当前位置:文档之家› 计算机图形学 实验四 二维图形的裁剪

计算机图形学 实验四 二维图形的裁剪

计算机图形学 实验四 二维图形的裁剪
计算机图形学 实验四 二维图形的裁剪

西北农林科技大学实习报告

学院名称:理学院专业班级:

姓名:学号:

课程:计算机图形学实验报告日期:

第十五周实验四二维图形的裁剪

一、实验目的

1)加深直线段的剪裁算法的理解。

2)熟练掌握一种裁剪算法的编程方法。

二、实验步骤

1)分析直线段和矩形窗口的位置关系,选定比较合理算法流程。

2)画出程序流程图。

3)编写程序的源程序。

4)编辑源程序并进行调试。

5)进行特殊模式的运行测试,并结合情况进行调整。

三、实验内容

1)在编码算法、中点分割算法、Liang-Barsky算法三种中任选一种作为编程模型。

2)编写直线段裁剪的源程序。

3)建议有能力的学生编写多边形裁剪程序。

4)在计算机上编辑编译运行,实现直线段的裁剪。

原理

1.直线和窗口的关系:

直线和窗口的关系可以分为如下3类:

(1)整条直线在窗口内。此时,不需剪裁,显示整条直线。

(2)整条直线在窗口外,此时,不需剪裁,不显示整条直线。

(3)部分直线在窗口内,部分直线在窗口外。此时,需要求出直线与窗框的交点,并将窗口外的直线部分剪裁掉,显示窗口内的直线部分。

直线剪裁算法有两个主要步骤。首先将不需剪裁的直线挑出,即删去在窗外的直线。然后,对其余直线,逐条与窗框求交点,并将窗口外的部分删去。

2.Cohen-Sutherland直线剪裁算法:

(1)输入直线段的两端点坐标p1(x1,y1),p2(x2,y2),以及窗口的4条边

界坐标,y w

t ,y w

b

,y w

l

,y w

r

.

(2)对p1,p2进行编码,点p1的编码为code1,点p2的编码为code2.

(3)若code1| code2=0,对直线p1p2“简取”之,转(6);否则,若code1& code2≠0,对直线段“简弃”之,转(7);当上述两条均不满足时,进行步骤(4)。

(4)确保p1在窗口外部。若p1在窗口内,则交换p1和p2的坐标值和编码。

(5)根据p1编码从低位开始寻找值为1的地方,从而确定p1在窗口外的哪一侧,然后求出直线段与相应窗口边界的交点S,并用交点S的坐标值替换p1的坐标值,即在交点S处把线段一分为二,因此可以去掉p1S。转(2)。

(6)用直线扫描算法转换算法画出当前的直线段p1p2。

(7)算法结束。

图形描述:

在MATLAB中输入:

>> W=[3,7,2,5]

W =

3 7 2 5

>> P=[0,0,16,16]

P =

0 0 16 16

>> r=CSCutLine(W,P)

r =

1

程序的源程序:

M文件,命名为CSCutLine

% 计算机图形学直线裁剪 CS编码算法

function r=CSCutLine(W,P) %result

%{

W=窗口坐标 P=直线两端点坐标 y=x/2

W=[xwl,xwr,ywb,ywt] W=[3,7,2,6];

P=[x1,y1,x2,y2] P=[0,0,16,8];

%}

% clear;clc;W=[3,7,2,6];P=[0,0,16,8];r=CSCutLine(W,P) xwl=W(1); xwr=W(2); ywb=W(3); ywt=W(4);

x1=P(1); y1=P(2); x2=P(3); y2=P(4);

Rectangle=[xwl,xwr,ywb,ywt];

k=0;

Lines=[];

%取出线段

P1=[x1,y1];

P2=[x2,y2];

PP=P1-P2;

%计算斜率

if PP(1)==0

k=inf;

else

k=PP(2)/PP(1);

end

finished=false;

while (~finished)

%对点P1和P2进行编码

code=[

P1(1)Rectangle(2),P1(2)Rectan gle(4);

P2(1)Rectangle(2),P2(2)Rectan gle(4);

];

% P1,P2,k,code

%进行简取或简弃的判断

test=code(1,:)|code(2,:);

%判断是否简取

if isempty(find(test>0,1))

Lines=[Lines;[P1,P2]];

finished=true;

end

%若当前线段处理完成,则退出

if finished

break;

end

%判断是否简弃

test=code(1,:)&code(2,:);

if ~isempty(find(test>0,1))

finished=true;

end

if finished

break;

end

%确保P1在窗口之外

if isempty(find(code(1,:)>0,1))

%交换P1,P2的坐标值和编码

PT=P1; P1=P2; P2=PT;

PT=code(1,:); code(1,:)=code(2,:); code(2,:)=PT;

end

%从低位开始找编码值为1的地方

D=find(code(1,:)>0,1);

if D<=2

%此时P1位于窗口的左边或右边

if k==0

%若是水平线,则y不变,x变为窗口的左边界或右边界

%且此时k不会等于inf,否则线段处于简弃状态。

P1(1)=Rectangle(D);

%P1(2)=Rectangle(find(code(1,[3,4])>0,1));

else

%若线段是斜线,则计算y值,x值变为窗口的左边界或右边界

P1=[Rectangle(D),P1(2)+k*(Rectangle(D)-P1(1))];

end

else

%此时P1位于窗口的上方或下方

if k==inf

%若线段是竖直线,则x不变,y变为窗口的上边界或下边界

%且此时k不会等于0,否则线段将处于简弃状态。

P1(2)=Rectangle(D);

else

%若线段是斜线,则计算x值,y值变为窗口的上边界或下边界。 P1=[P1(1)+(Rectangle(D)-P1(2))/k,Rectangle(D)];

end

end

%对P1和P2重新编码,再次计算。

%P1,P2,k,code

%pause(1);

%scanf(D,'%d');

%inputdlg('');

end

%对最终点进行取整运算

%Lines=floor(Lines);

%---------------------------------

%绘制原始图像和裁剪后图形

figure

OriginalLines=[x1,y1,x2,y2]; %lines=[P1,P2];

plot(OriginalLines(1,[1,3]),OriginalLines(1,[2,4]),'b'); title('原始图像')

grid on

figure

hold on

R=Rectangle;

