当前位置:文档之家› 用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药载体

用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药载体

用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药载体
用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药载体

用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药

载体

随着科学技术的迅猛发展,以往单一学科及其技术难以解决的关键科学问题经多学科交叉及技术的使用获得突破。本文运用生物科学、材料科学、纳米科学及药剂学等学科的理论和方法,研究可显著改善蛋白质多肽类药物及DNA、siRNA 功效的新型给药载体及其作用机理。

蛋白质多肽、核酸等生物大分子药物药理活性强、特异性高,在肿瘤、糖尿病、感染性疾病等重大疾病的治疗中显示出巨大潜力,但其临床应用主要为注射剂型,多数药物半衰期短,长期用药患者顺应性差。而非注射给药特别是口服给药时,此类亲水性生物大分子药物不易被亲脂性的生物膜摄取,易被体内各种酶降解导致活性降低或失活,生物利用度低。

利用给药系统(Drug Delivery System, DDS)可提高生物大分子药物的体内外稳定性、促进药物吸收、改善药物体内作用功效。其中水凝胶给药载体还可控制药物释放,具有生物黏附、生物相容和生物可降解等特性;纳米给药载体还可增溶难溶性药物,缓控释药物和靶向给药。

同时具有抑制蛋白酶活性、促进药物渗透及黏膜黏附等性质的多功能聚合物给药载体可显著提高蛋白质多肽类药物的口服吸收,能有效突破胞外屏障(吞噬系统、核酸酶)和胞内屏障(细胞膜、内涵体、溶酶体、核膜)的多功能非病毒基因载体有望持续、高效地将基因导入靶细胞和靶组织。据此,设计并研究新型互穿网络聚合物超多孔水凝胶(SPH-IPN),以胰岛素为模型药物,研究SPH-IPN促进蛋白质多肽类药物的口服吸收及作用机理;依据壳聚糖季胺盐(TMC)与巯基化聚合物黏膜黏附及促渗特点,设计一种新型壳聚糖多功能衍生物—巯基化壳聚糖季

胺盐(TMC-Cys),以胰岛素和pEGFP分别作为模型蛋白质药物和模型基因,研究其自组装纳米载体促进蛋白质药物口服吸收、基因转染及其作用机理:对TMC-Cys 纳米载体进行甘露糖配体修饰,以TNF-αsiRNA为靶基因,研究甘露糖修饰的TMC-Cys (MTC)纳米载体对小肠M细胞、巨噬细胞的主动靶向作用及增加siRNA 口服给药功效与作用机理。

以丙烯酸(AA)和丙烯酰胺(AM)为单体,过硫酸铵(APS)/N,N,N’,N’-四甲基乙二胺(TEMED)为引发体系,NaHCO3为起泡剂,N,N’-亚甲基-双丙烯酰胺(Bis)为交联剂,溶液聚合制得聚(丙烯酸-丙烯酰胺)(P(AA-co-AM))超多孔水凝胶;采用分步互穿网络聚合物技术,聚合时加入O-羧甲基壳聚糖(O-CMC),胶凝后以戊二醛(GA)交联O-CMC,制得SPH-IPN。傅立叶变换红外光谱(FTIR)、核磁共振(13C NMR)、差示扫描量热分析(DSC)等研究表明SPH-IPN中含有P(AA-co-AM)和交联的O-CMC;扫描电镜(SEM)、光镜、共聚焦激光扫描显微镜(CLSM)观察表明SPH-IPN 含有大量相互连接、直径100-300μm的孔隙,O-CMC围绕孔隙边缘分布。

SPH-IPN孔隙率大于80%,水中可快速溶胀,平衡溶胀比30-80,SPH-IPN的溶胀比随O-CMC含量增加、交联度增加、交联时间延长而降低。引入互穿网络聚合物(IPN)结构可显著提高SPH-IPN的压缩模量和拉伸模量;压缩模量和拉伸模量均随O-CMC含量增加而显著提高;压缩模量随O-CMC交联度增加、交联时间延长而显著提高。

考察pH、离子强度和温度对SPH-IPN溶胀行为的影响;以胰岛素为模型药物,研究SPH-IPN的载药量、载胰岛素SPH-IPN在不同介质中的体外释放行为、载药前后胰岛素的稳定性及聚合物-药物相互作用;研究SPH-IPN中水的状态及保水性。研究表明,SPH-IPN的溶胀具有离子强度、pH和温度敏感性。

离子强度≥0.01mol·L-1时,SPH-IPN的溶胀比随离子强度增大而减小;离子强度<0.001mol·L-1时,溶胀不受影响。pH≤3.0时SPH-IPN几乎不溶胀;3.0≤pH≤6.2时随pH升高溶胀速率加快,溶胀比增大;pH≥6.2时溶胀充分,溶胀行为无显著改变;SPH-IPN对脉冲式pH改变可快速响应,呈现可逆的溶胀-去溶胀行为。

温度升高可促进SPH-IPN的溶胀。SPH-IPN对胰岛素吸附载药的载药量为

4%-7%,显著高于传统超多孔水凝胶(CSPH);载药量随O-CMC含量增加而略有降低。

胰岛素体外释放对离子强度、pH和温度敏感。圆二色谱分析和生物活性检

测结果表明载药前后胰岛素的构象和生物活性无显著变化。

SPH-IPN对胰岛素的实际载药率显著高于理论载药率,pH 7.4 PBS介质中药物可快速、完全释放,空白SPH-IPN和释药后SPH-IPN的FTIR图谱相似,表明SPH-IPN与胰岛素间存在较强的物理相互作用,不存在化学共价连接。溶胀的SPH-IPN中可冻结水占主要部分;SPH-IPN与水分子形成氢键的作用随O-CMC含量和胰岛素载药量增加而减弱。

外加压力与37℃孵育时,SPH-IPN保水性较好,保水性随O-CMC含量增加而提高。考察载胰岛素SPH-IPN正常大鼠口服给药和回肠给药的生物利用度,以及糖尿病模型大鼠口服给药降血糖效果;从黏膜黏附、蛋白酶抑制、渗透促进、小肠滞留等方面探讨SPH-IPN促胰岛素肠道吸收机理;考察聚合物结构完整性对

SPH-IPN抑酶、促渗、小肠滞留及胰岛素口服吸收的影响。

正常大鼠口服载胰岛素完整的SPH-IPN (I-SPH-IPN)后药物吸收和降血糖效果显著,血糖最低降至初始值的65%,相对皮下注射的口服生物利用度为5.0%,药理生物利用度为6.3%;口服载胰岛素粉碎的SPH-IPN (P-SPH-IPN)后药物吸收和

