当前位置:文档之家› 最优化理论与应用-11

最优化理论与应用-11

优化设计的概念和原理

优化设计的概念和原理 优化设计的概念和原则 概念 1前言 对于任何设计者来说,其目的都是为了制定最优的设计方案,使所设计的产品或工程设施具有最佳的性能和最低的材料消耗和制造成本,以获得最佳的经济效益和社会效益。因此,在实际设计中,科技人员往往会先提出几种不同的方案,并通过比较分析来选择最佳方案。然而,在现实中,由于资金限制,选定的候选方案的数量往往非常有限。因此,迫切需要一种科学有效的数学方法,于是“优化设计”理论应运而生。 优化设计是在计算机广泛应用的基础上发展起来的新技术。这是一种现代设计方法,它根据优化原理和方法将各种因素结合起来,在计算机上以人机合作或“自动探索”的方式进行半自动或自动设计,以选择现有工程条件下的最佳设计方案。其设计原则是优化设计:设计手段是电子计算机和计算程序;设计方法是采用最优化数学方法。本文将简要介绍优化设计中常用的概念,如设计变量、目标函数、约束条件等。 2设计变量 设计变量是独立参数,必须在设计过程的最终选择中确定它们是选择过程中的变量,但是一旦确定了变量,设计对象就完全确定了。优化设计是研究如何合理优化这些设计变量值的现代设计方法。

机械设计中常用的独立参数包括结构的整体构型尺寸、部件的几何尺寸和材料的机械物理性能等。在这些参数中,根据设计要求可以预先给出的不是设计变量,而是设计常数。最简单的设计变量是元件尺寸,例如杆元件的长度、横截面积、弯曲元件的惯性矩、板元件的厚度等。 3目标函数 目标函数是设计中要达到的目标在优化设计中,所追求的设计目标(最优指标)可以用设计变量的函数来表示。这个过程被称为建立目标函数。一般目标函数表示为 f(x)=f(xl,xZ,?,x) 此功能代表设计的最重要特征,如设计组件的性能、质量或体积以及成本。最常见的情况是使用质量作为一个函数,因为质量的大小是最容易量化的价值度量。尽管费用具有更大的实际重要性,但通常需要有足够的数据来构成费用的目标函数。目标函数是设计变量的标量函数。优化设计的过程就是优化设计变量,使目标函数达到最优值或找到目标函数的最小值(或最大值)的过程。在实际工程设计过程中,经常会遇到多目标函数的某些目标之间存在矛盾,这就要求设计者正确处理各目标函数之间的关系目前,对这类多目标函数优化问题的研究还没有单目标函数的研究成熟。有时一个目标函数可以用来表示几个期望目标的加权和,多目标问题可以转化为单目标问题来求解。4约束 设计变量是优化设计中的基本参数。目标函数取决于设计变量。在

最优化理论与算法(第八章)

第八章 约束优化最优性条件 §8.1 约束优化问题 一、 问题基本形式 min ()f x 1()0 1,,.. ()0 ,,i e i e c x i m s t c x i m m +==?? ≥=?L L (8.1) 特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。 记 {} 1()0 (1,,);()0 ,,i e i e X x c x i m c x i m m +===≥=L L ,称之为可行域(约束域)。 {}1,,e E m =L ,{}1,,e I m m +=L ,{}()()0 i I x i c x i I ==∈ 称()E I x U 是在x X ∈处的积极约束的指标集。积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。 应该指出的是,如果x * 是(1)的局部最优解,且有某个0i I ∈,使得 0()0i c x *> 则将此约束去掉,x * 仍是余下问题的局部最优解。 事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ?>,存在x δ,使得 x x δδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。注意到当δ充分小时,由0() i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x * 是局部极小 点矛盾。 因此如果有某种方式,可以知道在最优解x * 处的积极约束指标集()()A x E I x * *=U ,则问题 可转化为等式的约束问题: min ()f x .. ()0i s t c x = ()i A x *∈ (8.2) 一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x * 。