RLines=[

R(1),R(3),R(2),R(3);

R(2),R(3),R(2),R(4);

R(2),R(4),R(1),R(4);

R(1),R(4),R(1),R(3);

];

for i=1:length(RLines(:,1))

plot(RLines(i,[1,3]),RLines(i,[2,4]),'-r');

end

SutherlandedLines=Lines;

plot(SutherlandedLines(1,[1,3]),SutherlandedLines(1,[2,4]),'g');

title('裁剪后图形')

grid on

hold off

figure

hold on

plot(OriginalLines(1,[1,3]),OriginalLines(1,[2,4]),'b');

plot(SutherlandedLines(1,[1,3]),SutherlandedLines(1,[2,4]),'g');

for i=1:length(RLines(:,1))

plot(RLines(i,[1,3]),RLines(i,[2,4]),'-r');

end

legend('原始图像','裁剪后图形','裁剪窗口',0)

grid on

hold off

r=true;

end

四、实验总结

通过本次实习,我复习了直线段的Cohen-Sutherland算法,中点分割算法,以及Liang-Barsky算法思想,最后选择了Cohen-Sutherland算法完成Matlab编程。

本次实习的内容有一定难度,要综合运用前面实习中的直线绘制函数,在算法中还须设计一个端点编码判定函数。另外,由于直线段与窗口的位置有多种情况,我们要分不同情况进行实现,这也增大的代码量。

这次的实验有一个要注意的问题,在输入窗口点的时候,需要保证窗口中要有线段。如果没有线段,第二个图剪裁后的图形的输出就是一片空白,最后的比较图就会出现程序错误。这是这次编写的程序需要改进和完善的地方。

计算机图形学裁剪算法详解

裁剪算法详解 在使用计算机处理图形信息时,计算机部存储的图形往往比较大,而屏幕显示的只是图的一部分。因此需要确定图形中哪些部分落在显示区之,哪些落在显示区之外,以便只显示落在显示区的那部分图形。这个选择过程称为裁剪。最简单的裁剪方法是把各种图形扫描转换为点之后,再判断各点是否在窗。但那样太费时,一般不可取。这是因为有些图形组成部分全部在窗口外,可以完全排除,不必进行扫描转换。所以一般采用先裁剪再扫描转换的方法。 (a)裁剪前 (b) 裁剪后 图1.1 多边形裁剪 1直线段裁剪 直线段裁剪算法比较简单,但非常重要,是复杂图元裁剪的基础。因为复杂的曲线可以通过折线段来近似,从而裁剪问题也可以化为直线段的裁剪问题。常

用的线段裁剪方法有三种:Cohen-Sutherland,中点分割算法和梁友栋-barskey 算法。 1.1 Cohen-Sutherland裁剪 该算法的思想是:对于每条线段P1P2分为三种情况处理。(1)若P1P2完全在窗口,则显示该线段P1P2简称“取”之。(2)若P1P2明显在窗口外,则丢弃该线段,简称“弃”之。(3)若线段既不满足“取”的条件,也不满足“弃”的条件,则在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。 为使计算机能够快速判断一条直线段与窗口属何种关系,采用如下编码方法。延长窗口的边,将二维平面分成九个区域。每个区域赋予4位编码CtCbCrCl.其中各位编码的定义如下:

图1.2 多边形裁剪区域编码图5.3线段裁剪 裁剪一条线段时,先求出P1P2所在的区号code1,code2。若code1=0,且code2=0,则线段P1P2在窗口,应取之。若按位与运算code1&code2≠0,则说明两个端点同在窗口的上方、下方、左方或右方。可判断线段完全在窗口外,可弃之。否则,按第三种情况处理。求出线段与窗口某边的交点,在交点处把线段一分为二,其中必有一段在窗口外,可弃之。在对另一段重复上述处理。在实现本算法时,不必把线段与每条窗口边界依次求交,只要按顺序检测到端点的编码不为0,才把线段与对应的窗口边界求交。 Cohen-Sutherland裁减算法 #define LEFT 1 #define RIGHT 2 #define BOTTOM 4

计算机图形学实验报告(原创)

实验报告 计算机图形学实验报告——C字曲线算法

计算机图形学实验报告——C字曲线算法 1)算法原理介绍 实验环境:Microsoft Visual C++ C字线算法原理:C曲线由控制多边形通过一系列割角变换生成,具有连续性。C 曲线容易在计算机上快速产生, 用于计算机图形的实时处理。实验中还应用了C 曲线的凸包性、保凸性、局部无依赖性等性质。本实验程中GetMaxX()函数得到屏幕上的X方向上的最大值;GetMaxY()数得到屏幕上的Y方向上的最大值; c(n,300,150,MaxX-300,150)函数画出C字样图形。 2)程序设计文档说明 一、课程设计目的 在掌握图形学的基本原理、算法和实现技术基础上,通过编程实践学会基本的图形软件开发技术。 1.了解Visual C++ 2005绘图的基本概念 2.了解Visual C++2005绘图环境 3.了解Visual C++2005绘图环境 4. 掌握用Visual C++ 2005绘图的基本命令 二、课程设计内容 仿照Windows的附件程序“画图”, 用C++语言编制一个具有交互式绘制和编辑多种图元功能的程序“C字曲线算法”,实现以下功能对应的设计内容: (1) 能够以交互方式在图形绘制区绘制直线(折线); (2)设置C字曲线的迭代次数,分析不同迭代次数的变化情况;

(3)通过帮助文档了解和使用函数。 三、实验步骤 1.新建MFC应用程序 1.1新建工程。运行VC++6.0,新建一个MFC AppWizard[exe]工程,并命名,选择保存 路径,确定。

1.2选择应用程序的类型,选择“单文档”,则可以通过菜单打开对话框 2.建立单文档应用程序,在其中调用对话框 2.1 查看工程资源 在单击完成之后,即建立了一个工程,在工程的左侧资源视图可以看到MFC向导为该程序提供的一些资源。 分别如下所示:

计算机图形学试题附答案完整版

名词解释 将图形描述转换成用像素矩阵表示的过程称为扫描转换。 1.图形 2.像素图 3.参数图 4.扫描线 5.构造实体几何表示法 6.投影 7.参数向量方程 8.自由曲线 9.曲线拟合 10.曲线插值 11.区域填充 12.扫描转换 三、填空 1.图形软件的建立方法包括提供图形程序包、和采用专用高级语言。 2.直线的属性包括线型、和颜色。 3.颜色通常用红、绿和蓝三原色的含量来表示。对于不具有彩色功能的显示系统,颜色显示为。 4.平面图形在内存中有两种表示方法,即和矢量表示法。 5.字符作为图形有和矢量字符之分。 6.区域的表示有和边界表示两种形式。 7.区域的内点表示法枚举区域内的所有像素,通过来实现内点表示。 8.区域的边界表示法枚举区域边界上的所有像素,通过给赋予同一属性值来实现边界表示。 9.区域填充有和扫描转换填充。 10.区域填充属性包括填充式样、和填充图案。 11.对于图形,通常是以点变换为基础,把图形的一系列顶点作几何变换后,

连接新的顶点序列即可产生新的变换后的图形。 12.裁剪的基本目的是判断图形元素是否部分或全部落在之内。 13.字符裁剪方法包括、单个字符裁剪和字符串裁剪。 14.图形变换是指将图形的几何信息经过产生新的图形。 15.从平面上点的齐次坐标,经齐次坐标变换,最后转换为平面上点的坐标,这一变换过程称为。 16.实体的表面具有、有界性、非自交性和闭合性。 17.集合的内点是集合中的点,在该点的内的所有点都是集合中的元素。 18.空间一点的任意邻域内既有集合中的点,又有集合外的点,则称该点为集合的。 19.内点组成的集合称为集合的。 20.边界点组成的集合称为集合的。 21.任意一个实体可以表示为的并集。 22.集合与它的边界的并集称集合的。 23.取集合的内部,再取内部的闭包,所得的集合称为原集合的。 24.如果曲面上任意一点都存在一个充分小的邻域,该邻域与平面上的(开)圆盘同构,即邻域与圆盘之间存在连续的1-1映射,则称该曲面为。 25.对于一个占据有限空间的正则(点)集,如果其表面是,则该正则集为一个实体(有效物体)。 26.通过实体的边界来表示一个实体的方法称为。 27.表面由平面多边形构成的空间三维体称为。 28.扫描表示法的两个关键要素是和扫描轨迹。 29.标量:一个标量表示。 30.向量:一个向量是由若干个标量组成的,其中每个标量称为向量的一个分量。 四、简答题 1. 什么是图像的分辨率?

计算机图形学裁剪

《计算机图形学》实验报告 学院:理学院专业:信息与计算科学班级:姓名学号指导教师实验时间 4. 实验地点计算机实验室成绩实验项目名称裁剪 实 验 环 境 VC++ 6.0 实 验内容 (1)理解直线裁剪的原理(Cohen-Surtherland算法、梁友栋算法) (2)利用VC+OpenGL实现直线的编码裁剪算法,在屏幕上用一个封闭矩形裁剪任意一条直线。 (3)调试、编译、修改程序。 实验原理编码裁剪算法的主要思想是:对于每条线段,分为三种情况处理。(1)若线段完全在窗口之内,则显示该线段,称为“取”;(2)若线段明显在窗口之外,则丢弃该线段,称为“弃”;(3)若线段既不满足“取”的条件,也不满足“舍”的条件,则把线段分割为两段。其中一段完全在窗口之外,可弃之;对另一段则重复上述处理 实验过程#include #include #include #define LEFT_EDGE 1 #define RIGHT_EDGE 2 #define BOTTOM_EDGE 4 #define TOP_EDGE 8 void LineGL(int x0,int y0,int x1, int y1) { glBegin(GL_LINES); glColor3f(1.0f,0.0f,0.0f); glVertex2f(x0,y0); glColor3f(0.0f,1.0f,0.0f); glVertex2f(x1,y1); glEnd();

} struct Rectangle { float xmin,xmax,ymin,ymax; }; Rectangle rect; int x0,y0,x1,y1; int CompCode(int x,int y,Rectangle rect) { int code=0x00; if(yrect.ymax) code=code|8; if(x>rect.xmax) code=code|2; if(x

最新计算机图形学期末考试试卷

最新计算机图形学期末考试试卷 一、判断题(本大题共 10 小题,每小题 1 分,共 10 分) 1. 计算机图形生成的基本单位是线段. ( F ) 2. 构成图形的要素除了点、线、面、体等几何要素外,还应该包括灰度、色彩、线型、 线宽等非几何要素. ( N ) 3. 在齐次坐标系中,若用矩阵来表示各种运算,则比例和旋转变换是矩阵F 乘法运算, 而平移变换是矩阵加法运算. ( F ) 4. Z-Buffer 消隐算法有利于硬件实现,并且不需要排序. ( N ) 5. 二次Bezier 曲线和二次B 样条曲线都通过控制多边形的首末端点. ( F ) 6. 一个向量的齐次坐标的表示形式是唯一的. ( F ) 7. 计算机图形技术是随着图形硬件设备的发展而发展起来的. ( N ) 8. Phong 算法的计算量要比Gouraud 算法小得多. ( F ) 9. 将某二维图形整体放大2倍,其变换矩阵可写为. ( F ) 10. 图形软件标准是为提高图形软件的易用性而提出的. ( F ) 二、填空题(本大题共 10 空,每空 1 分,共 10 分) 1. 在多边形填充过程中,常采用、 左闭右开 和 下闭上开 的原则 对边界像素进行处理. 2. 基本几何变换指 平移 、 比例 和 旋转 三种变换. 3. 屏幕上最小的发光单元叫作 像素 ,它的多少叫做 分辨率 . 4. ISO 批准的第一个图形软件标准是 GKS ,进入20世纪90年代后,存 在的事实上的图形软件标准主要是 OpenGL 和 Direct x . ?? ?? ? ?????200010001

5.图形的表示方法有两种:参数法和点阵法. 6.多边形的表示方法有顶点表示法和点阵表示法两种. 7.计算机三维模型的描述有线框模型、表面模型和实体 模型. 8.颜色包含3个要素:色调、饱和度和亮度 . 三、简答题(本大题共5 小题,每小题5 分,共25 分) 1.计算机图形学研究的主要内容是什么? 2.什么是齐次坐标?齐次空间点 P(X、Y、W) 对应的笛卡尔坐标是什么? 3.帧缓存的容量与什么有关?假定一个光栅扫描系统,分辨率800×600,要求可显示颜色256种,请问帧缓存的容量需要多少字节? 4.什么是走样?什么是反走样?常用的反走样技术有哪些? 5.简单光照模型的反射光由哪几部分组成,光照计算时有哪两种明暗处理技术?