降血糖效果均不明显;回肠给予载胰岛素I-SPH-IPN和P-SPH-IPN时,药物吸收和降血糖效果显著,血糖最低降至初始值的30%,二者效果相当,均优于口服给药;糖尿病模型大鼠口服载胰岛素I-SPH-IPN后降血糖效果显著。SPH-IPN可通过非特异性作用和机械作用黏附至小肠黏膜,黏附力随O-CMC含量增加而增大。

SPH-IPN可通过捕获蛋白酶溶液和络合Ca2+抑制肠腔蛋白酶(胰蛋白酶、糜蛋白酶)活性,且SPH-IPN络合二价金属离子的能力随O-CMC含量增加而增强,抑酶作用相应增强。I-SPH-IPN和P-SPH-IPN的体外抑酶作用相当,I-SPH-IPN可减少药物在肠腔中的释放,增加黏液层和黏膜中的释放,从而降低肠腔蛋白酶对药

物的降解,I-SPH-IPN对胰岛素的保护作用强于P-SPH-IPN。

SPH-IPN通过机械作用可逆打开小肠上皮细胞间紧密连接,促进胰岛素的胞

间转运;加入I-SPH-IPN和P-SPH-IPN, Caco-2细胞单层的跨膜电阻最低分别降至初始值的25%和50%,FITC-胰岛素在Caco-2细胞单层中的转运量分别提高至未加聚合物的4.9和1.9倍,离体小肠中的Papp分别提高至4.2和1.8倍,表明

I-SPH-IPN打开上皮细胞间紧密连接和促胰岛素渗透的能力强于P-SPH-IPN。

I-SPH-IPN通过机械作用固定于大鼠小肠壁,小肠滞留时间超过8h;P-SPH-IPN

在小肠中易分散,无法通过机械作用固定于肠壁,滞留时间短于4h。

考察SPH-IPN的细胞毒性、基因(遗传)毒性、小肠组织相容性、口服急性、亚急性毒性和血液相容性,从整体动物、组织、细胞和分子水平评价SPH-IPN的安全性;HPLC测定SPH-IPN中单体和交联剂的残留量,为生物相容性评价提供依据。FDA/PI双染色、LDH、中性红、蛋白质含量测定试验结果表明RBL-2H3和Caco-2细胞与SPH-IPN及其浸提液(10、1、0.1 mg·mL-1)短时程(24h)接触后,胞外LDH 释放量、胞内中性红摄入量、蛋白质含量均无显著变化,细胞活力无显著影响;MTT

试验结果表明二种细胞与SPH-IPN及其浸提液长时程(7d)接触后,细胞增殖率无显著影响,SPH-IPN细胞毒性低。

DNA Ladder、流式细胞仪检测、单细胞凝胶电泳和小鼠骨髓微核试验结果表明SPH-IPN不会引起RBL-2H3和Caco-2细胞凋亡、DNA断裂和小鼠骨髓微核发生,基因毒性低。SPH-IPN不会引起大鼠小肠黏膜组织损伤,组织相容性良好。

SPH-IPN浸提液小鼠灌胃给药最大耐受剂量为1000 mg·kg-1;亚急性毒性试验中连续28天每天一次灌胃给予SPH-IPN浸提液(500、200、100mg·kg-1),小鼠体重增长正常,血液学和血清生化指标正常,肝、肾、脾重量正常,组织切片中未见炎症、坏死、水肿等病理现象,肝、肾、脾中ACP、ALKP、GPT、GOT和LPO 含量正常,表明SPH-IPN口服安全性好。SPH-IPN的溶血率低于5%,动态凝血率低于硅化玻璃,血小板黏附率低,具有一定的抗凝血效果,血液相容性良好。

SPH-IPN中AA、AM和GA的残留量分别为1.4±0.6、2.0±0.2、<0.2 ppm,符合其限量规定。壳聚糖经季胺化和巯基化修饰制备TMC-Cys,表征理化性质:聚电解质(PEC)法制备TMC-Cys/胰岛素自组装纳米粒(TMC-Cys NP)并表征理化性质;考察TMC-Cys NP正常大鼠口服给药和回肠给药的降血糖效果,研究TMC-Cys NP促胰岛素口服吸收机理。

壳聚糖(Mw 30、200、500 kDa)与碘甲烷反应合成季胺化度分别为15%和30%的TMC,TMC与Cys经EDAC/NHS催化的缩合反应合成TMC-Cys。400-500μmol·g-1 Cys共价连接至TMC,其中约35%为游离巯基,其余为二硫键;游离巯基在中性条件下可氧化形成二硫键。

FTIR和13C NMR表明TMC与Cys以酰胺键连接,DSC和TGA结果表明季胺化和巯基化修饰可改变壳聚糖的结晶度,降低其热稳定性。TMC-Cys的抑菌作用与

TMC相近,清除自由基作用强于TMC,季胺化度较高时抑菌作用较强,清除自由基能力减弱。

荷正电的TMC-Cys与荷负电的胰岛素经静电作用自组装形成TMC-Cys NP,纳米粒呈球形,分散度良好,粒径为100-170 nm,Zeta电势为+12-+18 mV,胰岛素包封率达90%。纳米粒粒径、Zeta电势和包封率受胰岛素溶液pH、TMC-Cys/胰岛素质量比和离子强度影响;胰岛素体外释放受壳聚糖分子量、季胺化度、释放介质离子强度和离子类型影响。

TMC-Cys NP的小肠黏膜黏附力和黏蛋白黏附率较TMC NP分别提高2.1-4.7倍和1.5-2.2倍,黏蛋白黏附率随壳聚糖分子量或季胺化度升高而增加。DSC分析表明TMC-Cys通过与黏蛋白间形成二硫键提高黏附力。

与TMC NP相比,TMC-Cys NP胰岛素的离体小肠Papp提高1.7-26倍,Caco-2细胞摄取量提高1.7-3.0倍,Peyer’s结摄取量提高1.7-5.0倍,其中

TMC-Cys(200,30) NP的促渗作用最强。大鼠口服和回肠给药时,TMC-Cys NP的降血糖效果优于TMC NP,血糖最低分别降至初始值的65%和30%。

Caco-2细胞MTT试验和大鼠回肠LDH试验结果表明TMC-Cys NP细胞毒性低,安全性良好。以增强型绿荧光蛋白表达质粒(pEGFP)为模式质粒,PEC法制备TMC-Cys/pEGFP自组装纳米复合物(TMC-Cys NC)并表征理化性质;考察TMC-Cys NC在HEK293细胞和小鼠胫前肌中的体内外转染效率,研究其转染机制。