线性和非线性最优化理论、方法、软件及应用

线性和非线性最优化理论、方法、软件及应用 最优化在航空航天、生命科学、水利科学、地球科学、工程技术等自然科学领域和经济金融等社会科学领域有着广泛和重要的应用, 它的研究和发展一直得到广泛的关注. 最优化的研究包含理论、方法和应用.最优化理论主要研究问题解的最优性条件、灵敏度分析、解的存在性和一般复杂性等.而最优化方法研究包括构造新算法、证明解的收敛性、算法的比较和复杂性等.最优化的应用研究则包括算法的实现、算法的程序、软件包及商业化、在实际问题的应用. 这里简介一下线性和非线性最优化理论、方法及应用研究的发展状况. 1. 线性最优化 线性最优化, 又称线性规划, 是运筹学中应用最广泛的一个分支.这是因为自然科学和社会科学中许多问题都可以近似地化成线性规划问题. 线性规划理论和算法的研究及发展共经历了三个高潮, 每个高潮都引起了社会的极大关注. 线性规划研究的第一高潮是著名的单纯形法的研究. 这一方法是Dantzig在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划达三十多年. 随着60年代发展起来的计算复杂性理论的研究, 单纯形法在七十年代末受到了挑战. 1979年前苏联数学家Khachiyan提出了第一个理论上优于单纯形法的所谓多项式时间算法--椭球法, 曾成为轰动一时的新闻, 并掀起了研究线性规划的第二个高潮. 但遗憾的是广泛的数值试验表明, 椭球算法的计算比单纯形方法差. 1984年Karmarkar提出了求解线性规划的另一个多项式时间算法. 这个算法从理论和数值上都优于椭球法,因而引起学术界的极大关注, 并由此掀起了研究线性规划的第三个高潮. 从那以后, 许多学者致力于改进和完善这一算法,得到了许多改进算法.这些算法运用不同的思想方法均获得通过可行区域内部的迭代点列,因此统称为解线性规划问题的内点算法. 目前内点算法正以不可抗拒的趋势将超越和替代单纯形法. 线性规划的软件, 特别是由单纯形法所形成的软件比较成熟和完善.这些软件不仅可以解一般线性规划问题, 而且可以解整数线性规划问题、进行灵敏度分析, 同时可以解具有稀疏结构的大规模问题.CPLEX是Bi xby基于单纯形法研制的解线性和整数规划的软件, CPLEX的网址是https://www.doczj.com/doc/ef4663788.html,/. 此外,这个软件也可以用来解凸二次规划问题, 且特别适合解大规模问题. PROC LP是SAS软件公司研制的SAS商业软件中OR模块的一个程序. 这个程序是根据两阶段单纯形法研制的,可以用来解线性和整数规划问题并可进行灵敏度分析, 是一个比较完善的程序.用户可以根据需要选择不同的参数来满足不同的要求。关于内点法的软件也在研制之中.BPMP D是Cs.Mzos基于原始对偶内点法研制的解线性和整数规划的软件,其FTP地址是ftp://ftp.sztaki.hu/pub /oplab/SOFTWARE/BPMPD/ ,可以自由下载.此外,在互联网上能访问到的解线性和整数规划问题的软件还有:EQPS(线性,整数和非线性规划),FMP(线性和混合整数规划),HS/LPLO(线性规划),KORBX(线性规划),LAMPS(线性和整数规划),LPBLP(线性规划),MILP(混合整数规划),MINTO(混合整数规划),MPSIII(线性和混合整数规划),OML(线性和混合整数规划),OSL(线性,二次和混合整数规划),PROCLP(线性和整数规划),WB(线性和混合整数规划),WHIZARD(线性和混合整数规划),XPRESSMP(线性和混合整数规划)等.

最优化理论与方法

课程报告题目最优化理论与方法 学生姓名 学号 院系 专业 二O一二年十一月十日

最优化理论与方法综述 最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。这就是我理解的整个课程的流程。在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。 20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。因此最优化理论和算法迅速发展起来,形成一个新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。 最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。 最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 一、最优化学习的必要性 最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。

