(整理)自动控制综合设计-无人驾驶汽车计算机控制系统
- 格式:doc
- 大小:472.00 KB
- 文档页数:25
人工智能无人驾驶汽车安全操作手册第一章:概述 (3)1.1 无人驾驶汽车的定义与分类 (3)1.2 无人驾驶汽车的安全性与可靠性 (3)第二章:技术原理 (4)2.1 感知系统 (4)2.2 决策系统 (4)2.3 控制系统 (4)2.4 通信系统 (5)第三章:安全操作规范 (5)3.1 启动与关闭操作 (5)3.1.1 启动操作 (5)3.1.2 关闭操作 (5)3.2 车辆行驶前的检查 (5)3.2.1 车辆外观检查 (5)3.2.2 车辆功能检查 (6)3.2.3 传感器与摄像头检查 (6)3.3 行驶过程中的注意事项 (6)3.3.1 保持安全距离 (6)3.3.2 注意观察交通状况 (6)3.3.3 遵守交通信号 (6)3.3.4 遇到特殊情况的处理 (6)3.4 紧急情况下的处理 (6)3.4.1 突发故障 (6)3.4.2 碰撞 (6)3.4.3 紧急制动 (7)第四章:自动驾驶功能使用 (7)4.1 自动驾驶模式的启动与切换 (7)4.1.1 启动条件 (7)4.1.2 启动方法 (7)4.2 自动驾驶功能限制与注意事项 (7)4.2.1 功能限制 (7)4.2.2 注意事项 (7)4.3 自动驾驶过程中的监控与干预 (8)4.3.1 监控 (8)4.3.2 干预 (8)4.4 自动驾驶系统故障处理 (8)4.4.1 故障诊断 (8)4.4.2 故障处理 (8)第五章:环境适应性 (8)5.1 不同天气条件下的驾驶策略 (8)5.2 不同道路条件下的驾驶策略 (9)5.3 夜间行驶操作要点 (9)5.4 环境感知系统的维护与保养 (9)第六章:故障诊断与处理 (10)6.1 故障诊断方法 (10)6.1.1 自诊断系统 (10)6.1.2 人工诊断 (10)6.2 常见故障及其处理方法 (10)6.2.1 传感器故障 (10)6.2.2 执行器故障 (11)6.3 紧急故障处理 (11)6.3.1 车辆失控 (11)6.3.2 系统故障 (11)6.4 维修与保养 (11)第七章:安全防护措施 (12)7.1 被动安全防护 (12)7.1.1 结构设计 (12)7.1.2 乘员约束系统 (12)7.2 主动安全防护 (12)7.2.1 驾驶辅助系统 (12)7.2.2 车辆稳定控制系统 (13)7.3 紧急制动系统 (13)7.4 安全距离控制 (13)第八章:法律法规与合规性 (13)8.1 无人驾驶汽车相关法律法规 (13)8.2 安全操作合规性要求 (14)8.3 驾驶员培训与资质 (14)8.4 法律责任与处理 (14)第九章:用户手册与维护保养 (15)9.1 用户手册内容与使用 (15)9.1.1 用户手册内容概述 (15)9.1.2 用户手册使用方法 (15)9.2 车辆维护保养周期与项目 (15)9.2.1 维护保养周期 (15)9.2.2 维护保养项目 (15)9.3 自我检查与维护 (16)9.4 专业维修与保养 (16)第十章:售后服务与客户支持 (16)10.1 售后服务政策 (16)10.2 客户投诉与处理 (17)10.3 技术支持与升级 (17)10.4 用户反馈与改进 (17)第一章:概述1.1 无人驾驶汽车的定义与分类无人驾驶汽车,顾名思义,是指无需人类驾驶员操作,能够自主完成行驶任务的汽车。
基于树莓派的无人驾驶车控制系统设计作者:李旭梁创烽甘亚奇郑潇伟来源:《科学导报·学术》2020年第40期摘;要:当今社会,汽车的普及率越来越高,加上人工智能与机器学习的不断发展,人工智能与汽车产业交叉形成了智能路面识别系统。
本设计基于树莓派微型处理器,设计了一种无人驾驶车控制系统,通过树莓派深度学习道路的图像,从而可以辅助树莓派控制的小车在道路上顺畅的行进。
