如图,已知抛物线y=ax2+bx+c经过点a(2,3),b(6,1),c(0,2).教程文件
- 格式:doc
- 大小:250.00 KB
- 文档页数:4
二次函数自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列函数中,属于二次函数的是( ) A. y =2x +lB. y =(x ﹣l )2﹣x 2C. y =5x 2D. y =22x 2. 在平面直角坐标系中,将二次函数y =x 2的图象先向右平移3个单位长度,再向上平移1个单位长度,所得新抛物线的解析式为( ) A. y =(x +3)2+1B. y =(x ﹣3)2﹣1C. y =(x +3)2﹣1D. y =(x ﹣3)2+13. 某抛物线的形状、开口方向与y =12x 2﹣4x +3相同,顶点坐标为(﹣2,1),则该抛物线的解析式为( ) A .y =12(x ﹣2)2+1 B .y =12(x +2)2﹣1C .y =12(x +2)2+1D .y =-12(x +2)2+14. 二次函数y =ax 2+bx +c 的部分图象如图所示,可知关于x 的方程ax 2+bx +c =0的所有根的积为( ) A .﹣4 B .4 C .﹣5 D .5第4题图 第8题图 第9题图 第10题图 5. 关于二次函数y =3(x +1)2﹣7的图象及性质,下列说法正确的是( ) A. 对称轴是x =1 B. 当x =﹣1时,y 取得最小值,且最小值为﹣7 C. 顶点坐标为(﹣1,7) D. 当x <﹣1时,y 随x 的增大而增大6. 某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100﹣x )件.若想获得最大利润,则售价x 应定为( )A .35元B .45元C .55元D .65元7. 一次函数y =bx +a (b ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A B C D8. 板球是以击球、投球和接球为主的运动,该项目主要锻炼手眼的协调能力,集上肢动作控制能力、技巧与力量为一体的综合性运动.如图是运动员击球过程中板球运动的轨迹示意图,板球在点A 处击出,落地前的点B 处被对方接住,已知板球经过的路线是抛物线,其解析式为y =132x 2+14x +1,则板球运行中离地面的最大高度为( )A. 1B.32C.83D. 49. 如图,在△ABC 中,∠B =90°,AB =4 cm ,BC =8 cm ,动点P 从点A 出发,沿边AB 向点B 以1 cm/s 的速度移动(不与点B 重合),同时动点Q 从点B 出发,沿边BC 向点C 以2 cm/s 的速度移动(不与点C 重合).当四边形APQC 的面积最小时,经过的时间为( ) A. 1 s B. 2 s C. 3 s D. 4 s 10. 已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的顶点坐标是(﹣1,m ),与x 轴的一个交点在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,有下列结论:①abc >0;②关于x 的方程ax 2+bx +c ﹣m =2没有实数根;③3a +c >0.其中正确的个数是( ) A .3 B .2 C .1 D .0二、填空题(本大题共6小题,每小题4分,共24分) 11. 抛物线y =x 2+2x +c 的对称轴是 . 12. 当a = 时,函数y =(a ﹣1)21a x+x ﹣3是二次函数.13. 若二次函数y =x 2﹣4x +n 的图象与x 轴只有一个公共点,则实数n = .14. 点P 1(1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是 .15. 如图,将抛物线y 1=(x +1)2﹣3向右平移2个单位长度得到抛物线y 2,则阴影部分的面积为 .第15题图 第16题图16. 圆形喷水池中心O 处有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,O 为原点建立平面直角坐标系,点A 在y 轴上,x 轴上的C ,D 为水柱的落水点.已知雕塑OA 的高为116米,水柱最高点与OA 的水平距离为5米,落水点C ,D 之间的距离为22米,则喷出水柱的最大高度为 米.三、解答题(本大题共8小题,共66分)17.(6分)已知二次函数y =x 2﹣4x +c 的图象经过点(3,0). (1)求该二次函数的解析式;(2)点P (4,n )向上平移2个单位长度得到点P ',若点P ′落在该二次函数的图象上,求n 的值. 18.(6分)已知二次函数y =x 2-4mx +3m 2(m ≠0).(1)求证:该二次函数的图象与x 轴总有两个公共点; (2)若m>0,且两交点间的距离为2,求m 的值.19.(8分)购进一款防护PM 2.5的口罩,每件成本是5元,为了合理定价,投放市场试销,经调查可知,销售单价是10元时,每天的销量是50件,而销售单价每降低0.1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数解析式; (2)求出销售单价定为多少元时,每天的利润最大,并求出最大利润. 