车辆优化设计理论与实践_第1章

第1章优化设计的基本概念及相关理论 ● 1.1 概述 ● 1.2 优化设计的基本要素和数学模型 ● 1.3 多元函数的基本性质 ● 1.4 无约束优化问题的极值条件 ● 1.5 约束优化问题的极值条件 1.1 概述 ●优化设计的概念? ●优化设计是20 世纪60 年代初发展起来的一门新学科,它是将最优化原理和计算 技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新的设计方法,人们就可以从众多的设计方案中寻找出最佳设计方案,从而大大提高设计效率和质量。 ●优化设计方法的发展? ●传统设计方法只是被动地重复分析产品的性能,而不是主动地设计产品的参数。 作为一项设计不仅要求方案可行、合理,而且应该是某些指标达到最优的理想方案。 虽然设计中的优化思想在古代设计中就有所体现,但直到直至20 世纪60 年代,电子计算机和计算技术的迅速发展,优化设计才有条件日益发展起来。 ●优化设计方法的发展? ●现代化的设计工作已不再是过去那种凭借经验或直观判断来确定结构方案,也 不是像过去“安全寿命可行设计”方法那样,。而是借助电子计算机,应用一些精确度较高的力学的数值分析方法(如有限元法等)进行分析计算,并从大量的可行设计方案中寻找出一种最优的设计方案,从而实现用理论设计代替经验设计,用精确计算代替近似计算,用优化设计代替一般的安全寿命的可行性设计。 ●优化设计方法的发展? ●近年来,优化设计在汽车设计中的应用也愈来愈广,汽车零部件的优化设计, 各系统的优化匹配等在近十几年也有很大发展,各种减速器的优化设计、万向传动和滚动轴承的优化设计以及轴、弹簧、制动器等的结构参数优化等都得到了广泛研究。 另外,近年来发展起来的计算机辅助设计(CAD) ,在引入优化设计方法后,使得在设计过程既能够不断选择设计参数并评选出最优设计方案,又可以加快设计速度,缩短设计周期。把优化设计方法与计算机辅助设计洁合起来,使设计过程完全自动化,已成为设计方法的一个重要发展趋势。 优化问题示例 图为由两根钢管组成的对称桁架。A处垂直载荷P=300000N,2L=152c m,空心钢管厚度T=0.25c m,材料弹性模量E=2.16X107N/c m2,屈服极限σs=70300N/c m2。 求:在满足强度条件和稳定性条伴下,使体积最小的圆臂直径d和桁架高度H。

凸优化理论与应用-暑期学习总结

“凸优化理论与应用”暑期学校学习总结 一、专家介绍 Stephen Boyd:斯坦福大学教授,曾多次来哈尔滨工业大学控制理论与制导技术研究中心开展学术讲座和交流活动。讲课全部是英文,很开朗。 段广仁:哈尔滨工业大学教授,曾于外国留学,讲了一口流利的英语,和Stephen Boyd教授交流时全部是英语。 谭峰:段广仁的学生,曾去Stephen Boyd教授那里做一年博后,然后回国,现在就职于哈尔滨工业大学,讲师。所以此次由她给大家做辅导。 二、课程安排 7.13上午8:15-9:15 开幕。段广仁老师对于本次暑期学校开展、Stephen Boyd、 谭峰以及幕后的工作人员做了简单的介绍,谈了课程的变 动的原因以及可能给我们加课等事宜。 9:30-11:00讲座1(Lecture 1) Stephen Boyd 教授。 7.14上午8:15-9:15 谭峰博士对于前一天Stephen Boyd 教授讲的知识的一个 回顾。 9:30-11:00讲座2(Lecture 2) Stephen Boyd 教授。 下午14:00-15:00讲座3(Lecture 3)Stephen Boyd 教授。 7.15上午8:15-9:15 谭峰博士。 9:30-11:00讲座4(Lecture 4) Stephen Boyd 教授。 7.16上午8:15-9:15 谭峰博士。 9:15-9:30 所有人一起拍一张照片。 9:30-11:00讲座5(Lecture 5) Stephen Boyd 教授。 三、主要知识 1.凸优化相应理论. 本部分一共有8章,老师只用了两节课共3个小时就讲完了。这部分的内容虽然我很认真的听了,也只能知道一点概况,说实话想学明白还需要以后投入大量的时间精力。 1.1 绪论 此部分介绍了在现实生活中存在的凸优化问题,最小二乘,线性规划,凸优化问题等。 1.2. 凸集 在此部分介绍了凸集里包含的集合的形式,如仿射集、凸集、凸锥、超平面