TMC-Cys NC呈球形,分散度良好,粒径为150-400 nm,Zeta电势为+14-+20mV;凝胶阻滞试验结果表明TMC-Cys可通过静电作用缩合pDNA; TMC-Cys NC可有效保护pDNA免受核酶降解。TMC-Cys NC的细胞黏附率较TMC NC显著提高;TMC-Cys NC的HEK293细胞摄取率分别提高至TMC NC和Lipofectamine2000的1.4-3.0

倍和1.6-4.4倍;4℃时TMC-Cys NC的摄取量为37℃时的25%,叠氮钠和氯丙嗪处理分别使摄取量减少40%和70%,表明TMC-Cys NC主要经能量依赖的网格蛋白介导的细胞内吞途径进胞;松胞素D和染料木素对TMC-Cys NC的摄取无显著影响,表明进胞机理与细胞骨架的重构和窖蛋白介导的通路无关。

TMC-Cys NC的释放行为呈现谷胱甘肽(GSH)浓度依赖性,胞外GSH浓度下缓慢释放pEGFP,胞内GSH浓度下快速释放pEGFP并转运进核,细胞核中pEGFP的含量为TMC NC组的3.7倍。TMC-Cys NC在HEK293细胞中的转染效率提高至TMC NC 的1.4-3.2倍,其中TMC-Cys(100,30) NC的转染效率最高(约35%),为Lipofectamine2000的1.5倍。

TMC-Cys(100,30) NC的体内转染效率分别提高至TMC NC和

Lipofectamine2000的2.3倍和4.1倍。制备MTC及其纳米粒,研究纳米粒的理化性质;以TNF-a siRNA为靶基因,研究MTC纳米粒对小肠M细胞、巨噬细胞的主动靶向作用和提高siRNA口服给药功效及其作用机理。

TMC (200、500 kDa)经甘露糖修饰和巯基化修饰制得甘露糖修饰度约20%的MTC;捕获法、吸附法和自组装法分别制备载siRNA MTC纳米粒(en-MTC-TPP NP、ad-MTC-TPP NP和MTC-SANP),纳米粒为球形或亚球形,分散良好,粒径为130-230 nm,Zeta电势为正值,siRNA包封率为70-80%,纳米粒可显著提高siRNA的血清稳定性;纳米粒粒径随壳聚糖分子量增大而增大:ad-MTC-TPP NP和MTC-SANP受离子强度影响较大,siRNA包封率随离子强度升高而显著降低,但en-MTC-TPP NP受离子强度影响较小。与载NC siRNA的巯基化壳聚糖季胺盐纳米粒(en-TC-TPP NP)相比,en-MTC-TPP NP的Caco-2细胞和Raw 264.7细胞黏附力显著提高,siRNA

在Raw 264.7细胞中的摄取量提高2.0-24倍,Peyer’s结摄取量提高19-24倍,

体外M细胞模型和Caco-2细胞单层转运量提高1.2-2.1倍,离体小肠转运量提高6.9-11.0倍,且M细胞模型中的转运量显著高于Caco-2细胞单层中的转运量,含Peyer’s结离体小肠的转运量高于不含Peyer’s结离体小肠的转运量,表明甘露糖配体修饰载体可通过特异性配体-受体结合作用显著提高纳米粒对M细胞和巨噬细胞的主动靶向作用,从而促进siRNA的小肠摄取和转运。

以TNF-αsiRNA为靶基因,en-MTC-TPP NP在Raw 264.7细胞中的干扰效率显著强于en-TC-TPP NP和Lipofectamine2000;相同干扰效率(70%)

时,en-MTC-TPP NP的siRNA剂量较Lipofectamine2000降低200倍。en-MTC-TPP NP在Raw 264.7细胞和Caco-2细胞中基本无毒性,表明纳米粒在发挥基因沉默作用时不会造成细胞毒性。

小鼠口服en-MTC-TPP NP可显著降低血清TNF-α含量。

大分子药物的前景

大分子药物的前景 目前,世界上所开展的所有最尖端、最先进的重大疾病治疗方法,如艾滋病、肿瘤等均与生物大分子药物有关,欧、美、日等国家均认同生物大分子药物将是 21世纪药物研究开发中最有前景的领域之一。在日前举行的以“生物大分子药物 高效化的基础研究”为主题的第282次香山科学会议上,与会学者就如何通过多学科交叉合作,实现生物大分子药物的高效化等基础科学问题进行了研讨。 服务重大疾病防治 会议执行主席、天津大学化工学院长江学者讲座教授杨志民作了题为《生物大分子药物高效化的意义与研究展望》的评述报告。杨志民说,生物大分子药物包括多肽、蛋白质、抗体等,目前主要用于治疗肿瘤、艾滋病、心脑血管病等重大疾病。生物大分子药物的主要优点是,对反应物的选择性及作用具有其他药物无法比拟的高效性;大部分生物大分子药物,如酶类或基因药物等均具有可反复作用的药物活性;大部分生物大分子药物易于用生化方法大量生产;生物大分子药物一般均具有高水溶性,因此易于制备成各型液态药剂。 中国工程院院士、天津医科大学教授郝希山介绍说,近年来,随着对肿瘤研究的不断深入,肿瘤的生物治疗及靶向治疗正日渐成为一个活跃的研究领域,生物大分子药物作为最有发展前途的肿瘤治疗手段之一,已在肿瘤治疗中得到广泛应用。(潘锋) 我国高度重视对生物大分子药物的研究,在《国家中长期科学和技术发展规划纲要(2006,2020年)》中已将“蛋白质药物”列入第四项“重大科学研究计划”中;将“释药系统创制关键技术”列入重点领域中的第八项“人口与健康”的发展思路中,并将生物大分子药物防治的心脑血管病、肿瘤等疾病列入“重大非传染疾病的防治”中。

生物大分子药物讲课讲稿

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学 生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody,mAb)和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、仅供学习与交流,如有侵权请联系网站删除谢谢2

易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug conjugate,ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等,与传统小分子药物(相对分子质量为200 ~ 700)相比,其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择 由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗 仅供学习与交流,如有侵权请联系网站删除谢谢3