道路辅助识别系统有利于人们安全出行、其后续发展对于车联网也有巨大的奠定作用。
关键词:无人驾驶;树莓派;深度学习1 前言近年来,非智能化汽车的发展逐渐进入一个稳定的状态,每家每户都有车的愿景已经基本实现,汽车成了每个家庭必不可少的代步工具。
随着智能化社会的到来,汽车的智能化水平也在不断地提高[1],不断冲击着人们对于传统汽车的认识。
此次设计的道路辅助识别系统作为无人驾驶方向的一种基本研究,随着汽车的智能化发展将更加不可或缺。
2 系统设计2.1 整体设计本系统以树莓派为控制核心,配合树莓派摄像头,完成道路数据采集操作以及行驶时的路况判断操作,通过深度学习过的路面,可以在行进过程中不断拍摄路面的状况,从而判断行进的操作,通过L298N电机驱动板控制电机驱动,从而可以操控小车的行进,总体结构框图如图1所示。
树莓派具有工作稳定、处理速度快、轻巧等特点,保证了小车行驶时的稳定性和可靠性。
2.2 硬件设计2.2.1 微型处理器选择现在流行的微型处理器主要有单片机和树莓派,单片机在深度学习方面的能力基本没有,而树莓派依靠着python的支持,采用Python编写,更加使其灵活度大大增加,相比于传统面向过程的语言,面向对象的Python更加的灵活,库也更多,在实现图像识别方面也更加易用,其也可以进行深度学习。
[2]树莓派基于linux开发,其系统更加成熟好用,3代有wifi模块,性能更加强大,即只要插上显示器鼠标键盘,约为一台小型电脑,所以这里选择了功能强大的树莓派微型处理器。
无人驾驶汽车简介作者:王子正程丽来源:《时代汽车》 2016年第8期王子正程丽沈阳大学辽宁省沈阳市110044摘要:近年来随着科技的进步,无人驾驶技术也在不断提高,无人驾驶汽车能够解放操作者双手,通过计算机技术和传感技术等,使汽车变得更加便捷智能,提高交通效率。
本文通过国内外无人驾驶的发展现状引入,接着详细进一步介绍无人驾驶汽车的概念及其技术的工作原理。
无人驾驶是建立在信息感知、控制和执行等环节基础上的跨行业、跨学科的综合技术,它的核心技术为环境感知技术、高精度地图技术以及路径规划与决策技术。
最后本文介绍了国内外无人驾驶汽车的发展历程,并展望了无人驾驶未来的发展前景。
关键词:无人驾驶;环境感知技术;信息感知;发展历程;发展前景1 引言2015年12月16日,中国互联网巨头百度公司宣布,公司研发的无人驾驶汽车在北京路试成功,并成立了百度无人驾驶事业部。
2016年1月6日,在美国拉斯维加斯召开的CES消费电子展上,传统的著名汽车制造公司奥迪、宝马、大众以及创新公司FaradayFuture等发布了全新自动驾驶车型。
4月26日,谷歌、福特、Uber、Lyft以及中国吉利控股旗下沃尔沃宣布,将建立一个自动驾驶汽车联盟,以促进自动驾驶技术的推广和应用。
与此同时,谷歌为了更好地开发无人驾驶汽车,宣布与意大利菲亚特汽车公司展开合作。
近年来,奥迪、大众、奔驰等著名汽车制造公司以及谷歌、百度等著名互联网公司,都在不断涉足智能汽车领域,抢占无人驾驶技术的前沿。
无人驾驶汽车的发展,必将推动汽车行业的快速发展,也会给汽车行业带来一次重大变革。
汽车的发明给社会带来了诸多便捷和效率,汽车工业的发展也进一步促进了经济的发展与人类的创新。
人们的不断需求,也使得汽车的年产量和汽车的保有量也再增加,所以研发更加便捷安全的汽车成为重中之重。
科技的进步也带动着计算机控制技术不断进步,现在的汽车制造中越来越多的采用计算机自动控制技术,使无人驾驶技术不断趋于完善,从而提升其的效率、安全与节能。
无人驾驶智能汽车研究(机电一体化129020007 余飞)摘要:智能汽车能够大大提高交通系统的效率和安全性,将是未来汽车发展的主流。
本文介绍了智能汽车提出的背景,研究的目的和意义,国内外智能汽车汽车的发展现状和发展方向,无人驾驶汽车的灌浆技术,以及无人驾驶汽车的应用前景。