(建筑工程设计)工程优化设计

1 最优化设计的基本概念 最优化就是追求最好结果或最优目标,从所有可能方案中选择的最合理的一种方案。在进行工程设计、物资运输或资源分配等工作中,应用最优化技术,可以帮助我们选择出最优方案或作出最优决策。目前,最优化方法在工程技术、自动控制、系统工程、经济计划.企业管理等各方面都获得了广泛应用。 最优化设计是从可能设计中选择最合理的设计,以达到最优目标。搜寻最优设计的方法就是最优化设计法,这种方法的数学理论就是最优化设计理论。 最优化设计方法是现代设计方法的一种。微积分中遇到的函数极值问题是最简单的最优化问题。 I.1函数的极值 最简单的最优化设计问题,就是微积分中的求函数极值问题。它是应用数学的一个分支,已渗透到科学、技术、工程、经济各领域。 例1.1边长为a的正方形钢板,设计制成正方形无盖水槽,如图:1.1所示,在四个角处剪去相等的正方形,如何剪法使水槽容积虽大? 解:设剪去的正方形边长为x,与此相应的水槽容积为 解出两个驻点x=a/2和x=a/6 第一个驻点没有实际意义。现在判别第二个驻点是否为极大点。因为 V"(X=a/6)=-4a<0 说明x=a/6的驻点是极大点。 结论是,每个角剪去边长为a/6的正方形可使所制成的水槽容积最大。一般记为Max V(x)。 例1.2图1.2所示的对称两杆支架,由空心圆管构成。顶点承受的荷载为2P,支座间距为2L,圆管壁厚为6。设密度为P,弹性模量为E,屈服极限为(T。问如何设计圆管平均直径d 和支架高度H,使支架的重量最轻? 解:以圆管平均直径d和支架高度H为两个未知变量。支架总重量的数学表达式为 W(H.d)= 2B pbd 最轻支架重量w,一般记为mix W。 式(1.2)中变量d和H还必须满足以下条件: 图1.1正方形钢板图I 2两杆支架 (1)圆管的压应力小于或等于压杆稳定临界应力Φcr。由材料力学可知,压杆稳定的临界应力为 由此得稳定约束条件 (2)圆管压应力小于或等于材料的屈服极限Φy,由此得强度约束条件

最优化理论与算法 fibonacci法

function [a,b,n,x]=fibonacci(fname,a,b,d,L) % fname函数句柄,d辨别常数,L最终区间长度a(1)=a; b(1)=b; F=zeros(1,10); %选择fibonacci数列k值为10,可任意更改 F(1)=1; F(2)=2; for k=2:10 %k取到10,生成fibonacci数列 F(k+1)=F(k)+F(k-1); F(k); end Fn=(b(1)-a(1))/L; Fk=[F Fn]; N=sort(Fk); n=find(Fn==N); %查找计算函数值的次数n t(1)=a(1)+F(n-2)*(b(1)-a(1))/F(n); %计算试探点t(1),u(1) u(1)=a(1)+F(n-1)*(b(1)-a(1))/F(n); for k=1:n-2 ft=feval(fname,t(k)); fu=feval(fname,u(k)); if ft>fu a(k+1)=t(k); b(k+1)=b(k); t(k+1)=u(k); u(k+1)=a(k+1)+F(n-k-1)*(b(k+1)-a(k+1))/F(n-k); while k==n-2 t(n)=t(n-1); u(n)=t(n-1)+d; ft=feval(fname,t(n)); fu=feval(fname,u(n)); if ft>fu a(n)=t(n); b(n)=b(n-1); else a(n)=a(n-1); b(n)=t(n); end end else a(k+1)=a(k); b(k+1)=u(k); u(k+1)=t(k); if k~=n-2 t(k+1)=a(k+1)+F(n-k-2)*(b(k+1)-a(k+1))/F(n-k); ft=feval(fname,t(k));

优化设计

浅述机械优化设计 [摘要] 在科技迅速发展的今天,机械制造在当今社会有着越来越重要的地位。而机械优化设计是以最低的成本获得最好的效益,是设计工作者一直追求的目标,从数学的观点看,工程中的优化问题,就是求解极大值或极小值问题,亦即极值问题。现代机械设计对产品的设计已经不再仅仅考虑产品本身,而且还要考虑对系统和环境的影响;不仅要考虑技术领域,还要考虑经济、社会效益;不仅要考虑当前,还要考虑长远的发展。这使得机械优化设计对于提高企业产品竞争力,具有非常重要的意义。 关键词:机械优化设计极值问题企业产品竞争力 1 机械优化设计的发展概况 在二次世界大战期间,由于军事上的需要产生了运筹学,提供了许多用古典微分法和变分法所不能解决的最优化方法。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始。在机构综合,机械零部件的设计,专用机械设计和工艺设计方面获得了应用并取得了一定的成果。但是还面临着许多问题要解决例如机械产品设计中零部件的通用化系列化和标准化,整机优化设计模型及方法的研究,机械优化设计中离散变量优化方法的研究,更为有效的优化设计方法的发掘等一系列问题。近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新的今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 2 机械优化设计的基本理论 优化设计是建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函数和约束条件,并使目标函数获得最优值一种现代设计方法。 3 优化设计方法的分类及特点 优化设计的类别很多,从不同的角度出发,可以得出不同的分类。机械优化设计是通过优化方法确定机构、零件、部件乃至整个机械系统的最佳参数和结构

