仿真在线-ANSYS热分析教程
- 格式:pdf
- 大小:5.54 MB
- 文档页数:34
Workbench -Mechanical Introduction第六章热分析概念Training Manual •本章练习稳态热分析的模拟,包括:A.几何模型B B.组件-实体接触C.热载荷D.求解选项E E.结果和后处理F.作业6.1本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了•本节描述的应用一般都能在ANSYS DesignSpace EntraANSYS Structural提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析•ANSYSTraining Manual稳态热传导基础•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:()[]{}(){}T Q T T K =•假设:–在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数稳态热传导基础Training Manual •上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
A. 几何模型Training Manual •热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度•但在线实体的轴向仍有温度变化… 材料特性Training Manual •唯一需要的材料特性是导热性(Thermal Conductivity)•Thermal Conductivity在Engineering Data 中输Engineering Data入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
ANSYS 热分析指南第一章简介1.1 热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有:温度的分布热量的增加或损失热梯度热流密度热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。
通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。
1.2ANSYS中的热分析ANSYS/Multiphysics 、ANSYS/Mechanical、ANSYS/Professional 、ANSYS/FLOTRAN种产品中支持热分析功能。
ANSY洪分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Referenee》。
ANSY使用有限元法计算各节点的温度,并由其导出其它热物理参数。
ANSY创以处理所有的三种主要热传递方式:热传导、热对流及热辐射。
1.2.1 对流热对流在ANSYS^作为一种面载荷,施加于实体或壳单元的表面。
首先需要输入对流换热系数和环境流体温度,ANSYS各计算出通过表面的热流量。
如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。
1.2.2 辐射ANSYS1供了四种方法来解决非线性的辐射问题:辐射杆单元(LINK31)使用含热辐射选项的表面效应单元(SURF151-2D或SURF152-3D在AUX12中,生成辐射矩阵,作为超单元参与热分析使用Radiosity求解器方法有关辐射的详细描述请阅读本指南第四章。
1.2.3特殊的问题除了前面提到的三种热传递方式外,ANSY埶分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。
例如,可使用热质点单元MASS7模拟随温度变化的内部热生成。
1.3热分析的类型ANSYSfc持两种类型的热分析:1 •稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。
目录第1章–介绍–概述–相关讲座&培训–其他信息来源第2章–基本概念第3章–稳态热传导(n o m a s s t r a n s p o r t o f h e a t)第4章–附加考虑非线性分析第5章–瞬态分析1-3 1-5 1-12 1-132-13-14-15-1第6章–复杂的,时间和空间变化的边界条件第7章–附加对流/热流载荷选项和简单的热/流单元第8章–辐射热传递–例题-使用辐射矩阵的热沉分析第9章–相变分析–相变分析例题-飞轮铸造分析第10章–耦合场分析6-1 7-18-1 8-43 9-1 9-14 10-1目录(续)第1章先决条件1章节内容概述12章节内容概述213章节内容概述310124章节内容概述43546章节内容概述6571章节内容概述7689章节内容概述1072相关讲座&培训2tT c h K Q qq E============t i m e t e m p e r a t u r e d e n s i t y s p e c i f i c h e a t f i l m c o e f f i c i e n t e m i s s i v i t y S t e f a n -B o l t z m a n n c o n s t a n t t h e r m a l c o n d u c t i v i t y h e a t f l o w (r a t e ) h e a t f l u x i n t e r n a l h e a t g e n e r a t i o n /v o l u m e e n e r g y ρεσ*&&&fA N S Y S()3223注,对于结构热容量,密度/G c和比热*G c经常使用该单位。
其中G c=386.4(l b m-i n c h)/(l b f-s e c2)A N S Y S(S I)3223–传导–对流–辐射•传导的热流由传导的傅立叶定律决定�•负号表示热沿梯度的反向流动(i .e ., 热从热的部分流向冷的).q K T n K T T n n n n n *=−∂∂=∂∂=h e a t f l o w r a t e p e r u n i t a r e a i n d i r e c t i o n n Wh e r e , = t h e r m a l c o n d u c t i v i t y i n d i r e c t i o n n= t e m p e r a t u r e t h e r m a l g r a d i e n t i n d i r e c t i o n n Tnq*dT d n•对流的热流由冷却的牛顿准则得出:•对流一般作为面边界条件施加qh T T h T T f S B f S B *()=−=h e a t f l o w r a t e p e r u n i t a r e a b e t w e e n s u r f a c e a n d f l u i d W h e r e , = c o n v e c t i v e f i l m c o e f f i c i e n t= s u r f a c e t e m p e r a t u r e = b u l k f l u i d t e m p e r a t u r e TB Ts•从平面i 到平面j 的辐射热流由施蒂芬-玻斯曼定律得出: •在A N S Y S 中将辐射按平面现象处理(i .e ., 体都假设为不透明的)。
ANSYS有限元热分析基本步骤介绍对于稳态热分析,可以使用Post1进行后处理本文介绍了ANSYS有限元热分析基本步骤相关情况。
ANSYS稳态热分析的基木步骤包括构建模型、施加载荷、求解与后处理。
1. 构建模型构建步骤如下所示:(1)确定作业名,标题一与单位制。
(2)进入PREP7前处理。
(3)设置单元类型,设定单儿选项,定义单元实常数:(4)设置材料属性。
(5)创建几何模型并划分网格。
2. 施加载荷计算(l)定义热分析类型如前所述,常见的热分析类型有两种:稳态热分析与瞬态热分析。
如果进行新的稳态热分析,则点击Main menu>solution>Ansys Type>New Analysis从中选择Steady-state。
其对应的命令流形式如下:ANTYPE,STATIC,NEW或ANTYPE,0,TYPE如果接着上面的计算继续稳态热分析,比如添加载荷等,则点击Mainmenu>solution>Ansys Type>Restart(2)施加载荷ANSYS共提供了5种载荷,包括温度、热流率、对流、热流密度和生热率。