关键词:智能汽车;自动驾驶;1 无人驾驶汽车的研究意义无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶仪来实现无人驾驶。
它一般是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
无人驾驶汽车从根本上改变了传统的“人—车—路”闭环控制方式,将不可控的驾驶员从该闭环系统中请出去,从而大大提高了交通系统的效率和安全性。
现代无人驾驶汽车以汽车工业为基础,以高科技为依托,遵循由低到高、由少到多、由单方面到多方面、螺旋上升的规律发展。
其横向发展离不开各种用途的实际需要,而其纵向发展的生命力在于持续不断的技术创新。
20世纪80年代以来,智能控制理论与技术在交通运输工程中越来越多地被应用。
在这一背景下,自动驾驶汽车的提出是十分必然的。
智能汽车是一种高新技术密集的新型汽车,是目前主流汽车的换代产品。
随着我国汽车保有量的增加,道路交通拥堵现象越来越严重,每年发生的交通事故也在不断上升,为了更好的解决这一问题,研究和开发汽车自动驾驶系统是很必要的。
而自动驾驶汽车能很好的解决道路拥堵,提高文通系统效率。
有研究表明:一个年轻敏捷的驾驶员,通常对各种情况做出及时反应的时间约为500毫秒,自动驾驶系统做出反应的时间不超过100毫秒,安全性更高,而且还可以将该系统安装在大型货车上,替代疲劳驾驶的司机,可以大大降低事故的发生率。
随普信息技术、计算机技术、先进制造技术等高新技术的迅猛发展,国际上汽车研究设计开发水平在大幅度提高,在中国开展汽车自动驾驶系统的研究,具有特别重要的意义,具体体现在以下几个方面:(1)突破制约中国汽车工业整体跃上新台阶的若干理论与技术难题;(2)在“智能汽车”这一新的制高点上,缩小与国际先进水平的差距;(3)在新一代汽车“智能汽车”领域占有一席之地,并促进智能运输系统研究开发;(4)代表一个国家计算机科学、模式识别和智能控制技术的发展水平,也是衡量一个国家科研实力和工业水平的一个重要标志;2国外无人驾驶汽车研究现状发达国家从20世纪70年代就开始进行无人驾驶汽车研究,目前在可行性和实用性方面,美国和德国走在前列。
辽宁工业大学题目:无人驾驶汽车综述院(系):汽车与交通工程学院专业班级:车辆工程103学号:*********学生姓名:指导教师:无人驾驶汽车综述摘要:无人驾驶汽车又称自主驾驶汽车,也可以称之为轮式移动机器人,它属于一种智能汽车,主要依靠车内以计算机为主的智能驾驶系统来实现无人驾驶。
无人驾驶是汽车发展史上的又一次革命性进步。
科技巨头谷歌公司引发了这一场没有硝烟的战争,传统汽车巨头纷纷加入其中,争取无人驾驶时代的龙头地位。
关键字:无人驾驶汽车,智能驾驶,行车原理一、无人驾驶汽车概念无人驾驶汽车作为一种新兴的高科技产品,并没有严格的定义。
清华大学汽车系副研究员王建强将无人驾驶汽车定义为“通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车”。
二、无人驾驶汽车的原理无人驾驶汽车利用车载传感器以及GPS系统来感知车辆周围环境,并将获得的道路、车辆位置和障碍物信息,传送到计算机系统,后者随即作出判断,控制车辆的行驶状态。
无人驾驶系统载有激光扫描仪、声波定位仪、红外线传感器、罗盘和微波雷达等多种传感器,上述各种图像、声音、力等传感器就像人的感觉器官,随时感知车辆周围环境的变化。
车载计算机系统就像人的大脑可以接收各种由传感器获得的信息,经由软件处理分析,迅速给出正确的判断,并向执行机构发送指令。
执行机构可以代替人的手脚去执行由计算机传来的操作指令。
GPS系统可以准确提供车辆所在的位置以及详细的地图信息,从而使车辆在遵守交通规则的前提下能够可靠地在道路上自主行驶,安全到达指定地点。