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

最优化理论与算法(第三章)

第三章 牛顿法 §3.1 最速下降法 一、最速下降法 在极小化算法中,若每次都以迭代点处的负梯度方向为搜索方向,产生的算法称为最速下降法,它是无约束最优化算法中最简单、最基本的算法。 算法描述: 1) 给出初始点0n x R ∈,允许误差0ε>,0k =; 2) 计算k k d g =-,若k g ε≤,Stop 令 * k x x ≈; 3) 由一维搜索确定步长因子k α,使得 ()min ()k k k k k f x d f x d ααα≥+=+ 4) 令1k k k k x x d α+=+,1k k =+,go to 2). 的每个聚点均为驻点。 令{}1 k K d 有界,且 2 ()(())()0T f x f x f x ?-?=-?= 故有 ()0f x ?=。 定理 3.2 设()f x 二次连续可微,且2()f x M ?≤,则对任何给定的初始点0n x R ∈,最速下降算法或有限终止,或lim ()k k f x →∞ =-∞,或lim ()0k k f x →∞ ?=。

证明:不妨设k ?,()0k f x ?≠。由定理2.5有 2 11()()()2k k k f x f x f x M +-≥ ? 于是 []1 2 010 1 ()()()()()2k k k i i i i i f x f x f x f x f x M -+==-=-≥ ?∑∑ 令k →∞,由{()}k f x 为单调下降序列,则要么 lim ()k k f x →∞ =-∞,要么 lim k →∞ ?定理3.3 设1 f C ∈证明:直接由定理2.14可得。 注:1) 2 1λ,n λ分别为G 的 ≤ ()k k I G x α- 其中k α使 (())(())k k k f I G x f I G x αα-≤-, 0α?≥ 若设 ()1k P t t α=-,()Q t ut λ=- 其中,u R λ∈。则有 ()Q G I uG λ=-,而(0)Q λ=,

最优化理论与应用实验报告

最优化理论与应用实验报告 季晓南 实验目的: 实践所学的最优化方法。 工程描述: 本工程使用编写,主要包括以下几个文件: : 实现最优化方法的基本步骤 : 实现非精确一维搜索 : 实现基本函数操作 : 工程的基本配置 : 主要函数的声明 具体请参考每个函数的注释。 ● 代码可读性高,模块化强,采用了一致的代码规范,尽管这在一定程度上牺牲了效率, 但本着实验的目的,作者坚持这样做了。 ● 用户可以通过改变中的( )和( )来改变输入函数。 ● 对于不同的标准,如非精确一维搜索和,校正以及共轭梯度法中的和公式,用户都可以 通过改变中的宏定义实现。 ● 每次实验的结果和参数都会自动保存,这样有助于分析数据。 数据分析: 给定二次函数 ()x 22121f()=x +3x 2 (一)一维搜索 1. 非精确一维搜索参数对迭代次数的影响 由准则: T k k k k k f(x +s f(x +g s ρ≤)) ()1 (1)T k k k k k f(x +s f(x +g s ρ≥-)) ()2 可知:越大的ρ对应着越精确的搜索区间,取0.3ρ=使用再开始的共轭梯度法求解,得到迭代次数为,取0.4ρ=得到迭代次数为次,见同文件夹下的数据文件。 2. 准则与准则的比较 由准则 T T k+1k k k g d g d σ≥ ()' 2

σ=,打开宏,可以发现使用再开始共轭梯度法时,两次迭代就得到解。 在中修改0.5 见同文件夹下的数据文件。 3.非精确一维搜索参数对一维搜索速度的影响 对二次函数,参数的选择对一维搜索的参数选择是不敏感的。 (二)不同方法的比较 .最速下降法 最速下降法的效率是最低的,因为测试函数的等值线是一个椭球,搜索方向形成锯齿状曲线,故收敛速度慢。 2.共轭梯度法 若选择合适的参数,使用共轭梯度法,具有二次收敛性。在准则下,分别采用和公式生成共轭方向,发现要比的效果好。 3.拟牛顿方法 因拟牛顿法也是共轭方向法,故选择合适的参数,拟牛顿法也有二次收敛性。在准则下,分别采用和校正,发现要比要好。

