第四章转子振动
- 格式:ppt
- 大小:4.68 MB
- 文档页数:40
转子动力学是固体力学的一个分支。
本文主要研究转子支承系统在旋转状态下的振动,平衡和稳定性,特别是在接近或超过临界转速的情况下转子的横向振动。
转子是涡轮机,电动机和其他旋转机械的主要旋转部件。
200多年来,工程和科学界一直关注转子振动。
w.j.m. 1869年英格兰的兰金(Rankin)和1889年法国的拉瓦尔(c.g.p.de Laval)对挠性轴的测试是研究此问题的先驱。
随着现代工业的发展,高速细长转子逐渐出现。
由于它们通常在柔性状态下工作,因此它们的振动和稳定性变得越来越重要。
转子动力学的主要研究内容如下:①临界速度由于制造误差,转子每个微小部分的质心与旋转轴略有偏离。
当转子旋转时,由上述偏差引起的离心力将使转子产生横向振动。
在某些速度(称为临界速度)下,这种振动似乎非常强烈。
为了确保机器不会在工作速度范围内产生共振,临界速度应适当偏离工作速度,例如大于10%。
临界速度与转子的弹性和质量分布有关。
对于具有有限集总质量的离散旋转系统,临界速度的数量等于集总质量的数量;对于具有连续质量分布的弹性旋转系统,临界速度是无限的。
传递矩阵法是计算大型转子支撑系统临界转速的最常用数值方法。
要点是:首先,将转子分成几个部分,每个部分左右两端的四个部分参数(挠度,挠度角,弯矩和剪切力)之间的关系可以通过传递来描述。
该部分的矩阵。
以此方式,可以获得系统的左端和右端的横截面参数之间的总传递矩阵。
然后,根据边界条件和自然振动中非零解的条件,通过试错法求出各阶的临界速度,得到相应的振动模式。
②通过临界速度的状态通常,转子以可变速度通过临界速度,因此通过临界速度的状态是不稳定的。
与以临界速度旋转时的静止状态不同,有两个方面:一是振幅的最大值小于静止状态的振幅,速度越大,振幅的最大值越小。
另一个是振幅的最大值不会在像静止状态那样的临界速度下出现。
在不稳定状态下,频率转换干扰力作用在转子上,这使分析变得困难。
为了解决这种问题,在数值计算或非线性振动理论中必须使用渐近法或级数展开法。
振动的基本概念及刚性转子找平衡振动水平是衡量设备安全可靠运行的重要指标。
剧烈的振动容易导致零部件的疲劳损坏,一些重大的设备损害直接或间接地与振动有关。
所以,在设备运行时需对设备进行振动监测,其目的在于:(1):监测振动的大小,了解其是否在规定的范围内;(2):当机组异常时,进行测量和处理故障(不仅需测量振动的大小,还需测量频率、相位)。
一:振动的表示:振动的三要素:振幅、频率、以及相位。
振幅表示机组振动严重程度或剧烈程度的重要指标。
1:振幅:其表示方法有:(1):位移表示方法:振幅表示机组振动严重程度或剧烈程度的重要指标。
Ap单峰值就是振动的最大点到平衡位置之间的距离。
App峰峰值实际上就是振动的波峰与波谷的距离。
振动测量仪器输出的位移振动振幅通常都是峰峰值。
(2):加速度、速度表示方法:用速度均方根表示,又称为“烈度”,单位:mm/s用加速度表示时,单位为mm2 /s当速度为单一频率时,与速度之间的关系为注:•振动位移、速度和加速度•y =A sin(ωt+ ϕ)•v=d y/dt=ωA sin(ωt+ ϕ+π/2)•a= d 2y/dt2=ω2A sin(ωt+ ϕ+π)•(1)振动位移、速度和加速度信号的频率相同。
•(2)在相同位移幅值下,频率越高,交变应力越大,对设备危害也越大。
•(3)振动速度/加速度是振动位移和频率/频率平方的乘积,幅值中同时反映了振动频率和位移幅值的影响,较单纯的振动位移幅值更全面•(4)采用不同表示方式,必须考虑相互之间的相位差。
•(5)同一种故障在振动位移、速度和加速度频谱中表现出来的故障特征不完全相同。
•(6)振动位移、速度和加速度之间可以相互转换。
2:相位:(1)作用:相位就是转动部件参考一个固定位置得到的瞬时位置信息,相位告诉我们振动的方向。
相位在振动测量中主要应用于确定不平衡量的角度,由基频振动的相位和转子的机械滞后角可以知道不平衡的角度。
(2)概念:从广义上讲:相位可以理解为两个事件之间的时间。
振动电机振动原理
振动电机利用电磁力产生振动。
其工作原理如下:
1. 电磁力产生:振动电机由定子和转子两部分组成。
定子是由电磁线圈和磁铁组成,通过外加的交流电源使电磁线圈产生电流,从而形成磁场。
转子则是通过磁铁的吸引力与电磁线圈的相互作用而产生振动。
2. 磁铁吸引力作用:当电流通过电磁线圈时,会产生磁场,这个磁场会吸引转子上的磁铁。
由于转子上的磁铁与电磁线圈的磁场相互作用,转子就会受到一个向电磁线圈靠近的力,从而产生向前移动的运动。
3. 方向反转产生振动:为了产生振动效果,振动电机需要周期性地改变电流的方向。
一开始,电流在一个方向上流过电磁线圈,转子受到的力使其向一个方向运动,当电流方向改变时,转子受到的力也会改变方向,将转子向相反的方向推移。
通过不断反转电流方向,转子就会产生重复的振动。
4. 频率控制振动幅度:振动电机的振动幅度和频率可以通过调节电流的频率来控制。
通常情况下,电流的频率越高,振动幅度也就越大。
因此,可以通过改变电源的频率来调整振动电机的振动效果。
总之,振动电机利用电磁力产生振动,在定子和转子的相互作用下,通过不断反转电流方向,实现频率可调的振动效果。