所以,无人驾驶系统完全可以模拟传统的人工驾驶汽车,从理论上讲是可行的。
由于不同的国家和公司所掌握的尖端技术有所差别,其生产的无人驾驶汽车其原理也有所不同:法国的无人驾驶汽车原理:法国人将自己的巡航导弹制导的全球定位技术应用到无人驾驶汽车中,通过触摸屏设定路线,通过全球定位系统引路,只不过给该汽车带路的全球定位系统要比普通的全球定位系统功能强大许多。
通信工程学院2013级3班52130323 何怡无人驾驶汽车系统包括哪些传感器及这些传感器的功能无人驾驶汽车又称为全自主自控驾驶汽车,也可以称之为轮式移动机器人,它一般是利用车载传感器传感器的供应商来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
它是集自动控制、体系结构、人工智能、视觉计算、程序设计、组合导航、信息融合等多种高科技为一体,是当代计算机科学、模式识别、控制技术的高度结合和发展的产物。
自动控制系统:自适应巡航控制系统是一种智能化的自动控制系统,它是在早已存在的巡航控制技术的基础上发展而来的。
在车辆行驶过程中,安装在车辆前部的车距传感器(雷达)持续扫描车辆前方道路,同时轮速传感器采集车速信号。
当与前车之间的距离过小时,ACC 控制单元可以通过与制动防抱死系统、发动机控制系统协调动作,使车轮适当制动,并使发动机的输出功率下降,以使车辆与前方车辆始终保持安全距离。
自动紧急制动(AEB)是一种汽车主动安全技术,主要由 3 大模块构成,其中测距模块的核心包括微波雷达、激光雷达和视频系统等,它可以提供前方道路安全、准确、实时的图像和路况信息。
AEB系统采用雷达测出与前车或者障碍物的距离,然后利用数据分析模块将测出的距离与警报距离、安全距离进行比较,小于警报距离时就进行警报提示,而小于安全距离时即使在驾驶员没有来得及踩制动踏板的情况下,AEB 系统也会启动,使汽车自动制动,从而为安全出行保驾护航。
盲点检测系统,通过车辆周围排布的防撞雷达、多普勒雷达、红外雷达等传感器、盲点探测器等设施。
由计算机进行控制,在超车、倒车、换道、大雾、雨天等易发生危险的情况下自动采取措施,有效防止事故发生。
泊车系统通过安装在车身上的摄像头,超声波传感器,以及红外传感器,探测停车位置,绘制停车地图,并实时动态规划泊车路径,直接操控方向盘驶入停车位置。
无人驾驶汽车的自动加油系统原理与实现自动驾驶技术的不断进步和普及,已经成为当今社会的热点话题。
无人驾驶汽车被认为是未来交通领域的重要发展方向之一,而其中一个关键的技术就是自动加油系统。
本文将介绍无人驾驶汽车自动加油系统的原理和实现过程。
1. 系统原理无人驾驶汽车的自动加油系统的实现,需要借助先进的感知、计算和控制技术。
系统的基本原理可以分为以下几个步骤:1.1 感知外界环境无人驾驶汽车通过搭载多个传感器,如雷达、摄像头、激光雷达等,获取周围环境的信息。
在自动加油过程中,系统需要识别加油枪的位置和状态,以及汽车的加油口。
1.2 规划加油路径基于感知到的环境信息,系统需要规划最优的加油路径,以确保加油的高效性和安全性。
系统会考虑车辆当前的位置、加油站的位置和道路条件等因素,进行路径规划。
1.3 控制汽车行驶系统在规划好的路径下,控制汽车行驶到加油站,并保持适当的车距和车速,以确保安全行驶。
1.4 检测加油枪位置当汽车到达加油站后,系统需要精确检测加油枪的位置。
这可以通过计算机视觉技术和传感器的协同工作来实现。
1.5 对准加油枪与加油口系统根据检测到的加油枪位置,自动对准加油枪与加油口,以便实施自动加油过程。
这需要控制汽车的转向和位置。
1.6 实施自动加油一旦加油枪与加油口对准,系统会激活自动加油过程。
系统会控制加油枪的出油速度和出油量,同时监测加油过程中的压力和液位,以确保安全加油的同时避免溢油。
1.7 检测加油完成一旦加油完成,系统会检测加油枪与加油口的分离,以及加油流程是否正常结束。
