基础预习初探
1.回顾直角三角形中的边与角的关系: a , b , c 是否为定值?
sin A sin B sin C
提示:如图,直角三角形ABC中,C=90°,c=2R,R为△ABC外接圆的半径,显然有 a b c =2R(定值).
sin A sin B sin C
2.在锐角或钝角三角形中边与角的关系: a , b , c 是否为定值?
sin A sin C
得sin C= csin A 3,
a2
又0°<C<180°,得C=60°或C=120°.
当C=60°时,B=75°,sin75°= b= csin B 2 6;
sin C
6 2, 4
当C=120°时,B=15°,sin15°= b=csin B 6- 2.
sin C
sin A sin B sin C
sin A sin B sin C
提示:如图,锐角三角形的外接圆的半径为R,直径为CD=2R,连接
BD,∠A=∠D,∠CBD=90°,
所以 a =aCD=2R,
sin A sin D
同理 b=2R, =c2R.
sin B
sin C
得 a b =2Rc(定值).
sin A sin B sin C
同理,在钝角三角形中,上述等式仍然成立.
2
可得B<60°,即可求得B.
2.由A+B+C=180°求角B,再由正弦定理求边长.
【解析】1.选C.因为A=60°,a=4 3,b=4,
由正弦定理 a ,得b sin B=
sin A sin B
bsin A 4 sin60 1 .
a
43 2
因为a>b,所以B<60°,所以B=30°.