integration ·设定一个只有一个子步的,时间很小的载荷步(例如0.001): Command: TIME GUI: Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time and Substps ·写入载荷步文件: Command: LSWRITE GUI: Main Menu>Preprocessor>Loads>Write LS File 或先求解: Command: SOLVE GUI: Main Menu>Solution>Solve>Current LS
3、设定载荷步选项 (1)普通选项 ·设置时间和时间步步,操作如下: Command: TIME GUI: Main Menu>Solution>Load Step Opts>Time/Frequenc>Time-Time Step ·设置每个载荷步的载荷子步数,或时间增量 Command: NSUBST or DELTIM