同时,系统会记录加油的相关数据,并更新车辆的油箱状态。
2. 系统实现实现无人驾驶汽车的自动加油系统,需要集成先进的软件和硬件技术。
以下是一些关键的技术组成部分:2.1 感知技术感知技术是自动加油系统的基础,包括传感器的选择和布局、环境感知算法的设计等。
传感器可以获取周围环境的信息,如识别加油站位置和加油枪状态等。
2.2 路径规划和控制技术路径规划和控制技术是实现自动驾驶的关键。
自动驾驶汽车系统关键技术综述摘要:汽车作为最重要的现代交通工具之一,已进入千家万户。
不断研发各种车辆功能是为了满足不同人群对汽车的高标准要求。
长期以来,汽车在驾驶过程中需要由驾驶员操作,而网络通信技术、监控技术、人工智能等技术的发展使得汽车能够自行驾驶。
与人工驾驶相比,自动驾驶汽车需要依靠传感器和多种算法,依靠自动驾驶系统来完成汽车的自动操作,其中智能汽车自动驾驶系统是实现汽车自动驾驶的关键,也是确保汽车运行安全的前提。
本文主要分析了智能汽车自动驾驶系统中存在的一些问题,旨在为汽车自动驾驶提供参考。
关键词:自动驾驶汽车; 系统;关键技术;讨论;分析;研究1自动驾驶系统自动驾驶系统的兴起主要基于人工智能技术,将人工智能研究与自动驾驶技术相结合,更多的发展领域得到了人工智能的支持。
汽车作为现代生活的关键设备,给人们的出行带来了很多便利。
人工智能已经渗透到汽车开发领域,并逐渐衍生出无人驾驶技术。
无人驾驶技术下的汽车被称为智能汽车,主要通过GPS定位、雷达、激光、传感器等智能设备,及时获取汽车驾驶信息,全面分析路况,彻底判断汽车驾驶,结合驾驶条件选择合适的驾驶路径,从而实现对汽车的有效控制。
无人驾驶技术对智能技术的要求非常严格,目前仍在不断探索中,尚未完全普及。
然而,随着无人驾驶技术的发展成熟,其普及速度加快,人工智能和汽车自动驾驶系统的有效结合为汽车行业的发展创造了更多机会。
目前对汽车自动驾驶系统的分析包括以下几个部分。
(1)驾驶员辅助系统。
在自动驾驶过程中,需要不断收集各种信息,并根据收集到的信息做出判断。
因此,驾驶员辅助系统旨在确保自动驾驶的良好环境条件和驾驶模式,收集有利于驾驶的信息,并对发现的不利信息及时发出警告。
例如,当车道偏离路线时,驾驶员辅助系统应及时发出警告,以便及时纠正,确保汽车自动驾驶的安全运行。
(2)部分自动系统。
汽车的自动驾驶不能完全依赖于驾驶系统,因此需要部分半自动系统。
这些系统可以进行手动干预,并通过驾驶员的参与确保驾驶安全。
无人驾驶汽车的技术原理随着科学技术的飞速发展,现代汽车越来越多地采用自动化技术和智能控制系统,无人驾驶汽车也逐渐成为人们研究的一个热点地带。
无人驾驶汽车是一种无需人工干预,自主完成行驶任务的智能车辆,其背后的技术原理是车载计算机、传感器、车载摄像头、雷达、激光雷达和全球导航卫星系统等多种关键技术的有机融合,为用户提供更加高效、安全、环保、智能化的出行体验。
一、车载计算机技术车载计算机是无人驾驶汽车的大脑,它采用先进的信息处理和控制算法,控制车辆按照指定的路线和车速开车,并对车辆周围环境进行实时监控、预测和分析,得出最优的行驶方案。
车载计算机主要由硬件和软件两部分组成,硬件包括中央处理器、内存、硬盘、图形处理器等,在技术层面上保证了计算机高效的运行;软件包括系统软件和应用软件两个部分,系统软件负责控制计算机硬件的操作和维护计算机的稳定性,应用软件则是根据用户需求开发的特定程序,通过处理传感器数据和全球导航卫星系统信号等实现自动驾驶和无感知驾驶。
二、传感器技术传感器技术是无人驾驶汽车的基础,它主要用于感知周围环境信息,包括路面状况、障碍物、行人、其他车辆等,从而实现自适应驾驶、智能避障、自动刹车、自动泊车等功能。