最优化理论与算法

最优化理论与算法笔记 在老师的指导下,我学习了最优化理论与算法这门课程。最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多方案中什么样的方案最优以及怎样找出最优方案。 由于生产和科学研究突飞猛进的发展,特别是计算机的广泛应用,使最优化问题的研究不仅成为了一种迫切的需要,而且有了求解的有力工具,因此迅速发展起来形成一个新的学科。至今已出现了线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。 整个学习安排如下,首先介绍线性与非线性规划问题,凸集和凸函数等基本知识及线性规划的基本性质;然后再这个基础上学习各种算法,包括单纯形法、两阶段法、大M 法、最速下降法、牛顿法、共轭梯度法等,以及各种算法相关的定理和结论;最后了解各种算法的实际应用。 主要学习的基础知识: 1、一般线性规划问题的标准形式 1min n j j j c x =∑ 1 .., 1,...,, 0, 1,...,. n ij j i j j s t a x b i m x j n ===≥=∑ 学会引入松弛变量将一般问题化为标准问题;同时掌握基本可行解的存在问题,通过学习容易发现线性规划问题的求解,可归结为求最优基本可行解的问题。 2、熟练掌握单纯形法、两阶段法和大M 法的概念及其计算步骤。 单纯形法是一种是用方便、行之有效的重要算法,它已成为线性规划的中心内容。其计算步骤如下: 1)解,B Bx b =求得1B x B b b -==,令0,N x =计算目标函数值B B f c x =;

2)求单纯形乘子ω,解B B c ω= ,得到1B c B ω-=; 3)解k k By p =,若0k y ≤,即k y 的每个分量均非正数,则停止计算,问 题不存在有限最优解,否则,进行步骤(4); 4)确定下标r ,使min{0}r r rk rk rk b b y y y =>,得到新的基矩阵B ,返回第一 步。 两阶段法:第一阶段是用单纯形法消去人工变量,即把人工变量都变换成非基变量,求出原来问题的一个基本可行解;第二阶段是从得到的基本可行解出发,用单纯形法求线性规划的最优解。 大M 法:在约束中增加人工变量a x ,同时修改目标函数,加上罚项T a Me x ,其中M 是很大的正数,这样,在极小化目标函数的过程中,由于M 的存在,将迫使人工变量离基。 3、掌握最速下降法的概念及其算法,并且能够讨论最速下降算法的收敛性。掌握牛顿法,能够熟练运用牛顿迭代公式:(1) ()2()()()()k k k k x x f x x x +=-?- ,掌 握共轭梯度法及其相关结论,以及其收敛性的讨论,掌握最小二乘法及其基本步骤。 最速下降法:迭代公式为(1) ()()k k k k x x d λ+=-。 计算步骤:1)给定点(1)n x R ∈,允许误差0,ε>臵1k =; 2)计算搜索方向() ()()k k d f x =-?; 3)若() k d ε≤,则停止计算,否则,从()k x 出发,沿()k d 进行一维搜索,求k λ,使()()()() ()min ()k k k k k f x d f x d λλλ≥+=+; 4)令(1) ()()k k k k x x d λ+=-,臵:1k k =+,转步骤(2)。

全国首届优化理论与应用暑期学校

全国首届“优化理论与应用”暑期学校 在山东日照成功举办 在国家自然科学基金委员会及曲阜师范大学的大力支持下,(2007年)全国首届“优化理论与应用”暑期学校于2007年7月29日在曲阜师范大学日照校区开学,历经20天于8月18日成功结束。来自中国科学院、清华大学、复旦大学、武汉大学、西安交通大学、大连理工大学、北京交通大学、天津大学、北京工业大学、上海大学、华中科技大学、湖南大学、广西大学、上海师范大学、哈尔滨师范大学、贵州大学、山东科技大学、及台湾交通大学等近70所高校和科研院所的126名学员(其中有来自台湾的5名博士生学员)参加了本期暑期学校的学习。 本次暑期学校的开办是源于许多学校师生的建议,并按照数学规划分会常务理事会通过的以学员为主、注重效果的实施方案进行组织实施,举办得非常成功,达到了预期的教学效果。 本期暑期学校共开设了四门课程:《优化计算与程序设计》,《组合最优化问题的计算复杂性》,《锥优化理论基础》,《整数规划基础》,分别由南京航空航天大学的倪勤教授、曲阜师范大学的张玉忠教授、大连理工大学的张立卫教授、复旦大学的孙小玲教授担任主讲教师。每门课程在授完后,都对学员进行了考核。 为配合本次暑期学校,在暑期学校的第一天,还举办了小型研讨会。包括来自美国和中国香港在内的12 位专家参加了研讨会, 其中6位专家―越民义研究员、方述诚教授、陈光亚研究员、张树中教授、戴彧虹研究员、徐大川教授―为学员们做了六个不同方向的学术报告。在暑期学校课程中间,邀请了来自英国的运筹学专家陈礴教授为学员做了专题报告,配合正在进行的《整数规划》课程的教学。 暑期学校是在日照天气最热的时候开学的,尽管教室与宿舍没有空调,气温较高,但学员们学习热情高涨,遵守纪律,认真学习,不怕艰辛,其精神令人感动。本期暑期学校申请报名人数超过200人,由于条件所限,仅能满足半数的需求,仍有一些申请者不断询问是否能够旁听。由此看出,国内从事优化研究的研究生和青年教师表现出很强的求知欲望。暑期学校期间,一百二十多名正式学员中,提前离开的不超过5人,坚持到课程结束的学员比例达到96%。本次暑期学