计算机图形学实验z-buffer算法

实验六 9-7 一、实验题目 z-buffer 算法的代表性案例是绘制三个相互交叉的红绿蓝条,如图9-85所示,请使用MFC 编程实现。 二、实验思想 Z-Buffer 算法建立两个缓冲器: 深度缓冲器,用以存储图像空间中每一像素相应的深度值,初始化为最大深度值(z s 坐标)。 帧缓冲器,用以存储图像空间中的每个像素的颜色,初始化为屏幕的背景色。 ① 帧缓冲器初始值置为背景色。 ② 确定深度缓冲器的宽度、高度和初始深度。一般将初始深度置为最大深度值。 ③ 对于多边形表面中的每一像素(x s ,y s ),计算其深度值z s (x s ,y s )。 ④ 将z s (x s ,y s )与存储在z 缓冲器中该位置的深度值zBuffer (x s ,y s )进行比较。 ⑤ 如果z s (x s ,y s ) ≤zBuffer (x s ,y s ),则将此像素的颜色写入帧缓冲器,且用z (x s ,y s )重置zbuffer (x s ,y s )。 三、实验代码 CZBuffer::~CZBuffer() {

delete []P; } void CZBuffer::SetPoint(CPi3 p[],int m) { P=new CPi3[m]; for(int i=0;i

计算机图形学实验报告-二维裁剪

计算机科学与技术学院 2013-2014学年第一学期《计算机图形学》实验报告 班级: 学号: 姓名: 教师: 成绩:

实验项目(3、二维裁剪) 一、 实验目的与要求 (1) 掌握线段裁剪算法原理,并实现其算法。 (2) 理解多边形裁剪、字符裁剪算法思想,能编程实现其算法。 二、 实验内容 设计菜单程序,利用消息处理函数,完成以下要求: (1) 实现直线段的标号法(Cohen-Sutherland )、矩形窗口裁剪算法。 (2) 参考教材中的算法,用矩形窗口实现多边形的Sutherland-Hodgman 裁剪算法。 三、 重要算法分析 以下分析Cohen-Sutherland 和Sutherland-Hodgma n 两个算法,其中Cohen-Sutherland 算法的基本思想通过编码的方法快速实现对直线段的裁剪;Sutherland-Hodgman 算法基本思想是用窗口的四条边所在的直线依次来裁剪多边形。 (一) Cohen-Sutherland 算法 该算法的基本思想是:对于每条待裁剪的线段P 1,P 2分三种情况处理: (1) 若P 1P 2完全在窗口内,则显示该线段。 (2) 若P 1P 2完全在窗口外,则丢弃该线段。 (3) 若线段既不满足“取”的条件,也不满足“舍”的条件,则求线段与窗口边界的交点,在交点处把线段分为两段。 1. 编码原则 具体编码过程为将延长线窗口的四条边线(y T 、y B 、x R 、x L ),将二维平面分成九个区域,全为0的区域是裁剪窗口,其中各位编码的定义如下: {T y y other T C >= 10 {B y y other B C <=10 {R x x other R C >= 10 {L x x other L C <=10 按照如上定义,相应区域编码如图1所示。

计算机图形学课程总结

计算机图形学报告 前言 计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。 其从狭义上是来说是一种研究基于物理定律、经验方法以及认知原理,使用各种数学算法处理二维或三维图形数据,生成可视数据表现的科学。广义上来看,计算机图形学不仅包含了从三维图形建模、绘制到动画的过程,同时也包括了对二维矢量图形以及图像视频融合处理的研究。由于计算机图形学在许多领域的成功运用,特别是在迅猛发展的动漫产业中,带来了可观的经济效益。另一方面,由于这些领域应用的推动,也给计算机图形学的发展提供了新的发展机遇与挑战。 计算机图形学的发展趋势包括以下几个方面: 1、与图形硬件的发展紧密结合,突破实时高真实感、高分辨率渲染的技术难点; 2、研究和谐自然的三维模型建模方法; 3、利用日益增长的计算性能,实现具有高度物理真实的动态仿真; 4、研究多种高精度数据获取与处理技术,增强图形技术的表现; 5、计算机图形学与图像视频处理技术的结合; 6、从追求绝对的真实感向追求与强调图形的表意性转变。 1、三维物体的表示 计算机图形学的核心技术之一就是三维造型三维物体种类繁多、千变万化,如树、花、云、石、水、砖、木板、橡胶、纸、大理石、钢、玻璃、塑料和布等等。因此,不存在描述具有上述各种不同物质所有特征的统一方法。为了用计算机生成景物的真实感图形,就需要研究能精确描述物体特征的表示方法。根据三维物体的特征,可将三维物体分为规则物体和非规则物体两类。