传感器包括摄像头、雷达和激光雷达等几种,其中摄像头主要用于采集图像信息,可以实现物体识别和路况检测;雷达则通过电磁波来探测周围环境,可以实现距离测量和信号强度等检测;激光雷达则是通过探测周围环境的反射光,得到高精度的三维模型,精度和稳定性都要比雷达高。
三、车载导航系统技术车载导航系统技术是无人驾驶汽车的核心技术之一,主要通过全球导航卫星系统 (GPS),为车辆提供位置和方向的信息,同时自动控制车辆沿着预设的路径行驶。
车载导航系统的功能包括地图导航、实时路况更新、道路限速提示、路线规划、车道识别等,它的实现需要具备位置和方向的感知、自动化路径规划、行驶控制等特定功能。
四、智能控制系统技术智能控制系统技术是实现无人驾驶汽车的重要技术之一,它主要包括自适应控制和决策系统两个核心部分,自适应控制主要用于控制车辆行驶速度和方向,实现车辆的自动化驾驶;决策系统则是车辆控制的智能核心,通过对车辆周围环境信息的分析和预测,确定最优行驶路径和行驶速度,同时实现车辆约束、道路规范等一系列智能化控制。
自动控制综合设计——无人驾驶汽车计算机控制系统指导老师:学校:姓名:目录一设计的目的及意义二智能无人驾驶汽车计算机控制系统背景知识三系统的控制对象四系统总体方案及思路1系统总体结构2控制机构与执行机构3控制规律4系统各模块的主要功能5系统的开发平台6系统的主要特色五具体设计1系统的硬件设计2系统的软件设计六系统设计总结及心得体会一设计目的及意义随着社会的快速发展,汽车已经进入千家万户。
汽车的普及造成了交通供需矛盾的日益严重,道路交通安全形势日趋恶化,造成交通事故频发,但专家往往在分析交通事故的时候,会更加侧重于人与道路的因素,而对车辆性能的提高并不十分关注。
如果存在一种高性能的汽车,它可以自动发现前方障碍物,自动导航引路,甚至自动驾驶,那将会使道路安全性能得到极大提高与改善。
本系统即为实现这样一种高性能汽车而设计。
二智能无人驾驶汽车计算机控制系统背景知识智能无人驾驶汽车是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是典型的高新技术综合体。
目前对智能汽车的研究主要致力于提高汽车的安全性、舒适性,以及提供优良的人车交互界面。
近年来,智能车辆已经成为世界车辆工程领域研究的热点和汽车工业增长的新动力,很多发达国家都将其纳入到各自重点发展的智能交通系统当中。
通过对车辆智能化技术的研究与开发,可以提高车辆的控制与驾驶水平,保障车辆行驶的安全通畅、高效。
对智能化的车辆控制系统的不断研究完善,相当于延伸扩展了驾驶员的控制、视觉和感官功能,能极大地促进道路交通的安全性。
智能车辆的主要特点是以技术弥补人为因素的缺陷,使得即便在很复杂的道路情况下,也能自动地操纵和驾驶车辆绕开障碍物,沿着预定的道路轨迹行驶。
三系统的控制对象(1)系统中心控制部件(单片机)可靠性高,抗干扰能力强,工作频率最高可达到25MHz,能保障系统的实时性。
(2)系统在软硬件方面均应采用抗干扰技术,包括光电隔离技术、电磁兼容性分析、数字滤波技术等。
(3)系统具有电源实时监控、欠压状态自动断电功能。
(4)系统具有故障自诊断功能。
(5)系统具有良好的人性化显示模块,可以将系统当前状态的重要参数(如智能车速度、电源电压)显示在LCD上。
(6)系统中汽车驱动力为500N时,汽车将在5秒内达到10m/s的最大速度。
四系统总体方案及思路1系统总体结构整个系统主要由车模、模型车控制系统及辅助开发系统构成。
智能车系统的功能模块主要包括:控制核心模块、电源管理模块、路径识别模块、后轮电机驱动模块、转向舵机控制模块、速度检测模块、电池监控模块、小车故障诊断模块、LCD数据显示模块及调试辅助模块。
每个模块都包括硬件和软件两部分。
硬件为系统工作提供硬件实体,软件为系统提供各种算法。
2控制机构与执行机构智能车主要通过自制小车来模拟执行机构,自制小车长为34.6cm,宽为24.5cm,重为1.2kg,采样周期为3ms,检测精度为4mm。