纳米药物载体与缓释

纳米药物载体的制备与药物缓释 廖凡 PB12206262 摘要: 根据已有知识设计了共聚物的结构,合成路线,合成步骤和实验方案,综合表征分析方法,确定了聚合条件和产品性能。 前言: 一般的给药方式,使人体内的药物浓度只能维持较短的时间,血液中或是体内组织中的药物浓度上下波动较大,有时超过病人的药物最高耐受剂量,有时又低于有效剂量,这样不但起不到应有的疗效,而且还可能产生副作用。频繁的小剂量给药可以调节血药浓度,避免上述现象,但往往使患者难以接受,实施起来有很多困难。因此,制备能够缓慢释放药物成分的缓释性长效药品在治疗中经常是非常需要的。要制备缓释长效药品,关键是要制备能使被承载的药物缓慢释放的载体材料。 温敏性水凝胶是一种亲水的聚合物网络,对其大量的研究发现,其在凝胶形成过程中不涉及化学反应,分子链间的交联通过分子间相互作用力(范德华力、疏水相互作用及氢键等)形成。通过改变温度就可以影响并改变这些疏水相互作用以及氢键作用,在水中经过简单的可逆性相转变(溶胶一凝胶) 即可形成水凝胶.因此温敏性水凝胶的制备过程更为简单,且不需要有机溶剂,将更有利于药物的传递。目前一些研究表明,温敏性PLGA/PEG水凝胶具有比较理想的凝胶特性,可在温度低于30 ℃时装载药物,在体温条件下发生溶胶一凝胶相变,并由于其良好的生物可降解性和安全性而受到广泛的关注。但这种给药体系仍存在一些尚未解决的问题,如载药时须在较低温度下操作,且药物的缓释周期较短(仅为7 d),给临床应用带来了不便和局限。另外,从材料角度看,提高疏水的PLGA 嵌段长度会引起蛋白药物的聚集。众所周知,聚己内酯(PCL)是一种被广泛研究的可生物降解的结晶聚合物,共聚物可呈粉末状形态,相比于其它材料在临床使

药物脉冲释放系统研究进展

药物脉冲释放系统研究进展 [摘要] 脉冲制剂是指药物在一定的时滞后,药物迅速、完全的释放出来,从而有效地预防和治疗疾病。根据时辰药理学的研究,人体内的血压、血糖等存在昼夜节律性,相应的一些疾病的发作也有一定的昼夜节律性。根据此特点,可把一些药物,研制成脉冲制剂,提前服药,经过一段时滞以后,在疾病发作前释药,从而有效预防和控制疾病的发生。现将笔者对此方面的研究进展做一综述。 [关键词] 脉冲时滞时辰药理学 人体内部存在着有规律可循的周期性运动,即“生物节律性”。同时,发病的过程、人体对致病原的反应也是有节律性的。例如:人体血压在9:00~11:00和16:00~18:00最高;人体在凌晨4:00左右对胰岛素最敏感。过敏性鼻炎、心绞痛、偏头痛、消化性溃疡等疾病均呈现近似昼夜波动[1]。可根据时辰药理学的知识来研究如何实现脉冲给药,这样可减少用药的盲目性,避免或减少不良反应的发生,从而使临床用药更为科学、合理。 《中国药典》(2010年版)将脉冲制剂归属于迟释制剂的范畴。国外文献中多采用Pulsed Drug Delivery System(PDDS)的名称形容脉冲释药系统,亦有采用Time clock system、Time-controlled explosion system、Pulsed release system等来称谓脉冲释药系统。 1.脉冲释药系统的特点 一是它可按照病人治疗的需要做到定时定量释药;二是它可预防疾病发生,减少药物的不良反应;三是因为用量减少,可降低病人产生耐药性的几率;四是因为给药次数减少,可增加病人的顺应性;五是口服的脉冲制剂一般在结肠或小肠释放,可避免发生肝脏首过效应。 2.脉冲释药系统的释药机理 一种是服用后并不立即释药,而是在病人发病时爆破式完全释药,通常称之为定时脉冲释药系统(定时爆破系统)。另一种是脉冲-缓释制剂,所用到缓释材料和包衣材料常会对其释药速率产生直接影响。 某些脉冲制剂不需要外界化学触发因素,就可使药物按照预定的步骤自动、有序地进行。按照自身触发机制,分为体系降解形成的脉冲释药、膨胀压形成的脉冲释药、体系降解和膨胀压共同形成的脉冲释药系统这三种[2]。尤其是体系降解和膨胀压双重作用形成的脉冲释药,可供选择的核心材料多,制剂本身可控性强,可满足各种治疗需要[3]。 几种常用的脉冲释药系统有:

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody ,mAb )和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug ConjUgate, ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等, 与传统小分子药物(相对分子质量为200 ~ 700)相比, 其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗透性。但蛋白酶抑制剂容易造成体内蛋白酶的缺乏,而吸收促进剂容易损坏生物膜造成局部炎症。此外,载药系统如纳米、微球、脂质体以及衍生化或化学修饰也是研究如何实现生物大分子药物口服用药的主要方法。环孢素是一种预防同种异体器官或组织移植发生排斥反应的药物,特殊的环肽结构使得其口服后具有较好的生物利用度。一项meta 分析数据表明,山地明(环孢素的普通制剂)是新山地明(环孢素微乳

医用高分子载体材料

医用高分子载体材料 Medical polymer carrier materials 摘要:药物高分子载体是随着药物学研究、生物材料科学和临床医学的发展而新兴的给药技术。高分子材料优良的生物相容性、生物可降解性、降解速率的可调节性以及良好的可加工性能,都为药物制剂的创新提供了便利和可能。高分子载体材料的合成,高分子材料和所载药物分子的结构关系,提高载药效率,以及药物载体材料的结构,在性能方面,不仅要考虑高分子材料的生物适应性,而且考虑它在体内的分布情况和生物降解性能、降解产物对机体的影响等问题都需要深入研究。本文结合国内有关医用高分子载体材料方面的研究论文, 阐述了医用高分子载体的概念、种类、作用机理、研究现状、应用以及发展前景。 关键词: 医用高分子载体高分子载体药物控制释放肿瘤给药系统应用 Abstract:The development of pharmacology, biomaterials and clinical medicine brings on a new administration method, namely medical polymer carriers. The excellent biocompatibility, bio-degradability, adjusted degradation velocity and processing property of polymer materials facilitate the pharmaceutical preparation. Many problems, such as biocompatibility of polymer materials, in vivo distribution, in vivo degradability, and effect of degradable products, all need further researches in the fields regarding the synthesis of polymer carriers, the correlation between polymer materials and carrying drug molecules, raising the efficiency of drug carrying, the structure and property of the drug carriers. Based on the relevant domestic medical polymer carrier material research papers, expounds the concept of medical polymer carrier, type, function mechanism and research status quo, application and development prospect. Keywords:medical polymer carrier polymer drug carrier control release tumor drug delivery system application 1. 引言 20世纪60年代化学家们提出将高分子材料应用于生物药物领域,制备高分子药物是改善药物最有效的方法之一。高分子载体药物可以通过剂型改变,控制药物释放速度,避免间歇给药使血药浓度呈波形变化,从而使释放到体内的药物浓度比较稳定,还可以通过释放体系使药物送达体内特定部位,而对身体其它部位不起作用。载体药物技术的关键是