20.(8分)如图,抛物线y =2x 2+bx ﹣2过点A (﹣1,m )和B (5,m ). (1)求b 和m 的值;(2)若抛物线与y 轴交于点C ,求△ABC 的面积.第20题图 第21题图 21.(8分)如图,已知抛物线L 1:y 1=34x 2,将抛物线平移后经过点A (﹣1,0),B (4,0)得到抛物线L 2,与y轴交于点C.(1)求抛物线L2的解析式;(2)已知P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC,若存在,求点P的坐标;若不存在,请说明理由.22.(8分)已知抛物线y=﹣x2+bx+c的顶点坐标为(2,7).(1)求b,c的值;(2)已知点A,B落在抛物线上,点A在第二象限,点B在第一象限.若点B的纵坐标比点A的纵坐标大3,设点B的横坐标为m,求m的取值范围.23.(10分)图①是一座抛物线形拱桥侧面示意图,水面宽AB与桥长CD均为24 m,在到点D的距离为6米的E处,测得桥面到桥拱的距离EF为1.5 m.以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.①②①②第23题图第24题图24.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B两点,顶点为C(1,﹣1),E为对称轴上一点,D,F为抛物线上的点(点D位于对称轴左侧),且四边形CDEF为正方形.(1)求该抛物线的解析式;(2)如图①,求正方形CDEF的面积;(3)如图②,连接DF,与CE交于点M,与y轴交于点N.若P为抛物线上一点,Q为直线BN上一点,且P,Q两点均位于直线DF下方,当△MPQ是以点M为直角顶点的等腰直角三角形时,求点P的坐标.题报第②期 二次函数自我评估参考答案答案详解三、17. 解:(1)将(3,0)代入y =x 2﹣4x +c ,得9﹣12+c =0,解得c =3. 所以该二次函数的解析式为y =x 2﹣4x +3.(2)点P (4,n )向上平移2个单位长度得到点P '(4,n +2). 将P ′(4,n +2)代入y =x 2﹣4x +3,得16﹣16+3= n +2,解得n =1.18.(1)证明:令y =0,则x 2-4mx +3m 2=0(m ≠0).因为Δ=(-4m )2﹣4×3m 2=4m 2>0,所以方程x 2-4mx +3m 2=0(m≠0)有两个不等的实数根.所以无论m 取何值,该函数的图象与x 轴总有两个公共点. (2)解:解方程x 2-4mx +3m 2=0,得x 1=m ,x 2=3m .所以函数y =x 2-4mx +3m 2的图象与x 轴两个交点的坐标为(m ,0),(3m ,0).因为m >0,两交点间距离为2,所以3m-m =2,解得m =1. 19. 解:(1)根据题意,得y =(x ﹣5)105050.1x -⎛⎫+⨯⎪⎝⎭=﹣50x 2+800x ﹣2750(5≤x ≤10).所以每天的销售利润y (元)与销售单价x (元)之间的函数解析式是y =﹣50x 2+800x ﹣2750(5≤x ≤10). (2)由(1),知y =﹣50x 2+800x ﹣2750=﹣50(x ﹣8)2+450.因为﹣50<0,5≤x ≤10,所以当x =8时,y 有最大值,最大值为450. 所以销售单价定为8元时,每天的利润最大,最大利润是450元.20. 解:(1)因为A (﹣1,m ),B (5,m )是抛物线y =2x 2+bx ﹣2上的两点,所以对称轴为x=15222b -+-=⨯,得b =﹣8.所以抛物线的解析式为y =2x 2﹣8x ﹣2.将A (﹣1,m )代入y =2x 2﹣8x ﹣2,得m =2+8﹣2=8.(2)令x=0,得y =﹣2,所以点C 的坐标为(0,﹣2).所以OC =2. 因为A (﹣1,8),B (5,8),所以AB =6.所以S △ABC =12×6×(2+8)=30. 21. 解:(1)设抛物线L 2的解析式为y=34x 2+bx+c. 将A (﹣1,0),B (4,0)代入,得3041240b c b c ⎧-+=⎪⎨⎪++=⎩,,解得943.b c ⎧=-⎪⎨⎪=-⎩,所以抛物线L 2的解析式为y=34x 294-x-3.(2)存在PD =2OC . 理由:设P 239344a a a ⎛⎫-- ⎪⎝⎭,,D 234a a ⎛⎫⎪⎝⎭,,所以PD=223933444a a a ---=934a +,OC=3.由934a +=2OC=6,解得a=43或a=-4.所以点P 的坐标为41433⎛⎫ ⎪⎝⎭,-或(﹣4,18). 22. 解:(1)因为抛物线y =﹣x 2+bx +c 的顶点坐标为(2,7),所以对称轴为x=()21b-⨯-=2,解得b =4.所以y =﹣x 2+4x +c.将(2,7)代入y =﹣x 2+4x +c ,得﹣4+8+c =7,解得c =3.所以b 的值是4,c 的值是3. (2)因为y =﹣x 2+4x +3的顶点坐标为(2,7),所以抛物线开口向下,对称轴为x =2.