最优化理论与算法

最优化理论与算法(数学专业研究生) 第一章 引论 § 引言 一、历史与现状 最优化理论最早可追溯到古老的极值问题,但成为一门独立的学科则是在20世纪四十年代末至五十年代初。其奠基性工作包括Fritz John 最优性条件(1948),Kuhn-Tucker 最优性条件(1951),和Karush 最优性条件(1939)。近几十年来最优化理论与算法发展十分迅速,应用也越来越广泛。现在已形成一个相当庞大的研究领域。关于最优化理论与方法,狭义的主要指非线性规划的相关内容,而广义的则涵盖:线性规划、非线性规划、动态规划、整数规划、几何规划、多目标规划、随机规划甚至还包括变分、最优控制等动态优化内容。本课程所涉及的内容属于前者。 二、最优化问题的一般形式 1、无约束最优化问题 min ()n x R f x ∈ () 2、约束最优化问题 min () ()0, ..()0, i i f x c x i E s t c x i I =∈?? ≥∈? () 这里E 和I 均为指标集。 §数学基础 一、 范数 1. 向量范数 max i x x ∞= (l ∞范数) () 11n i i x x ==∑ (1l 范数) () 122 21 ()n i i x x ==∑ (2l 范数) ()

11 ()n p p i p i x x ==∑ (p l 范数) () 12 ()T A x x Ax = (A 正定) (椭球范数) () 事实上1-范数、2-范数与∞-范数分别是 p -范数当 p =1、2和p →∞时情形。 2.矩阵范数 定义 方阵A 的范数是指与A 相关联并记做A 的一个非负数,它具有下列性质: ① 对于0A ≠都有0A >,而0A =时0A =; ② 对于任意k R ∈,都有kA k A =; ③ A B A B +≤+; ④ AB A B ≤; 若还进一步满足: ⑤ p p Ax A x ≤ 则称之为与向量范数p g 相协调(相容)的方阵范数。若令 max x Ax A x ≠= (这里x 是某一向量范数) () 可证这样定义的范数是与向量范数g 相协调的,通常称之为由向量范数g 诱导的方阵范数。特别地,对方阵()ij n n A a ?=,有: 11max n ij j i A a ==∑(列和的最大者) () 1 max n ij i j A a ∞ ==∑(行和的最大者) () 1 22()T A A A λ=(T A A λ表示T A A 的特征值的最大者) 称为谱范数(注:方阵A 的特征值的模的最大者称为A 的谱半径,记为()A ρ)。 对于由向量诱导的方阵范数,总有:

优化设计的概念和原理

优化设计的概念和原理 概念 1 前言 对任何一位设计者来说,其目的是做出最优设计方案,使所设计 的产品或工程设施,具有最好的使用性能和最低的材料消耗与制造成本,以便获得最佳的经济效益和社会效益。因此,在实际设计中,科技人员往往首先拿出几种不同的方案,通过对比分析以选取其中的最优方案。但在现实中,往往由于经费限制,使所选择的候选方案数目受 到很大的限制,因此急需一种科学有效的数学方法,于是诞生了“最 优化设计”理论。 最优化设计是在计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法综合各方面因素,以人机配合方式或 “自动探索”方式,在计算机上进行的半自动或自动设计,以选出在 现有工程条件下的最佳设计方案的一种现代设计方法。其设计原则 是最优设计:设计手段是电子计算机及计算程序;设计方法是采用最 优化数学方法.本文将就最优化设计常用的概念如:设计变量、目标 函数、约束条件等做简要介绍。 2设计变量 设计变量是在设计过程中进行选择最终必须确定的各项独立参数。在选择过程中它们是变量,但当变量一旦确定以后,设计对象也 就完全确定。最优化设计就是研究如何合理地优选这些设计变量值 的一种现代设计方法。 在机械设计中常用的独立参数有结构的总体配置尺寸,元件的几何尺寸及材料的力学和物理特性等。在这些参数中,凡是可以根据设计要求事先给定的,则不是设计变量,而称之为设计常量。最简单的 设计变量是元件尺寸,如杆元件的长度,横截面积,抗弯元件的惯性矩:板元件的厚度等。 3目标函数 目标函数即设计中要达到的目标。在最优化设计中,可将所追求的设计目标(最优指标)用设计变量的函数形式表示出来,这一过程称为建立目标函数,一般目标函数表达为 f(x)=f(xl,xZ,…,x。)