生物大分子药物高效化的基础研究

生物大分子药物高效化的基础研究 生物大分子药物(包括多肽、蛋白质、抗体、聚糖与核酸等)多用于治疗肿瘤、艾滋病、心脑血管病、肝炎等重大疾病,被认是为21世纪药物研究开发中最有前景的领域之一。欲使中国跻身于国际医药开发大国之列,从事生物大分子药物高效化的基础研究己明显成为在竞争中必须抢攻的战略制高点。 日前在北京香山饭店召开了以“生物大分子药物高效化的基础研究”为主题的香山科学会议第282次学术讨论会。天津大学王静康教授、中国医学科学院医药生物技术研究所甄永苏研究员、美国密歇根大学、天津大学杨志民教授以及四川大学张志荣教授担任本次会议执行主席,来自全国近30个单位的40余位专家学者参会。会议中心议题为生物大分子药物在重大疾病方面的应用前景与展望,生物大分子药物高效传送系统,生物大分子药物形态学及其稳定性基础研究等。 杨志民教授作了“生物大分子药物高效化的意义与研究展望”的主题评述报告。他指出,生物大分子药物已被国际公认为21世纪药物研究开发中最有前景的领域之一,在重大疾病的治疗中已经取得重要的进展。但是,目前在生物大分子药物的施用方面仍存在亟待解决的难题与障碍:如难以穿透细胞膜、强免疫原性、难以有效地穿透实体瘤、形态学复杂(存在多晶型、多构象和多尺度问题)、分离纯化困难、稳定性低等问题。因此破解现存问题,实现“生物大分子药物高效化”是当前国际科技界竞相研究的前沿,在从事生物大分子高效化的过程中,除了致力于传送系统的研究、设计与构建外,药物本身的分子结构导致的特殊性质也不容忽视,如目前在使用的依靠高分子聚合物载体(像PLGA,PLA等)来传送生物大分子药物(如蛋白质疫苗、激素等)的系统中,因为其中所包含的药物形成聚合体而丧失药物活性或是无法从载体中完全释放出来的例子层出不穷。另外有关生物大分子药物在纯化与分离过程中因界面/表面与溶剂或分离物质相互作用而引起的结构和活性的缺损以及免疫原性增强方面的报告也屡见不鲜。因此在生物大分子药物高效化研究的过程中,特别是蛋白质与基因药物,其药物本身的分子结构及三维构型稳定化以及在分离纯化过程中的高效复性也均是需要重点研究的科学问题。 克服存在的问题,实现生物大分子药物高效化是当前研究的发展趋向。而设计与构建高效化的生物大分子药物传送系统无疑是解决问题的关键所在。 生物大分子药物在重大疾病方面的应用前景与展望 生物大分子药物目前主要用于治疗癌症、艾滋病、冠心病、糖尿病和一罕见的遗传疾病等,天津医科大学郝希山教授在“恶性肿瘤流行趋势分析及生物大分子药物的应用”的报告中,指出临床治疗癌症的方法主要是手术切除、放疗和化疗,而近十年来,肿瘤的生物治疗及靶向治疗已经成为目前最有前景和最活跃的领域。生物大分子药物作为其中最有发展前途的生物治疗和靶向治疗的手段之一,已经在肿瘤治疗中得到了广泛认可。他强调:生物大分子药物因为其反应性明确及作用的高效率,在肿瘤治疗领域具有较强的优势,显示出强大的应用前景。寻找新的治疗靶点,对生物大分子药物的改造与修饰,以及高效化药物传送系统的创建是亟待解决的问题。 天津药物研究院刘昌孝研究员在“生物大分子药物的生物医学评价”的报告中,强调

生物的技术药物制剂

新疆医科大学教案首页编号:_1-33_

第十八章生物技术药物制剂 第一节概述 一、生物技术的基本概念 1、生物技术或称生物工程(biotechnology),是应用生物体(包括微生物、动物细胞, 植物细胞)或其组成部分(细胞器和酶),在最适条件下,生产有价值的产物或进行有益过程的技术。 2、现代生物技术主要包括基因工程、细胞工程与酶工程、发酵工程(微生物工程)与生 化工程。 二、生物技术药物的结构特点与理化性质 (一)蛋白质的结构特点 蛋白质的组成和一般结构(一、二、三、四级结构) (二)蛋白质的理化性质 1.蛋白质的一般理化性质:旋光性、紫外吸收、蛋白质两性本质与电学性质 (1)旋光性:蛋白质分子总体旋光性由构成氨基酸各个旋光度的总和决定,通常是右旋,它由螺旋结构引起。蛋白质变性,螺旋结构松开,则其左旋性增大。 (2)紫外吸收:大部分蛋白质均含有带苯核的苯丙氨酸、酪氨酸与色氨酸,苯核在紫外280nm有最大吸收。氨基酸在紫外230nm显示强吸收。 (3)蛋白质两性本质与电学性质:蛋白质除了肽链N-末端有自由的氨基和C-末端有自由的羧基外,在氨基酸的侧链上还有很多解离基团,如赖氨酸的 -氨基,谷氨酸的γ羧基等。这些基团在一定pH条件下都能发生解离而带电。因此蛋白质是两性电解质,在不同

pH条件下蛋白质会成为阳离子、阴离子或二性离子。 2.蛋白质的不稳定性 (1)由于共价键引起的不稳定性:水解、氧化和消旋化,此外还有蛋白质的特有反应,即二硫键的断裂与交换 (2)由非共价键引起的不稳定性:聚集(aggregation)、宏观沉淀、表面吸附与蛋白质变性 (三)蛋白质类药物的评价方法: 多种分析方法:液相色谱法、光谱法、电泳、生物活性测定与免疫测定 第二节蛋白质类药物制剂的处方与工艺(注射剂型) 一、蛋白质类药物的一般处方组成:一类为溶液型注射剂,另一类是冻干粉注射剂 二、液体剂型中蛋白质类药物的稳定化:①改造其结构;②加入适宜辅料 蛋白类药物的稳定剂:缓冲液、表面活性剂、糖和多元醇、盐类、聚乙二醇类、大分子化合物、组氨酸、甘氨酸、谷氨酸和赖氨酸的盐酸盐等、金属离子 1.缓冲液因为蛋白质的物理化学稳定性与pH值有关,通常蛋白质的稳定pH值范围很窄,应采用适当的缓冲系统,以提高蛋白质在溶液中的稳定性。例如红细胞生成素采用枸橼酸钠-枸橼酸缓冲剂,而α-N3干扰素则用磷酸盐缓冲系统,人生长激素在5mmol/L 的磷酸盐缓冲液可减少聚集。缓冲盐类除了影响蛋白质的稳定性外,其浓度对蛋白质的溶解度与聚集均有很大影响。组织溶纤酶原激活素在最稳定的pH条件下,药物的溶解度不足以产生治疗效果,因此加入带正电荷的精氨酸以增加蛋白质在所需pH值下的溶解度。 2.表面活性剂由于离子型表面活性剂会引起蛋白质的变性,所以在蛋白质药物,