令x =0,得y =3,所以抛物线与y 轴的交点坐标为(0,3).所以点(0,3)关于对称轴的对称点为(4,3). 因为点A ,B 落在抛物线上,点A 在第二象限,点B 在第一象限,点B 的纵坐标比点A 的纵坐标大3,所以将y =6代入y =﹣x 2+4x +3,得﹣x 2+4x +3=6,解得x =1或x =3.所以m 的取值范围是0<m <1或3<m <4.第22题图(共享2021-2022学年第二学期答案页第8期大报第20期“专项五”3题答案) 23. 解:(1)由题意,得F (6,-1.5). 设抛物线的解析式为y 1=a 1x 2.将F (6,-1.5)代入,得62·a 1=-1.5,解得a 1=124-. 所以抛物线的解析式为y 1=124-x 2.当12x =时,y 1=-6,所以桥拱顶部离水面的距离为6 m . (2)①由题意,得右侧抛物线的顶点为(6,1).设右侧抛物线的解析式为y 2=a 2(x-6)2+1.将H (0,4)代入,得a 2(0-6)2+1=4,解得a 2=112. 所以右侧抛物线的解析式为y 2=112(x-6)2+1. ②设彩带的长度为h m ,则h =y 2-y 1=112(x-6)2+1-2124x ⎛⎫-⎪⎝⎭=18x 2–x+4=18(x–4)2+2. 因为18>0,所以h 有最小值.当x=4时,h 取得最小值,为2.所以彩带长度的最小值是2 m .24. 解:(1)设抛物线的解析式为y =a (x ﹣1)2﹣1.将A (﹣1,0)代入,得a =14,所以y =14x 2-12x -34.(2)如图①,过点F 作FR ⊥EC 于点R . 设F 2113424t t t ⎛⎫-- ⎪⎝⎭,,则R 2113424t t ⎛⎫-- ⎪⎝⎭1,,所以RC =2111424t t -+,RF =t ﹣1. 因为四边形CDEF 是正方形,所以RF =RC .所以2111424t t -+=t ﹣1.所以t =1(舍去)或t =5.所以F (5,3).所以RF =4.所以CF 2=32.所以正方形CDEF 的面积是32. (3)令y=0,则14x 2-12x -34=0,解得x=-1或x=3.所以B (3,0). 由(2)可得N (0,3),M (1,3),所以直线BN 的解析式为y =﹣x +3.设Q (m ,3﹣m ),如图②,过点Q 作QG ⊥DF 于点G ,作PT ⊥DF 于点T .因为△MPQ 是以M 为直角顶点的等腰直角三角形,所以MP =QM ,∠TMP +∠GMQ =90°,∠TMP +∠TPM =90°.所以∠TPM =∠GMQ .所以△MTP ≌△QGM .所以PT =MG ,MT =QG .所以PT =MG =m ﹣1,MT =QG =m.所以P (1﹣m ,4﹣m ).因为点P 在抛物线上,所以4﹣m =14(1﹣m )2-12(1﹣m )-34,解得m =﹣2±因为m >0,所以m =﹣2+所以P (3--.所以当△MPQ 是以M 为直角顶点的等腰直角三角形时,点P 的坐标为(3--.① ② 第24题图。
第十三关:以二次函数与圆的问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。
由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。
“圆”在初中阶段学习占有重要位置,“垂径定理”、“点与圆的位置关系”的判定与性质、“直线与圆的位置关系”的判定与性质、“正多边形的判定与性质”通常是命题频率高的知识点.由于这部分知识的综合性较强,多作为单独的解答题出现.如果把圆放到直角坐标系中,同二次函数结合,则多作为区分度较高的压轴题中出现.此类题目由于解题方法灵活,考查的知识点全面,体现了方程、建模、转化、数形结合、分类讨论等多种数学思想,得到命题者的青睐【解题思路】二次函数与圆都是初中数学的重点内容,历来是中考数学命题的热点,其本身涉及的知识点就较多,综合性和解题技巧较强,给解题带来一定的困难,而将函数与圆相结合,并作为中考的压轴题,就更显得复杂了.只要我们掌握解决这类问题的思路和方法,采取分而治之,各个击破的思想,问题是会迎刃而解的.解决二次函数与圆的问题,用到的数学思想方法有化归思想、分类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。
解题时要注意各知识点之间的联系和数学思想方法、解题技巧的灵活应用,要抓住题意,化整为零,层层深入,各个击破,从而达到解决问题的目的。