控制机构中,主控制核心采用freescale16位单片机MC9S12DG128B。
系统在CodeWarrior软件平台基础上设计完成,采用C语言和汇编语言混合编程,提供强大的辅助模块,包括电池检测模块、小车故障诊断模块、LCD数据显示模块以及调试辅助模块。
在路径识别模块,系统利用了freescaleS12系列单片机提供的模糊推理机。
3控制规律因为系统电机控制模块控制小车的运动状态,其在不同阶段特性参数变化很大,故采用数字PID控制器,该控制器技术成熟,结构简单,参数容易调整,不一定需要系统的确切数字模型。
4系统各模块的主要功能控制核心模块:使用freescale16位单片机MC9S12DG128B,主要功能是完成采集信号的处理和控制信号的输出。
电源管理模块:对电池进行电压调节,为各模块正常工作提供可靠的电压。
路径识别模块:完成跑道信息的采集、预处理以及数据识别。
后轮电机驱动模块:为电机提供可靠的驱动电路和控制算法。
转向舵机控制模块:为舵机提供可靠的控制电路和控制算法。
速度检测模块:为电机控制提供准确的速度反馈。
电池监控模块:对电池电量进行实时监控,以便科学的利用,保护电池。
小车故障诊断模块:对小车故障进行快速、准确的诊断。
LCD数据显示模块:显示系统当前状态的重要参数。
调试辅助模块:使得小车调试更加方便。
5系统的开发平台系统软件开发平台采用CodeWarrior for S12,CodeWarrior是Metrowerks 公司的,专门面向Freescale所有的MCU与DSP嵌入式应用开发的软件工具,CodeWarrior for S12是面向以HC12或S12为CPU的单片机嵌入式应用开发的软件包。
包括集成开发环境IDE、处理器专家库、全芯片仿真、可视化参数显示工具、项目工程管理器、C交叉编译器、汇编器、链接器以及调试器。
6系统的主要特色(1)系统中引用了模糊推理机模糊推理机是freescaleS12单片机一个重要的内部资源,利用模糊推理的三个步骤——模糊化、模糊逻辑推理、反模糊化,可以从路径传感信号,推理出精确的控制量。
(2)系统中采用了数字滤波技术数字滤波技术可靠性高、稳定性好、具有很强的灵活性、可以根据不同的干扰情况,随时修改滤波程序和滤波方法。
五具体设计1系统的硬件设计系统硬件系统框图如下:以下按各模块来分别设计本硬件电路:(1)电源管理模块电源管理模块的功能对电池进行电压调节,为各个模块正常工作提供可靠的工作电压。
电源管理模块采用7.2V、2000mAh镍镉电池以及LM2576(5V),LM317(6V)稳压芯片构成。
(2)微处理器微处理器是freescale公司推出的S12系列增强型的16位单片机MC9S12DG128,该系列单片机在汽车电子领域有着广泛的应用。
(3)路径识别模块路径识别模块是智能车系统的关键模块之一,其设计的好坏直接影响到智能车控制系统的性能。
目前能够用于智能车辆路径识别的传感器主要有光电传感器和CCD/CMOS传感器。
本设计红外发射管和红外接收管以及达林顿管ULN2803A 作为路径识别的传感器。
采用双排传感器的策略,第一排传感器专门用于识别路径以及记忆路径的各种特征点,第二排传感器专门用于识别起始位置与十字交叉路口,由于不同传感器的功能不一样,因此它们的布置与安装位置也是不同。
传感器的设计主要包括传感器布局,传感器间隔距离,径向探出距离,信号的采集几部分构成。
(4)后轮驱动和速度检测模块智能车前进的动力是通过直流电机来驱动的,本设计的驱动直流电机的型号为RS—380SH,输出功率为0.9W—40W。
在实际生活中,我们可能遇到弯道,为了能使模型车在过弯道的时候能快速地把速度减下来,电机驱动部分采用了两块MC33886组成的全桥式驱动电路,可以控制电机的反转以达到制动的目的。