纳米药物载体用于治疗关节炎-PEI修饰的磁性纳米颗粒可实现siRNA递送并提升关节炎治疗效果

近日,东南大学研究者在实验视频期刊发表了文章。视频展示了关于聚乙烯亚胺包覆的超顺磁性氧化铁纳米颗粒制备及其作为载体进行靶向递送siRNA到巨噬细胞的研究工作。 这是该研究团队继2014年发表文章之后,通过实验视频的方式向广大科研工作者介绍基于磁性纳米颗粒的基因转染和递送研究。 研究背景 由于巨噬细胞在调节免疫反应方面的重要作用,巨噬细胞一直是研究的热点,并在许多疾病中,如自身免疫性疾病、动脉粥样硬化和癌症中,成为一个有希望的治疗靶点。 RNAi介导的基因沉默是探索和调控巨噬细胞功能的一种有价值的方法; 然而,用siRNA转染巨噬细胞通常被认为在技术上非常具有挑战,目前很少有专门研究siRNA转染到巨噬细胞的方法。 这里,我们提出了一种使用聚乙烯亚胺包覆的超顺磁性氧化铁纳米颗粒(PEI-SPIO)作为载体进行靶向递送siRNA到巨噬细胞的方案。 具体方案

当Fe: siRNA重量比达到4及以上时,PEI-SPIO能够结合siRNA并完全浓聚siRNA。在体外,这些纳米颗粒可以有效地将siRNA递送到原始巨噬细胞,以及类似巨噬细胞的264.7细胞系中,并且在较佳转染剂量下不影响细胞活力,最终诱导siRNA介导的靶基因沉默。 PEI-SPIO除了用于体外siRNA转染外,也是一种很有前途的将siRNA递送到体内巨噬细胞的工具。 鉴于PEI-SPIO/siRNA颗粒复合的磁性和基因沉默能力,系统地应用PEI-SPIO/siRNA颗粒不仅可以调节巨噬细胞的功能,还可以实现巨噬细胞的成像和跟踪。 从本质上讲,PEI-SPIO是一个简单、安全、有效的非病毒平台,可以在体内和体外实现巨噬细胞的siRNA递送。 对大鼠关节炎的治疗效果 在先前的研究工作中,同样以PEI-SPIO纳米颗粒为载体,研究靶向IL-15受体β亚基(IL-15Rβ)的siRNA对佐剂型关节炎(AA)大鼠在体治疗效果。 ●PEI-SPIO纳米颗粒与siRNA在Fe: siRNA质量比≥4时可紧密结合, 普鲁士蓝染色和流式检测结果表明PEI-SPIO/siRNA 纳米颗粒可以被巨噬细胞有效摄取。 ●MTS实验说明PEI-SPIO/siRNA 纳米颗粒在0~100 μg Fe/mL范 围内不具有细胞毒性。 ●血清稳定性实验说明PEI-SPIO纳米颗粒确实可保护siRNA不被降 解。

高分子载体材料

高分子载体材料 载体是指能载带微量物质共同参与某种化学或物理过程的常量物质。高分子载体则是以高分子聚合物来充当反应中此类常量物质。随着科技飞速发展高分子载体日益备受关注,广泛应用于医药载体、载体催化剂、固相组合合成技术、固相萃取等领域。 高分子载体材料十分广泛, 按来源可分为天然高分子材料、半合成高分子材料、合成高分子材料。常用的天然高分子载体材料稳定、无毒、成膜性较好, 特别是适合作为药物载体材料。其中主要包括胶原、阿拉伯树胶、海藻酸盐、蛋白类、淀粉衍生物。近年来研究较多的是壳聚糖、海藻酸盐, 而源于蚕丝的丝素蛋白则显示出巨大的潜力[ 2]。半合成高分子包括羧甲基纤维素、邻苯二甲酸纤维素、甲基纤维素、乙基纤维素、羟丙甲纤维素、丁酸醋酸纤维素、琥珀酸醋酸纤维素等, 其特点是毒性小、粘度大、成盐后溶解度增大, 由于易水解, 故不宜高温处理, 需临时现用现配《资料》。合成高分子材料如聚碳酯、聚氨基酸、聚乳酸、聚丙烯酸树脂、聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚氰基丙烯酸烷酯、乙交酯一丙交酯共聚物、聚乳酸一聚乙二醇嵌段共聚物,e一己内酯与丙交酯嵌段共聚物、聚合酸酐及羧甲基葡萄糖等,其特点是无毒、化学稳定性高。《资料》 按应用范围来分,可分为药物高分子载体、催化剂高分子载体、固相反应高分子载体及固相萃取高分子载体。 药物高分子载体 高分子载体药物是指将本身没有药理作用、也不与药物发生化学反应的高分子作为药物的载体,依靠二者间微弱的氢键结合形成、或者通过缩聚反应将低分子药物连接到聚合物主链上而得到的一类药物。其中高分子化合物充当低分子药物的传递系统,而发挥药理作用的仍是低分子药物基团。《资料》高分子载体不会在体内长时间积累,可排出或水解后被吸收。《资料》 以高分子作为药物载体的主要目的是为了提高药物的选择性。通常采用三种方法提高高分子药物的选择性:①通过改变小分子药物与高分子载体的连接方式和连接基团,达到有选择性的目的。例如身体某一部位具有亲核性的细胞壁或含有氨基(巯基)等,都可以水解连接小分子药物的酯基,从而可在靶区内把小分子药物从高分子载体上接下来;②给高分子载体装上“导向装置”,从而使高分子药物直接进攻靶区。例如身体正常组织的pH值为7. 2,而某些肿瘤组织的pH值为5.9~6.9。利用这种差别,给高分子药物安上磺胺衍生物侧基,则聚合物在pH≈6. 6时沉淀,从而实现了药物专门进攻靶区的目的;③利用高分子药物的高分子量能引起体内某些细胞对它的特异吸取,使具有活性的高分子在病变区积聚,达到有选择性的目的[3] 《资料》将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。接枝主要分为两种类型:通过偶联将一种聚合物接枝到另一种聚合物表面;将带功能基团的单体接到聚合物表面,然后引发单体聚合(也叫原位聚合)。而工艺方法又可分为:氧化处理(表面涂饰,火焰电晕放电或酸蚀等);等离子固定法;高能辐射法;光化学方法等。《资料》} 催化剂高分子载体 均相催化剂的固载化是催化剂研究的方向之一,将具有催化活性的低分子负载于高分子上可制成固载化催化剂.与一般低分子催化剂相比,具有以下优点:(1)对设备无腐蚀性; (2)催化剂容易处理和储存;(3)反应后易与反应液分离;(4)易实现生产的连续化;(5)可消除废酸的环境污染;(6)稳定性良好,能够重复使用.因此,在有机合成中日益受到人们的关注.高分子载体Lewis酸催化剂具有催化活性高、性能稳定、使用方便、无污染、制备简便、成本低廉、重复使用性能优越、可回收再生等一系列优点,是一类良好的环境友好催化剂,对于资源综合利用和环境友好具有重大意义.高分子载体Lewis酸是将Lewis酸固载于高分子载体上的一种固体酸催化剂,是高分子金属催化剂中的一种,是利用高分子骨架中的不饱和pai键配位的金属高分子催化剂如:三氟化硼型催化剂:聚苯乙烯一三氟化硼复合物