优化设计概述

优化设计概述 一、优化设计内涵 优化设计英文名是optimization design,从多种方案中选择最佳方案的设计方法。它以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 第二次世界大战期间,美国在军事上首先应用了优化技术。1967年,美国的R.L.福克斯等发表了第一篇机构最优化论文。1970年,C.S.贝特 勒等用几何规划解决了液体动压轴承的优化设计问题后,优化设计在机械设计中得到应用和发展。随着数学理论和电子计算机技术的进一步发展,优化设计已逐步形成为一门新兴的独立的工程学科,并在生产实践中得到了广泛的应用。通常设计方案可以用一组参数来表示,这些参数有些已经给定,有些没有给定,需要在设计中优选,称为设计变量。如何找到一组最合适的设计变量,在允许的范围内,能使所设计的产品结构最合理、性能最好、质量最高、成本最低(即技术经济指标最佳),有市场竞争能力,同时设计的时间又不要太长,这就是优化设计所要解决的问题。 工程优化设计问题中绝大多数问题都属于约束优化问题,若无约束优化问题的目标函数是一元函数,则称它为一维优化问题;若是二元或二元以上函数,则称它为多维无约束优化问题。 二、一维优化方法 对一维目标函数求最优解的过程,称为一维优化(或一维搜索),求解时使用的方法称为一维优化方法。 一维搜索方法主要包括以下几种:分数法、黄金分割法(0.618)、二次插值及三次插值法等。 在实际计算中,黄金分割法是最常用的一维搜索试探方法,也称 0.618法。黄金分割法是一种等比例缩短区间的直接搜索方法。该法的基 本思路是:通过比较单峰值区间内两点的函数值,不断舍弃单峰区间的左端或右端一部分,使区间按照固定区间缩短率(缩小后的新区间与原区间长度之比)逐步缩短,直到极小点所在的区间缩短到给定的误差范围内,从而得到近似最优解。黄金分割法的内分点选取必须遵循每次区间缩短都取等区间缩短率的原则。 三、无约束优化方法 多维约束优化方法是优化技术中最重要和最基本的内容之一。因为它不仅可以直接用来求解无约束优化问题,而且在实际工程设计问题中的大量约束优化问题来求解。所以,无约束优化方法在工程优化设计中有着十分重要的作用。

最优化理论与算法(第九章)

第九章 二次规划 §9.1 二次规划问题 称形如 1m in ()2 T T Q x x H x g x = + 1,,. 1,,T i i e T i i e a x b i m s t a x b i m m ?==??≥=+?? (9.1) 的非线性规划问题为二次规划问题。对二次规划问题,有如下的最优性条件。 定理9.1 设x *是(9.1)的局部极小点,则必存在乘子(1,,)i i m λ*= ,使得 1 0 1,, 0 1,,m i i i T i i i e i e g H x a a x b i m m i m m λλλ**=*** ?+=? ?? ??-==+????≥=+??? ∑ (9.2) 且对于一切满足于: 0, ()T i d a i E I x * =∈ 的n d R ∈,都有0T d Hd ≥。 注:1)上述定理的前后两部分分别对应于一、二阶的必要条件; 2)满足上述条件的d ,都有(,)d S x λ* * ∈; 3)当约束条件均为线性函数时,容易证明: (,)(,) (,F D x X S F D x X L F D x X * * *= =及(,)(,)S x G x λλ**** = 上面给出的是二次规划的必要性条件,下面给出充分性条件。 定理9.2 设x * 是K-T 点,λ* 是相应的Lagrange 乘子,如果对满足 0 0 () 0 () 0 T i T i T i i d a i E d a i I x d a i I x λ* **?=∈?≥∈??=∈>? 且 (9.3) 的一切非零向量n d R ∈,都有0T d Hd >,则x * 是(9.1)的局部严格极小点。

最优化理论与方法论文

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

相关主题
文本预览
相关文档 最新文档