技术讲课教案主讲人:罗仁波培训题目:《转子动平衡——原理、方法和标准》培训目的:多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。
内容摘要:动平衡前要确认的条件:1.振动必须是因为动不平衡引起。
并且要确认动不平衡力占振动的主导。
2.转子可以启动和停止。
3.在转子上可以添加可去除重量。
培训教案:第一章不平衡问题种类为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、动不平衡,如下图),而且还要知道转子的宽径比及转速决定了采用单平面、双平面还是多平面进行动平衡操作。
同时也要认识到转子是挠性的还是刚性的。
●●刚性转子与挠性转子✧对于刚性转子,任何类型的不平衡问题都可以通过任选的二个平面得以平衡。
✧对于挠性转子,当在一个转速下平衡好后,在另一个转速下又会出现不平衡问题。
当一个挠性转子首先在低于它的70%第一监界转速下,在它的两端平面内加配重平衡好后,这两个加好的配重将补偿掉分布在整个转子上的不平衡质量,如果把这个转子的转速提高到它的第一临界转速的70%以上,这个转子由于位于转子中心处的不平衡质量所产生的离心力的作用,而产生变形,如图10所示。
由于转子的弯曲或变形,转子的重心会偏离转动中心线,而产生新的不平衡问题,此时在新的转速下又有必要在转子两端的平衡面内重新进行动平衡工作,而以后当转子转速降下来后转子又会进入到不平衡状态。
为了能在一定的转速范围内,确保转子都能处在平衡的工作状态下,唯一的解决办法是采用多平面平衡法。
✧挠性转子平衡种类1.如果转子只是在一个工作转速下运转,小量的变形不会产生过快的磨损或影响产品的质量,那么可以在任意二个平面内进行平衡,使轴承的振动降低到最小即可。
2.如果一个挠性转子,只是在一个工作转速下工作,但是将转子的变形量降低到最小是极其重要的,这时最好采用多平面动平衡修正。
转子刚度不对称引起的振动
转子刚度不对称是指旋转轴截面上两个相互垂直方向具有不同的刚度。
例如、电机转子绕组不均匀,轴上有局部地方洗削成平面,轴上开有键槽,轴局部内、外园偏心,或两段轴用平面联轴节连接,而联轴节圆周上的连接螺栓拧紧度不均匀等。
对于水平安装的转子,如果刚度不对称,就会出现两倍频振动以及副临界转速(即转速在临界转速的1/2处会出现一个振动峰值)。
如果转子系统的阻尼不足,在这两个临界转速之间工作就会产生不稳定振动。
1)由刚度不对称所引起的振动频率为两倍于转子旋转频率。
2)转子振幅随截面上两个方向刚度差的增加而增大;
3)转子截面刚度差引起的振动与不平衡无关,用提高动平衡精度的方法并
不能解决此类振动问题。
如果轴在两个方向上的刚度差严重时,只要有很小的质量偏心,就足以使共振幅值变得很大。
所以对高速轴的偏心度和园度要严格控制。
旋转机械振动的基本特性概述绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。
旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。
这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。
故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。
例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。
机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。
但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。
由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。
从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。
同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。
根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。
表1 旋转机械故障原因分类故障分类主要原因设计原因①设计不当,动态特性不良,运行时发生强迫振动或自激振动②结构不合理,应力集中③设计工作转速接近或落人临界转速区④热膨胀量计算不准,导致热态对中不良制造原因①零部件加工制造不良,精度不够②零件材质不良,强度不够,制造缺陷③转子动平衡不符合技术要求安装、维修①机械安装不当,零部件错位,预负荷大②轴系对中不良③机器几何参数(如配合间隙、过盈量及相对位置)调整不当④管道应力大,机器在工作状态下改变了动态特性和安装精度⑤转子长期放置不当,改变了动平衡精度⑥未按规程检修,破坏了机器原有的配合性质和精度操作运行①工艺参数(如介质的温度、压力、流量、负荷等)偏离设计值,机器运行工况不正常②机器在超转速、超负荷下运行,改变了机器的工作特性③运行点接近或落入临界转速区④润滑或冷却不良⑤转子局部损坏或结垢⑥启停机或升降速过程操作不当,暖机不够,热膨胀不均匀或在临界区停留时间过久机器劣化①长期运行,转子挠度增大或动平衡劣化②转子局部损坏、脱落或产生裂纹③零部件磨损、点蚀或腐蚀等④配合面受力劣化,产生过盈不足或松动等,破坏了配合性质和精度⑤机器基础沉降不均匀,机器壳体变形旋转机械振动的基本特性(1)旋转机械的主要功能是由旋转部件来完成的,转子是其最主要的部件。
