cos B
3 ,所以B 30,因此C 105
2ac
4( 3 1)
2
3. 在△ABC中,已知b 5, c 2, 锐角A满足 sin A 231 ,求C(精确到1) 20
因为sin A 231 , 且A为锐角,所以cos A= 1 sin2 A 13 ,
20
20
由余弦定理, 得a2 b2 c2 2bc cos A 16, 所以a 4;
而勾股定理是余弦定理的特例.
一般地, 三角形的三个角A, B, C和它们的对边a, b, c b
c
叫做三角形的元素. 已知三角形的几个元素求其他
元素的过程叫做解三角形.
C
a
B
环节五:课堂练习,巩固运用
例5 在△ABC中,已知b 60 cm, c 34 cm, A 41, 解这个三角形 (角度精确到1, 边长精确到1 cm).
余弦定理(law of cosines)三角形中任何一边的平方,等于其他两边
平方的和减去这两边与它们夹角的余弦的积的两倍.
即
a2 b2 c2 2bc cos A
你能用其他方法
b2 a2 c2 2ac cosB
证明余弦定理吗?
c2 a2 b2 2abcosC
问题:利用余弦定理可以解决三角形的哪类问题?
所以cos C a2 b2 c2 37 ,利用计算器可得C 22
2ab
40
所以C 180 ( A B) 180 (41 106) 33
例6 在△ABC中, a 7, b 8, 锐角C满足 sin C 3 3 , 求B(精确到1). 14
分析:由条件可求cosC, 再利用余弦定理及其推论可求出B的值.
因为sin C 3 3 , 且C为锐角,所以cos C 1 sin2 C 1 ( 3 3 )2 13 ,