计算机图形学简答题.和名词解释

1、简述图像处理、模式识别与计算机图形学的关系。 图像处理、模式识别与计算机图形学是计算机应用领域发展的三个分支学科,它们之间有一定的关系和区别,它们的共同之处就是计算机所处理的信息都是与图有关的信息。它们本质上是不同的:图像处理是利用计算机对原存在物体的映象进行分析处理,然后再现图像;模式识别是指计算机对图形信息进行识别和分析描述,是从图形到描述的表达过程;计算机图形学是研究根据给定的描述用计算机生成相应的图形、图像。 计算机图形系统主要具有哪些功能? 答案:1. 计算功能 2. 存储功能 3. 输入功能 4. 输出功能 5. 交互功能多边形的顶点和点阵表示各有什么优缺点? 答案:顶点表示是用多边形的顶点序列来描述多边形。该表示几何意义强、占内存少、几何变换方便;但它不能直观地说明哪些像素在多边形内,故不能直接用于面着色。 点阵表示用位于多边形内的像素的集合来描述多边形。该方法虽然没有多边形的几何信息,但便于用帧缓存表示图形,可直接用于面着色。 为什么需要隐藏面消隐算法? 答: 因为我们在用计算机生成三维物体的真实感图形,必须要做的是确定物体的可见部分,只有 确定了物体的可见部分,我们才能在计算机中真实地再现三维物体。因此,我们就需要一个隐藏面消隐算法来去掉物体的不可见部分,从而避免错误地将不可见部分显示出来,这样就可以在计算机中生成一个三维物体的真实感图形了。 z缓冲器算法是怎么判断哪个面应消隐的? 答: z缓冲器算法设置了一个二维数组,类似于帧缓冲器。但是z缓冲器存放的是每个象素点的深 度值,而不是帧缓冲器中的颜色值。z缓冲器的初始值为某个大的数值,通常是后裁剪平面的距离。 在判断像素),(yx上的哪个平面更靠近观察者时,就可以简单地比较z缓冲器中的深度值和当前平面的深度值。如果当前平面的值比z缓冲器中的值小(即距视点更近),则用新值替换原z缓冲器中的值,像素的颜色值也变成新平面的颜色值。 颜色的基本特征是什么? 答:颜色的基本特征是:波长、亮度和饱和度。 波长是依赖于物质的,可见光的波长范围大约是350nm~780nm。

计算机图形学_实验报告三_图形裁剪算法

图形裁剪算法 1.实验目的: 理解区域编码 设计直线裁剪算法 编程实现直线裁剪算法 2.实验描述: 设置裁剪窗口坐标为:wxl=250;wxr=850;wyb=250;wyt=450;裁剪前如下图所示: 裁剪后结果为: 3.算法设计: 直线裁剪算法: 假设裁剪窗口是标准矩形,由上(y=wyt)、下(y=wyb)、左(x=wxl)、右(x=wxr)四条边组成,如下图所示。延长窗口四条边形成9个区域。根据被裁剪直线的任一端点P(x,y)所处的窗口区域位置,可以赋予一组4位二进制区域码C4C3C2C1。

编码定义规则: 第一位C1:若端点位于窗口之左侧,即XWxr,则C2=1,否则C2=0。 第三位C3:若端点位于窗口之下侧,即YWyt,则C4=1,否则C4=0。 裁剪步骤: 1. 若直线的两个端点的区域编码都为0,即RC1|RC2=0(二者按位相或的结果为0,即RC1=0 且RC2=0),说明直线两端点都在窗口内,应“简取”。 2. 若直线的两个端点的区域编码都不为0,即RC1&RC2≠0(二者按位相与的结果不为0,即RC1≠0且RC2≠0,即直线位于窗外的同一侧,说明直线的两个端点都在窗口外,应“简弃”。 3. 若直线既不满足“简取”也不满足“简弃”的条件,直线段必然与窗口相交,需要计算直线与窗口边界的交点。交点将直线分为两段,其中一段完全位于窗口外,可“简弃”。对另一段赋予交点处的区域编码,再次测试,再次求交,直至确定完全位于窗口内的直线段为止。 4. 实现时,一般按固定顺序左(x=wxl)、右(x=wxr)、下(y=wyb)、上(y=wyt)求解窗口与直线的交点。

梁友栋-Barsky直线裁剪算法计算机图形学课程设计

河南理工大学 万方科技学院 课程设计报告 2011 — 2012学年第二学期 课程名称计算机图形学 设计题目计算机图形学基本算法 演示系统设计 学生姓名 学号 专业班级网络11升—1班 指导教师徐文鹏 2012 年5 月28 日

目录 第1章设计内容与要求 (1) 1.1 总体目标和要求 (1) 1.2内容与要求 (1) 1.2.1 直线的生成 (1) 1.2.2 圆弧的生成 (1) 1.2.3 线段裁剪 (2) 1.2.4 多边形裁剪 (2) 1.2.5 综合 (2) 第2章总体设计 (3) 2.1 Bresenham算法画直线 (3) 2.1.1 Bresenham算法画直线理论基础 (3) 2.1.2 Bresenham算法画直线原理 (3) 2.2 Bresenham算法画圆 (4) 2.2.1 Bresenham算法画圆理论基础 (4) 2.2.2 Bresenham算法画圆原理 (5) 2.3 梁友栋-Barsky算法进行线段裁剪 (6) 2.3.1梁友栋-Barsky算法进行线段裁剪基本原理 (6) 2.4 Sutherland-Hodgman算法进行多边形裁剪 (8) 2.4.1 Sutherland—Hodgman多边形裁剪算法思想 (8) 2.4.2 点在边界内侧的判断方法 (8) 2.4.4 Sutherland-Hodgeman多边形裁剪算法特点 (8) 第3章详细设计 (9) 3.1 Bresenham算法画直线 (9) 3.1.1 Bresenham 算法画线算法具体实现过程 (9) 3.2 Bresenham算法画圆 (9) 3.2.1 Bresenham 算法画圆核心代码 (9)

计算机图形学实验

课程实验报告 课程名称计算机图形学班级1120541 实验日期2014.04 姓名汪智学号41 实验成绩 实验名称绘制金刚石图案 实验目的及要求(1)掌握二维坐标系模式映射方法。 (2)掌握动态内存的分配和释放方法。 (3)掌握二维点类的定义方法。 (4)掌握对话框的创建及调用方法。 (5)掌握对话框的数据交换和数据校验方法。(6)掌握Test工程课程设计框架的创建方法。(7)掌握金刚石图案的设计方法 实 验内容将半径为r的圆周n等份,然后用直线将各等分点隔点相连,形成的图案称为 “金刚石”图案,试编程实现。 算法描述及实验步骤 在Visual C++集成开发环境中,选择File|New,弹出的New对话框,切换到“Projects”标签页。在左边窗口中选择MFC AppWizard [exe],在右边的Projects name处输入工程名“Test”,在Location处选择适当的工程位置,如 D:\Test,如下图所示,点击OK按钮。

New对话框 在MFC AppWizard - Step1对话框中,选中Single document单选按钮,其余保持默认值,如图所示,单击Finish按钮。 MFC AppWizard - Step1对话框 完成上述操作后,Test工程的MFC框架已被生成,出现MFC框架的程序 工作区。如图所示。 MFC框架 单击图所示的工具条上的按钮,就可以直接编译、运行Test工程,结果如 下