纳米药物载体系统解析

纳米药物载体系统 年级: 2012级 专业: 材料科学与工程 姓名: 俞 学号: 3**

摘要: 着科技的发展,纳米生物技术越来越受到关注,物技术是国际生物技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。本文着重介绍纳米药物载体系统。纳米药物载体的属性纳米药物载体种类纳米药物载体的制备方法及纳米生物技术的发展前景。 关键词:纳米生物技术纳米药物载体纳米粒子 纳米技术是一种新兴的科技,它的基本涵义是在纳米尺寸(10-9~10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新物质。由于物理空间的改变,物质的理化特性、生物学特性发生令人惊奇的变化,其在药学领域中的应用,已成为本世纪崭新的前沿科学[1] 纳米药物载体是指粒径大小在10~1000nm的一类新型载体,通常由天然或合成高分子材料制成。它是以纳米颗粒作为药物载体,将药物治疗分子包裹在纳米颗粒之中或吸附在其表面,通过靶向分子与细胞表面特异性受体结合,在细胞摄取作用下进入细胞内,实现安全有效的靶向药物输送和基因治疗。纳米 载体技术是纳米生物技术的重要发展方向之一[2] 一、纳米药物载体的性质 作为药物载体的纳米材料,是粒径大小介于10~1000nm的固态胶体颗粒,包括纳米粒子、纳米囊、纳米胶束和纳米乳剂等。 其中较常见的是纳米粒子,一般指由天然或合成的高分子材料制成的、粒度在纳米级的固态胶体颗粒。 纳米粒子表面的亲水性与亲脂性将影响纳米粒子与调理蛋白吸附结合力的大小,从而影响吞噬细胞对其吞噬的快慢。一般而言,纳米粒子的表面亲脂性越大,则其对调理蛋白的结合力越强,吞噬细胞对其吞噬的速度越快。所以要延长纳米粒子在体内的循环时间,需增加其表面的亲水性,这是对纳米粒子进行表面修饰时选择材料的一个必要条件[3] 二、纳米药物载体的属性 1 具有较高的载药量 2 具有较高的包封率

天然温敏性高分子药物载体材料

天然温敏性高分子药物载体材料摘要:对环境刺激响应的刺激性响应材料在药物运输方面有重要的作用。本文旨在介绍几种天然温敏性高分子在药物运输方面的应用,并对此天然高分子与合成高分子在药物运输中的优缺点。 关键词:天然高分子药物载体温敏性 一.前言 刺激性响应材料因其对环境有特殊的响应而得到人们的关注,随着近几年医用高分子材料的发展,人们已可以根据特定的生理需求来制造药物载体[1]。刺激性响应高分子也叫智能高分子、环境响应高分子,当外界环境发生微小变化时,它们能迅速地发生相应的物理化学变化,根据响应因素的不同,可以分为光响应高分子、超声响应高分子、PH响应高分子、温度响应高分子等等。这些高分子在外界因素发生改变时,它们可能发生疏水/亲水转变、构象转变、溶解度改变、胶束化等等[2]。因此可以将高分子做为药物载体,从而对药物释放进行有效的控制。这这些刺激性响应材料中,温敏性高分子是研究最广泛的,所以本文将重点介绍几种温敏性天然高分子在药物载体上的应用(见表1)。 二.温敏性高分子在控制药物释放上的应用

温敏性高分子是在微观上分子随着温度发生微小改变,从而达到宏观上材料性能的改变的一类材料。这些材料一般都具有低临界溶液温度(LCST),或高临界溶液温度(UCST)。LCST的材料在温度较低时可以溶解,当加热至LCST以上时,分子从溶液中析出,经历一个溶胶-凝胶的相转变;而UCST材料正好相反,在低温时材料不能溶解,当加热至UCST以上时,材料溶解[3]。LCST和UCST 材料都可以作为药物载体,LCST共聚高分子可以简单地与药物混合,然后再室温下,用注射器将溶液注入体内,人体温度的加热作用使材料经历一个溶胶-凝胶转变,将药物包裹在材料内,从而在需治疗的位置上提供一种药物缓释作用[4]。而UCST材料则需要在病变部位加上红外激光或超声来辅助加热,从而将药物才材料中释放出来[5-7]。 温敏性药物载体有许多优点,如不需要侵入性手术植入和绕过生理障碍,从而达到特定的治疗位点[8]。另外,载体可以防止药物被酶或体内环境降解,体内药物的溶度也可以通过控制药物的释放速度来调节,因此可以避免简单注射所带来的治疗低效和体内药物浓度过高而导致的毒化作用等问题。理想的药物治疗情况如图1所示。 三.几种天然温敏性高分子 1. 弹性蛋白多肽(ELPs)