.温度命令流:dGUI:Main menu>solution>Loads-Apply>Thermal-Temperature.热流率命令流:FGUI:Main menu>solution>Loads-Apply>Thermal-Heat Flow.对流命令流:SFGUI:Main menu>solution>Loads-Apply>Thermal-Convection.热流密度命令流:fGUI:Main menu>solution>Loads-Apply>Thermal-Heat Flux.生热率命令流:BFGUI:Main menu>solution>Loads-Apply>Thermal-Heat Generat3 求解在对一个稳态热分析问题进行求解时,通常需要设定Time/Frequence选项、非线性选项以及输出控制等载荷步选项.(1)Time/Freqnenc选烦.Time-Time Step:用于设置载荷步的时间·命令流:TIMEGUI:Main menu>solution>Load Step Opts-time/frequenc>time-time step.time-time substeps:确定标载荷步中了步的数量或时问步大小。
文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 6-1•本章练习稳态热分析的模拟,包括:A. 几何模型B. 组件-实体接触C. 热载荷D. 求解选项E. 结果和后处理F. 作业6.1• 本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用,除了ANSYS Structural• 提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析K T T= Q T –在稳态分析中不考虑瞬态影响–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:• 固体内部的热流(Fourier’s Law)是[K]的基础;• 热通量、热流率、以及对流在{Q} 为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在D esignModeler中定义• 热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体的轴向仍有温度变化•唯一需要的材料特性是导热性(Thermal Conductivity)•Thermal Conductivity在Engineering Data 中输入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。
•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。
–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。
•如果接触是Bonded(绑定的)或no separation(无分离的),那么当面出现在pinball radius内时就会发生热传导(绿色实线表示)。
6-1•本章练习稳态热分析的模拟,包括:A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1•本节描述的应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural•提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:•假设:KT TQ T–在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(PointMass)的特性•壳体和线体假设:•唯一需要的材料特性是导热性(ThermalConductivity)•Thermal Conductivity在Engineering Data中输入•温度相关的导热性以表格形式输入•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。
–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。
•如果接触是Bonded(绑定的)或noseparation (无分离的),那么当面出现在pinballradius内时就会发生热传导(绿色实线表示)。
PinballRadius右图中,两部件间的间距大于pinball 区域,因此在这两个部件间会发生热传导。
第四讲 热分析上机指导书CAD/CAM 实验室,USTC实验要求:1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进行稳态热分析的基本过程,熟悉用直接耦合法、间接耦合法进行热应力分析的基本过程。
2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进行瞬态热分析的基本过程。
内容1:冷却栅管问题问题描述:本实例确定一个冷却栅管(图a )的温度场分布及位移和应力分布。
一个轴对称的冷却栅结构管内为热流体,管外流体为空气。
冷却栅材料为不锈钢,特性如下:导热系数:25.96 W/m ℃弹性模量:1.93×109 MPa热膨胀系数:1.62×10-5 /℃泊松比:0.3边界条件:(1)管内:压力:6.89 MPa流体温度:250 ℃对流系数249.23 W/m 2℃(2)管外:空气温度39℃对流系数:62.3 W/m 2℃假定冷却栅管无限长,根据冷却栅结构的对称性特点可以构造出的有限元模型如图b 。
其上下边界承受边界约束,管内部承受均布压力。
练习1-1:冷却栅管的稳态热分析步骤:1. 定义工作文件名及工作标题1) 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【ChangeJobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。
2) 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。
3) 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> WindowOptions ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。
ANSYS热分析指南(第四章)第四章瞬态热分析4.1瞬态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持瞬态热分析。
瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。
在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。
许多传热应用—热处理问题,喷管,引擎堵塞,管路系统,压力容器等,都包含瞬态热分析。
瞬态热分析的基本步骤与稳态热分析类似。
主要的区别是瞬态热分析中的载荷是随时间变化的。
为了表达随时间变化的载荷,可使用提供的函数工具描述载荷~时间曲线并将该函数作为载荷施加(请参考《ANSYS Basic Porcedures Guide》中的“施加函数边界条件载荷”),或将载荷~时间曲线分为载荷步。
载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示:图4-1 用荷载步定义时变荷载对于每一个载荷步,必须定义载荷值及时间值,同时还需定义其它载荷步选项,如:载荷步为渐变或阶跃、自动时间步长等,定义完一个载荷步的所有信息后,将其写为载荷步文件,最后利用载荷步文件统一求解。
本章对一个铸件的分析的实例对此有进一步说明。
4.2瞬态热分析中使用的单元和命令瞬态热分析中使用的单元与稳态热分析相同,第三章对单元有简单的描述。
要了解每个单元的详细说明,请参阅《ANSYS Element Reference》。
要了解每个命令的详细功能,请参阅《ANSYS Commands Reference》。
4.3瞬态热分析的过程瞬态热分析的过程为:建模施加荷载并求解在后处理中查看结果以下的内容将讲述瞬态分析的基本步骤,由于并不是每个瞬态分析的过程都一致,因此本书先对整个过程进行了一般的讲解,再进行实例的分析。
4.4建模建立一个模型首先应为分析指定jobname和title。
如果是运行的是GUI,可以在Main Menu>Preferences中对菜单进行过滤。