(1)设置菜单的ID 在资源视图面板ResourceView上双击Menu,打开IDR_MAINFRAME,修改 菜单项内容,结果如下图 保留子菜单“退出”的ID为ID_APP_EXIT,Prompt为“退出应用程序\n 退出”;设计子菜单“金刚石”的ID为IDM_DIAMOND,Prompt为“绘制图形\n 绘图”;保留子菜单“关于”的ID为ID_APP_ABOUT,Prompt为“开发人员信息\n关于”。如图。请注意,按照MFC的习惯,菜单的ID号要使用大写字符。 (2)添加“绘图”子菜单消息映射函数 子菜单“退出”和“关于”的命令消息处理函数在Test框架建立时AppWizard 已经提供,这里予以保留。下面讲解为子菜单“金刚石”添加命令消息处理函数的方法。选择菜单View|Class Wizard,打开MFC ClassWizard对话框,并自动切换到Message Maps标签页。在Object IDs中选择IDM_DIAMOND,在Class name中选择CTestView类,在Message中选择COMMAND后,单击Add Function 按钮,弹出Add Member Function对话框,保持默认菜单成员函数的名字OnDiamond,单击OK按钮,则在Member function中为子菜单“金刚石”添加了操作函数OnDiamond (),如图1-11所示。该函数成为了CTestView类的成员函数,系统已经自动在TestView.h头文件中添加了函数声明,在TestView.cpp源文件中给出了函数框架。单击Edit Code按钮可以对OnMdraw() 函数进行编辑。

计算机图形学的应用实例(计算机图形作业)

计算机图形学大作业计算机图形学的应用实例 班级: 学号: 姓名: 2012-03-12

计算机图形学的应用实例 一.计算机图像学简介 计算机图形学是计算机专业本科生必修的专业基础课。本课程介绍图形显示及图形表示的方法和原理。通过本课程的学习,使学生了解计算机在图形应用方面的基础原理,了解图形应用中的特殊性处理方法,进而学习和掌握计算机在图形领域应用中分析、建模、程序设计等方面知识,为问题的解决提供适宜的模型和办法。 简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。其主要的目的是要利用计算机产生令人赏心悦目的真实感图形。为此,必须建立图形所描述的场景的几何表示,再用某种光照模型,计算在假想的光源、纹理、材质属性下的光照明效果。事实上,图形学也把可以表示几何场景的曲线曲面造型技术和实体造型技术作为其主要的研究内容。计算机图形学的研究内容非常广泛,如图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法、非真实感绘制,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。整个课程以C语言为例,通过介绍30多个算法和程序设计的例子,阐述计算机图形学的原理、方法和程序设计知识。下面我们将实例分析计算机图形学中出现的一系列的理论在实际图形中的应用。 二.多边形的扫面转换与区域填充 1.种子填充算法 这里讨论的区域指已经表示成点阵形式的填充图形,它是象素的集合。区域可采用内点表示和边界表示两种表示形式。在内点表示中,区域内的所有象素着同一颜色。在边界表示中,区域的边界点着同一颜色。区域填充指先将区域的一点赋予指定的颜色,然后将该颜色扩展到整个区域的过程。 区域填充算法要求区域是连通的,因为只有在连通区域中,才可能将种子点的颜色扩展到区域内的其它点。区域可分为4向连通区域和8向连通区域。4向连通

计算机图形学

《计算机图形学》思考练习题 第一章计算机图形学概论 1.比较计算机图形学与图象处理技术相同点和不同点。 计算机图形学是研究怎样用数字计算机生成、处理和显示图形的一门学科。 图像处理技术研究如何对连续图像取样、量化以产生数字图像,如何对数字图像做各种变换以方便处理,如何滤去图像中的无用噪声,如何压缩图像数据以便存储和传输,图像边缘提取,特征增强和提取。 2.列举三个计算机图形的应用实例。 勘探、绘制地形地貌,系统模拟,虚拟现实。辅助教学设计。 3.简述计算机图形学发展动向。 造型技术—真实图形生成技术—人机交互技术—基于网络的图形技术 第二章计算机图形系统概述 1.叙述计算机图形系统的基本功能。 输入、输出、计算、存储、对话 他的基本功能是帮助人们设计、分析、采集、存贮图形、视频甚至音乐等信息。 2.输入设备可有哪几种逻辑功能?请举出各自对应的物理设备。 .定位(locator): 指定一个坐标点。对应的物理设备有鼠标器、键盘、数字化仪、触摸屏等。.笔划(stroke): 指示一个坐标点系列, 如指定一条曲线的控制点等。主要物理设备有数字化仪。.送值(valuator): 输入一个数值。最常用的物理设备是键盘的数字键。 .字符串(string):输入一个字符串。键盘字母键 .拾取(pick):各种定位设备 .选择(choise): 鼠标器,数字化仪,键盘功能键等 3.画出图形软件的层次结构及主要组成。 ------------------------------------ | 应用程序| | ---------------------------- | | 图形支撑软件| | | ------------------- | | | 高级语言| | | | ------------ | | | | 操作系统| ------------------------------------ 主要部分:图形核心系统GKS 计算机图形元文件CGM 计算机图形设备接口CGI 程序员层次结构图形系统PHIGS 4.颜色查找表的概念及实现原理。 颜色查找表是一维线性表,其每一项的内容对应一种颜色,它的长度由帧缓存单元的位数决定。实现原理:把颜色码放在一个独立的表中,帧缓存存放的是颜色表中各项的索引值,这样在帧缓存单元的位数不增加的情况下,具有了大范围挑选颜色的能力。 5.光栅扫描显示器结构与工作原理。

图形学实验五 消隐算法实例实现

中国民航大学计算机与技术学院 图形学实验报告 课程名称:计算机图形学 姓名:汪何媛 系:计算机科学与技术 专业:计算机科学与技术 年级:2010级 学号:100341324 指导教师:惠康华 2012年12 月17 日