第四章 旋转机械检修技术一、填空题1.无键联接的工件在拆卸时,推进器与轮毂外端面间应留必然间隙,其值不宜超过 ,以防轮毂高速推出时伤害工件和人。
2.尺型联轴器中间套筒对正连接后,应有必然的 浮动量,其值一般在3~6mm 。
选值原那么是:在 浮动量下应包管两轮毂外齿能同时全齿啮合。
在 浮动量下不会因转子位移发生轮毂与接筒卡死。
3.离心式压缩机筒式内缸体段间密封在高压工况下选用O 形环,要和 同时使用,假设单向受压,选用 背环,背环装配在 侧。
假设双向交替受压那么选用 背环,在O 形环的两侧各置一个背环。
4.液力连轴器又称液力 器。
它是操纵液体 能来传递功率的液力传动机构。
5.风机按排气压力〔p d 〕来分,可分为三大类。
当排气压力p d ≤14.7kPa ,称为 ;当排气压力p d 在14.7kPa <p d ≤0.2MPa 时,称为 ;当排气压力p d >0.2MPa ,称为 。
6.一般的平衡精度转子,动平衡时可直接采用 的支承,对精度要求高的转子做高度动平衡时,必需采用 的原配轴承,并应在 环境下进行。
7.国产气轮机驱动的压缩机组用增速齿轮箱,以齿形分有 类。
别离是 齿面圆弧齿斜齿或人字齿轮和 齿面渐开线斜齿或认字齿轮。
8.离心式压缩机组的连接方法有三种,它们依次是 、 和 。
9.干式气缸套不与 接触,仅起衬套作用,常用于压缩机的 、 压段,湿式气缸套的外外表与冷却水接触,常用在压缩机的低压段,装配要 。
10. Cl -对奥氏体不锈钢的破坏属于 ,其作用条件除湿度因素外,还有两个重要条件是 和液相中 。
11.应力腐蚀、腐蚀疲劳和氢脆现象,都是金属材料受介质侵袭而导致的 破坏性。
12.起重吊钩应在 区作出永久标记,内容包罗 载荷、厂表、产物编号。
吊钩应设置 机构。
手动吊钩的试验载荷为标记载荷的 倍,25t 以下的机用吊钩的试验载荷为标记载荷的2倍,吊钩开口增大 %,扭转变形≥10%,吊钩应报废。
5
序号
敏感参数
转子不平衡的振动特征
转子不平衡的振动特征
序号
特征参量
故障特征
原始不平衡
渐变不平衡
突发不平衡
1
2
3
时域波形
正弦波 正弦波 正弦波 特征频率
1X 1X
1X 4
常伴频率 较小的高次谐波
较小的高次谐波
较小的高次谐波
振动稳定牲
稳定 逐渐增大 突发性增大后稳定
5
振动方向 径向 径向 径向
相位特征
稳定 渐变 突变后稳定 6
轴心轨迹 椭圆 椭圆 椭圆
进动方向
正进动 正进动 正进动 7
矢量区域
不变
渐变
突变后稳定
8
9
转子不平衡的振动敏感参数
振动随转速变化
振动随油温变化
振动随介质油温变
化
振动随压力变化
振动随流量变化
振动随负荷变化 其他识别方法
转子不平衡故障原因分析与治理措施。
机械故障诊断考试--题库〔局部内容可变为填空题〕第一章:1、试分析一般机械设备的劣化进程。
答:1〕早期故障期阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。
早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用过失。
2〕偶发故障期阶段特点:故障率恒定且最低,为产品的最正确工作期。
故障原因:主要是使用不当、操作失误或其它意外原因。
3〕耗损故障期阶段特点:故障率再度快速上升。
故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。
2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些?答:1′直接观察法-传统的直接观察法如“听、摸、看、闻〞是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。
2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。
进一步的研究还说明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。
3′无损检验-无损检验是一种从材料和产品的无损检验技术中开展起来的方法4′磨损剩余物测定法〔污染诊断法5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据3、设备维修制度有哪几种?试对各种制度进行简要说明。
答:1º事后维修特点是“不坏不修,坏了才修〞,现仍用于大批量的非重要设备。
2º预防维修〔定期维修〕在规定时间根底上执行的周期性维修3º预知维修在状态监测的根底上,根据设备运行实际劣化的程度决定维修时间和规模。
预知维修既防止了“过剩维修〞,又防止了“维修缺乏〞;既减少了材料消耗和维修工作量,又防止了因修理不当而引起的人为故障,从而保证了设备的可靠性和使用有效性。
第二章:1、什么是故障机理?答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。
2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?答:1 机械的可靠性是指机械产品在规定条件下,在规定时间内,无故障地完成其规定功能的能力。