在闭环控制系统中,速度指令值通过微控制器变换到驱动器,驱动器再为电机提供能量。
速度传感器再把测量的小车的速度量的实际值回馈给微控制器。
以便微控制器进行控制。
因此要对控制系统实行闭环控制,必须要有感应速度量的速度传感器。
常用的有轴编码器,它主要用来测量旋转轴的位置和转速。
(5)转向舵机模块凡是需要操作性动作时都可以用舵机来实现。
本设计采用的舵机型号为HS —925(SANWA),尺寸为39.4*37.8*27.8,重量56kg,工作速度0.11sec/60(4.8V),0.07sec/60(6.0V),堵转力矩6.1kg。
一般来讲,舵机主要由以下基本分组成:舵盘、减速齿轮组、位置反馈电位计、直流电机、控制电路板等。
其中,直流马达提供了原始动力,带动减速齿轮组,产生高扭力的输出,齿轮组的变速比愈大,输出扭力也愈大,越能承受更大的重量,但转动的速度也愈低。
在设计中,为了提高舵机的响应速度和工作力矩,采用6.0V工作电压。
(6)电源电压检测模块智能车采用镍镉电池供电,由于镍镉电池具有记忆效应,对电池的不完全放电会认为降低电池的电容量,同时深度放电又会导致电池内部结构变化,造成对电池的永久损害,因此,在智能车控制系统中加入电源监控模块,当电池电压低于6V时及时自动报警,并切断电路,用来保护电池。
本模块用到的主要器件为光电耦合芯片TLP521—2以及运算放大器LM324。
(7)液晶显示模块为了完善智能车控制系统的功能,使其更加人性化,同时为了方便测试,在设计中,加入液晶显示模块,把智能车系统当前状态的一些重要参数显示出来。
本模块用到的器件为LCD控制器HD44780。
(8)辅助调试模块(红外遥控)在智能车调试阶段,小车经常出现启停的情况,例如高速行驶的小车有时因为异常情况冲出跑道,以这样的速度碰到周围的障碍物上,势必损坏小车的部件,这个时候就需要小车立刻停下来。
为此,在智能车系统上添加红外遥控模块,当想启动小车或者想让小车停止时,只需要按下遥控器上的按键,就可以很方便实现小车的启停。
本模块主要用红外接收器HS0038A和红外遥控器来进行遥控控制。
(9)故障诊断模块小车的故障诊断模块原理很简单,就是利用单片机的SCIO口,通过RS—232接口与上位机连接起来,通过软件编程,小车不断的向上位机发送代码,通过故障代码就可以马上诊断出故障源。
2系统的软件设计在智能车系统中,软件系统主要有以下几个部分:路径识别算法、后轮驱动电机控制算法、转向舵机控制算法、速度检测等。
单片机系统需要接收路径识别电路的信号、车速传感器的信号,采用某种路径搜索算法进行巡线判断,进而控制转向伺服电机和直流驱动电机。
控制策略的选择对于小车的行驶性能是非常重要的,控制小车的最终目的就是要使小车在平稳行驶的前提下,尽可能地以最快速度和最短的路线行驶。
下面简要介绍各模块的软件算法。
(1)后轮驱动电机控制算法电机控制算法的作用是接受指令速度值,通过运算向电机提供适当的驱动电压,尽快尽量平稳地使电机转速达到速度值,并维持这个速度值。
换言之,一旦电机转速达到了指令速度值,即使遇到各种不利因素的干扰下,也应保持速度值不变。
因此我们采用数字控制器的连续化设计技术PID控制算法来控制本部分电路。
①数学模型的设定我们设定系统中汽车车轮的转动惯量可以忽略不计,并且认为汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动方向相反。
这样,我们就可以用以下模型来仿真之。
根据牛顿运动定律,该系统的动态数学模型可表示为:ma bv uy u+=={我们对系统的参数进行设定,设汽车质量m=1000kg,比例系数b=50N*s/m,汽车驱动力u=500N。
根据系统的设计要求,系统中汽车驱动力为500N时,汽车将在5秒内达到10m/s的最大速度。
同时我们可以将系统的最大超调量设计为10%,静态误差设计为2%。