实验项目:消隐算法实例实现 一、实验目的与要求 了解各种消隐算法,初步掌握消隐算法的实现。 了解真实感图形的基本原理,掌握真实感图形绘制的基本方法,为进一步掌握计算机图形学中图形处理技术奠定基础。 二、实验内容 给定一个长方体8个顶点坐标,编程实现正投影变换和轴侧投影变换。 自给定长方体个顶点坐标,编程实现一点透视绘图。 修改上面程序,实现两点透视变换图形。 给定一个三维几何体坐标,实现它的轴侧变换和一点透视变换。 三、重要算法分析 Z-Buffer算法的基本思想是:将Z缓冲器中各单元的初始值设为-1。当要改变某像素的颜色值时,首先检查当前多边形的深度值是否大于该像素原来的深度值(保存在该像素所对应的Z缓冲器的单元中),如果大于,说明当前多边形更靠近观察点,用它的颜色替换像素原来的颜色;否则,说明在当前像素处,当前多边形被前面所绘制的多边形遮挡了,是不可见的,像素的颜色值不改变。Z-Buffer算法流程如下:帧缓冲区置背景色; Z缓冲区置最小值(离观察点最远); for(场景中的每个多边形) { 扫描转换该多边形; for(多边形所覆盖的每一像素点(x,y)) {

计算多边形在该像素点的深度值z(x,y); if(z(x,y)>Z-buf中对应此像素点(x,y)的z值) { 把多边形在(x,y)处的深度值z(x,y)存入Z-buf中(x,y)处; 把多边形在(x,y)处的亮度值存入F-buf中的(x,y)处; } } } 四、程序运行截图 程序运行结果分别如以下各图所示: 其中图1至图5是按键盘中“上”箭头时凸多面体的变化过程: 图1图2

计算机图形学(简单多边形裁剪算法)

简单多边形裁剪算法 摘要:多边形裁剪算法与线性裁剪算法具有更广泛的实用意义,因此它是目前 裁剪研究的主要课题。本文主要介绍了一种基于多边形顶点遍历的简单多边形裁剪算法,它有效降低了任意多边形裁剪复杂度。通过记录交点及其前驱、后继信息,生成结果多边形,该算法简化了交点的数据结构,节省了存储空间,降低了算法的时间复杂度,具有简单、易于编程实现、运行效率高的特点。 关键词:多边形裁剪;交点;前驱;后继;矢量数组 一、技术主题的基本原理 简单多边形裁剪算法综合考虑现有多边形裁剪算法的优缺点,它是一种基于多边形顶点遍历来实现简单多边形裁剪工作的。其主要的原理是遍历多边形并把多边形分解为边界的线段逐段进行裁剪,输出结果多边形。 二、发展研究现状 近年来,随着遥感绘图、CAD辅助设计、图象识别处理技术的发展,图形裁剪算法从最初在二维平面上线和图形的裁剪扩展到三维空间里体和场的裁剪,国内外相继提出不少行之有效的算法,但越来越复杂的图形和计算也对算法的速度和适用性提出了越来越高的要求。因此,不断简化算法的实现过程,完善细节处理,满足大量任意多边形的裁剪也就成了当今算法研究的焦点之一。 以往多边形裁剪算法不是要求剪裁多边形是矩形,就是必须判断多边形顶点的顺时针和逆时针性,即存在不实用或者是增加了多边形裁剪算法的难度。为了解决现在的问题,我们研究现在的新多边形算法,其中,裁剪多边形和被裁剪多边形都可以是一般多边形,且不需要规定多边形输入方向。它采用矢量数组结构,只需遍历剪裁多边形和被裁剪多边形顶点即完成多边形的裁剪,具有算法简单、运行效率高的特点。 三、新算法设计 1、算法的思想 本算法是为了尽量降低任意多边形裁剪算法复杂度而提出的,其主要思想是采用矢量数组结构来遍历裁剪多边形和被裁多边形顶点,记录裁剪多边形和被裁减多边形交点及其前驱、后继信息,并通过记录相邻交点的线段,然后通过射线法选择满足条件的线段,之后进行线段连接,输出对应的裁剪结果。算法数据结构简单,即没有用常用的数据结构,如线性链表结构、双向链表结构和树形结构,这样就节省了存储空间,增加算法的效率。 2、主要数据结构 多边形裁剪算法的核心是数据结构,它决定了算法的复杂度和计算效率。兼顾数据结构简单和节省存储空间的目的,简单多边形裁剪算法是基于矢量数组vector的数据结构进行裁剪的,多边形矢量数组的每个元素表示多边形顶点,且按顶点输入的顺序存储。裁剪多边形和被裁剪多边以下我们分别用S和C表示,

计算机图形学裁剪算法

一、实验目标 1.了解Cohen-SutherLand线段裁剪算法、Liang-Barsky线段裁剪算法、SutherLand-Hodgeman多边形裁剪算法的基本思想; 2.掌握Cohen-SutherLand线段裁剪算法、Liang-Barsky线段裁剪算法、SutherLand-Hodgeman多边形裁剪算法的算法实现; 二、实验内容 本次实验主要是实现Cohen-SutherLand线段裁剪算法、Liang-Barsky线段裁剪算法、SutherLand-Hodgeman多边形裁剪算法。 Cohen-sutherland线段裁剪算法思想: 该算法也称为编码算法,首先对线段的两个端点按所在的区域进行分区编码,根据编码可以迅速地判明全部在窗口内的线段和全部在某边界外侧的线段。只有不属于这两种情况的线段,才需要求出线段与窗口边界的交点,求出交点后,舍去窗外部分。 对剩余部分,把它作为新的线段看待,又从头开始考虑。两遍循环之后,就能确定该线段是部分截留下来,还是全部舍弃。 Cohen-sutherland线段裁剪算法步骤: 1、分区编码 延长裁剪边框将二维平面分成九个区域,每个区域各用一个四位二进制代码标识。各区代码值如图中所示。 四位二进制代码的编码规则是: (1)第一位置1:区域在左边界外侧