纳米药物载体在医药领域中的研究进展

第29卷第2期济宁医学院学报2006年6月Vol129,No12JOURNAL OF JINING MEDICAL COLLEGE Jun,2006 纳米药物载体在医药领域中的研究进展 钱倩综述王伯瑶审校 (四川大学基础医学与法医学院基础医学系) 纳米本身是个长度单位,1nm等于10-9m,纳米颗粒的粒径比毛细血管通路还要小12个数量级。当一种物质被不断切割至一定程度,其粒子小至纳米量级即为纳米材料。纳米材料往往会产生一些新的理化特性,正是这些特有的特性,使其在药物和基因输送方面有许多优越性:1许多半衰期短的药物可能需要每天重复给药多次,制备成缓释药物后,将极大延长药物作用时间o能解决口服易水解药物的给药途径问题,大大降低药物与胃蛋白酶等消化酶接触的机会?可进行靶向给药:纳米载体经特殊加工后可达到靶向输送的目的,更加准确地对准组织或器官,减少药物对人体的不良反应?载药纳米粒可以改变膜转运机制,增加药物对生物膜的透过性,有利于药物透皮吸收与细胞内药物发挥?可在保证药物作用的前提下,减少给药剂量,减少药物的副作用?可消除特殊生物屏障对药物作用的阻碍?能携带多种化学药物à载体及其生物学降解产物易被消除。 纳米药物载体在医药领域的应用极为广泛,提高药物的利用率疗效和减少药物的副作用已成为医药研究领域的一项重要课题。一种理想的纳米药物载体应具备以下特征:1具有较高的载药量,>30%o具有较高的包封率,>80%?制备和纯化方法简便,容易放大至工业化生产?载体材料可生物降解,毒性较低或没有毒性?具有适当的粒径与粒型?具有较长的体内循环时间。 1纳米药物的种类 111纳米粒 纳米囊和纳米球统称为纳米粒(nanopar ticles),是直径为10-1000nm的一类聚合物胶体系统,纳米球有高分子基质骨架,药物分散其中。纳米囊由高分子材料形成的外壳和液状(水或油状)内核构成,药物通常被聚合物膜包封在内核层[1]。理想的纳米粒载体是无毒和可生物降解的,纳米粒的特异靶向性使药物和靶基因被定向释放出来,载体则被生物降解,避免在转运过程中在其他组织释放,产生副作用或过早被灭活。用于纳米粒载体研究的生物可降解聚合物主要有合成聚合物如:聚乳酸(PLA)、聚乙醇酸(PGA)、聚己内酯(PCL)、聚乳酸共聚乙醇酸(PL-GA)以及天然高分子材料,如普鲁兰、壳聚糖、明胶、海藻酸钠以及其他亲水性生物可降解聚合物[2]。 参考文献 11程雪梅,边旭明,郎景和,等.妊娠期宫颈涂片细胞学检查.中国医学科学院学报,2000,22(2):174 21Palle C,B angsboll S,Andreas son B.Cervical intraepithelial neoplasia i n pregnan cy.Acta Obstet Gynecol Scand,2000,79(4):306 31Bristow RE,F.J.Montz1Cervical cancer i n pregnancy.Lippi ncott Willi ams and Wi lkins,19991157~175 41Nobbenhuis MAE,Helmerhorst TJM,van-den-B rule AJC,et al. High-risk human papill omavirus clearance in pregnant women: trends for lower clearance during pregnancy with a catch-up post2 partum..B r J Cancer,2002,87(1):75 51Arena S,Marconi M,Ubertosi M,et al.H PV and pregnancy:diagnos2 tic methods,transmission and evoluti on.Minerva Ginecol,2002,54 (3):225 61Si lverberg MJ,Thorsen MP,Lindeberg H,et al.Condyloma i n preg2 nancy is strongly predictive of juvenile onset recurrent respiratory pa2 pillomatosis.Obstet Gyn ecol,2003,101(4):645 71邓东锐,闻良珍,凌霞珍.亚临床型人乳头瘤病毒感染垂直传播途径的研究.中国实用妇科与产科杂志,2005,21(1):45 81Mikhail MS;Anyaegbunam A;Romney https://www.doczj.com/doc/e95168279.html,puteried colposcopy and conservative managem ent of cervical intraepi theli al n eoplasia i n pregnan cy.Obstet Gynecol Survey,1996,51(3):169 91Baldauf JJ;Dreyfus M;Ritter J.et al.Benefits and ri sks of directed biopsy in pregnancy.Obstet Gynecol Survey,1998,53(2):81 101郎景和.子宫颈上皮内瘤变的诊断与治疗.中华妇产科杂志, 2001,36(5):261 111Richard RM,Barron B A.A follow-up study of patients with cervi2 cal dysplasia.Am J Obstet Gynecol,1969,105:386121David A,Van Nos trand KM,Nguyen NJ,et al.T he effect of rout of deli very on regression of abnormal cervical cytology fi n dings in the postpartum period.Am J Obstet Gynecol,1998,178(6):1116 131Paraskevaidis E;Koliopoulos G;Kalantaridou S;et al.Management and evoluti on of cervical intraepitheli al neoplasia during pregnancy and pos tpartum.Eur J Obstet Gynecol Reprod Bi ol,2002,104(1): 67 141Howard MJIII.Pos tpartum evoluation of cervical squamous i ntraep2 ithelial lesions wi th respect to the route of delivery.Obs tet Gyn ecol Survey,2003,58(2):109 151Vlahos G;Rodolakis A;Di akomanolis E;et al.Conservative manage2 ment of cervical intraepith elial neoplasia(CIN(2-3))i n pregnant women.Gynecol Obstet Invest,2002,54(2):78 161Murta EFC;de-Souza FH C;de-Souza MAH,et al.High-grade cervi cal squamous intraepithelial lesion during pregnancy.Tumori, 2002,88(3):246 171Gentry DJ,B uggish MS,Brady K,et al.The effect of loop ex i sion of the transformation zone on cervical length:i m plication for pregnan2 cy.Am J Obstet Gynecol,2000,182(3):516 181Robinson WR,Webb S,Tirpack J.et al.Managem ent of cervical i n2 traepithelial neoplasia duri ng pregnancy wi th loop exision.Gyn ecol Oncol,1997,64:153 191M i tsuhashi A,Sekiya S.Loop electrosurgical excision procedure (LEEP)during first trimester of pregnancy.Int J Gynecol Obstet, 2000,71:237 201Dunn TS,Ginsburg V,Wolf D.Loop-cone cerclage in pregnancy:a 5-year review.Gynecol Oncol,2003,90:577 (收稿日期2006-04-20) # 82 #

相关主题
文本预览
相关文档 最新文档