(2)第二位置1:区域在右边界外侧 (3)第三位置1:区域在下边界外侧 (4)第四位置1:区域在上边界外侧 裁剪窗口内(包括边界上)的区域,四位二进制代码均为0。 设线段的两个端点为P1(x1,y1)和P2(x2,y2),根据上述规则,可以求出P1和P2所在区域的分区代码C1和C2。 2、判别 根据C1和C2的具体值,可以有三种情况: (1)C1=C2=0,表明两端点全在窗口内,因而整个线段也在窗内,应予保留。 (2)C1&C2≠0(两端点代码按位作逻辑乘不为0),即C1和C2至少有某一位同时为1,表明两端点必定处于某一边界的同一外侧,因而整个线段全在窗外,应予舍弃。 (3)不属于上面两种情况,均需要求交点。 3、求交点 假设算法按照:左、右、下、上边界的顺序进行求交处理,对每一个边界求完交点,并相关处理后,算法转向第2步,重新判断,如果需要接着进入下一边界的处理。 为了规范算法,令线段的端点P 1为外端点,如果不是这样,就需要P 1 和P 2 交换端点。 当条件(C1&0001≠0)成立时,表示端点P1位于窗口左边界外侧,按照求交公式,进行对左边界的求交运算。 依次类推,对位于右、下、上边界外侧的判别,应将条件式中的0001分别改为0010、0100、1000即可。 求出交点P后,用P1=P来舍去线段的窗外部分,并对P1重新编码得到C1,接下来算法转回第2步继续对其它边界进行判别。 Liang-Barsky线段裁剪算法思想: 我们知道,一条两端点为P1(x1,y1)、P2(x2,y2)的线段可以用参数方程形式表示: x= x1+ u·(x2-x1)= x1+ u·Δx y= y1+ u·(y2-y1)= y1+ u·Δy0≤u≤1式中,Δx=x2-x1,Δy=y2-y1,参数u在0~1之间取值,P(x,y)代表了该线段上的一个点,其值由参数u确定,由公式可知,当u=0时,该点为P1(x1,y1),当u=1时,该点为P2(x2,y2)。如果点P(x,y)位于由坐标(xw min,

计算机图形学作业

计算机图形学 题目:正八面体双色光源光照模型 姓名: *** 班级学号: *** 2012年12月13日

一、 案例描述 在真实感图形绘制中光强是通过颜色来表示的,由于计算机中采用的是RGB 颜色模型,所以要为红、绿、蓝三个分量分别建立光照模型。多点光源简单光照模型为: ,,1()[()()]n n a a i d P i i s P i i i I k I f d k I L N k I H N ==++∑ 式中,n 为点光源数量。通过点表、面表建立的八面体,给两个不同方向,不同颜色的光照,实现该模型在计算机图形学的具体应用。 二、 案例设计 建立八面体的顶点表,并根据顶点表建立面表及点表,在Visual C++版中输入源程序,绘制出八面体。设置两个不同位置坐标、不同颜色的光源,光源的颜色使用镜面反射光控制,为CtestView 类添加红宝石、绿宝石和蓝宝石菜单项,代表材质的颜色,材质的颜色使用漫反射光反射率控制,背景为黑色。 三、 案例编码 主要程序如下: // CTestView construction/destruction CTestView::CTestView() { // TODO: add construction code here Play=FALSE;//动画按钮状态 R=800.0,d=1000,Phi=90.0,Theta=0.0;//视点位置球坐标正前方 LightNum=2;//光源数量 pLight=new CLighting(LightNum);//光源动态数组 pLight->Light[0].SetPosition(1000,1000,0);//光源位置坐标 pLight->Light[1].SetPosition(-1000,-1000,0);//光源位置坐标 //设置光源参数 pLight->Light[0].L_Diffuse=CRGB(1.0,0.0,0.0);//光源的漫反射颜色

计算机图形学复习题

1、计算机图形学的相关学科有哪些?它们之间的相互关系怎样? 与计算机图形学密切相关的几门学科有:图像处理、模式识别、计算几何。它们研究的都是与图形图象处理有关的数据模型、图象再现的内容,它们相互结合、相互渗透。 2、图形系统的任务是什么? 图形系统的任务是:建立数学模型、视像操作、图形显示。 3、计算机图形学的主要研究内容是什么? 计算机图形学是研究通过计算机将数据转换为图形,并在专门的设备上输出的原理、方法和技术的学科。 4、举出六种你所知道的图形输出设备。 光栅扫描显示器、随机扫描显示器、直视存储管显示器、激光打印机、笔绘仪、喷墨绘图仪、静电绘图仪等。 5、什么叫刷新?刷新频率与荧光物质的持续发光时间的关系如何? 屏幕上的荧光涂层受到电子束打击后发出的荧光只能维持很短的时间,为了使人们看到一个稳定而不闪烁的图形,整个画面必须在每秒钟内重复显示许多次,这也称为屏幕刷新。 刷新频率与荧光物质的持续发光时间成反比,即荧光物质的持续发光时间越长,刷新频率可以低一些;否则,荧光物质的持续发光时间越短,刷新频率必须高。 6、随机扫描显示器和光栅扫描显示器显示图形有什么不同?它们各自依靠什么对屏幕图形进行刷新的? 随机扫描显示器显示图形时,电子束的移动方式是随机的,电子束可以在任意方向上自由移动,按照显示命令用画线的方式绘出图形,因此也称矢量显示器。而光栅扫描显示器显示图形时,电子束依照固定的扫描线和规定的扫描顺序进行扫描。电子束先从荧光屏左上角开始,向右扫一条水平线,然后迅速地回扫到左边偏下一点的位置,再扫第二条水平线,照此固定的路径及顺序扫下去,直到最后一条水平线,即完成了整个屏幕的扫描。 随机扫描显示器依靠显示文件对屏幕图形进行刷新;光栅扫描显示器则依靠帧缓存实现对屏幕图形的刷新。 7、光栅扫描显示系统为什么要采用彩色表?隔行扫描的优点是什么? 对于光栅扫描显示系统,为了显示很多种颜色,帧缓存的容量就要很大。但实际上对一幅具体的画面而言,其使用的颜色数目并不多(几百至几千种)。为了解决帧缓存容量不能过大而又满足实际需要,产生了彩色表。采用彩色表后,一幅画面实际使用的颜色值放入彩色表,而帧缓存各单元保存的不再是相应象素的颜色值,而仅是该象素颜色的一个索引,它是彩色表的某个入口地址。 隔行扫描只需用逐行扫描一半的时间就能看见整个屏幕显示,因此隔行扫描技术用于较慢的刷新频率。

相关主题
文本预览
相关文档 最新文档