【典型例题】经过点A(1,0)和点B(5,0),与y轴【例1】(2019·黑龙江中考真题)如图,抛物线y=ax2+bx−53交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.【例2】(2019·广西中考真题)如图,直线3y x =-交x 轴于点A ,交y 轴于点C ,点B 的坐标为(1,0),抛物线2(0)y ax bx c a =++≠经过,,A B C 三点,抛物线的顶点为点D ,对称轴与x 轴的交点为点E ,点E关于原点的对称点为F ,连接CE ,以点F 为圆心,12CE 的长为半径作圆,点P 为直线3y x =-上的一个动点.(1)求抛物线的解析式; (2)求BDP ∆周长的最小值;(3)若动点P 与点C 不重合,点Q 为⊙F 上的任意一点,当PQ 的最大值等于32CE 时,过,P Q 两点的直线与抛物线交于,M N 两点(点M 在点N 的左侧),求四边形ABMN 的面积.【例3】(2018·青海中考真题)如图,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,⊙MBC 是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.【方法归纳】函数知识要理解好数形结合的思想,知识点的掌握中要理解文字解释和图像之间的关系,至于与圆、三角形、方程的综合题,往往最后一问难度大,要建立模型、框架,完善步骤,循序渐进. 【针对练习】1.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD 的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①√S=√S1+√S2;②√S=√S3+√S4;③“十字形”ABCD的周长为12√10.2.(2019·湖南中考真题)如图,抛物线26y ax ax =+(a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t <0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C . (1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证:CE =DE ;②如图2,连接AC ,BE ,BO ,当3a =∠CAE =∠OBE 时,求11OD OE -的值3.(2019·浙江中考真题)已知在平面直角坐标系xOy 中,直线1l 分别交x 轴和y 轴于点()()3,0,0,3A B -. (1)如图1,已知P 经过点O ,且与直线1l 相切于点B ,求P 的直径长;(2)如图2,已知直线2: 33l y x =-分别交x 轴和y 轴于点C 和点D ,点Q 是直线2l 上的一个动点,以Q 为圆心,.①当点Q 与点C 重合时,求证: 直线1l 与Q 相切;②设Q 与直线1l 相交于,M N 两点, 连结,QM QN . 问:是否存在这样的点Q ,使得QMN ∆是等腰直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.4.(2018·山东中考真题)如图①,在平面直角坐标系中,圆心为P (x ,y )的动圆经过点A (1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.5.(2018·江苏中考真题)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.6.(2017·江苏中考真题)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A 的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.7.(2019·山东中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点.其中AB两点的坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径.点E是⊙M 与y轴的另一个交点,过劣弧DE上的点F作FH⊥AD于点H,且FH=1.5.(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出⊿PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使⊿QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.8.(2019·山东中考真题)如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长.(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.9.(2018·山东中考真题)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.10.(2018·湖南中考真题)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB ﹣∠CDB=∠ABD ﹣∠CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式; ①S =1S 2S +;②S=3S 4S +;③“十字形”ABCD 的周长为1210.11.(2017·广西中考真题)已知抛物线y 1=ax 2+bx -4(a≠0)与x 轴交于点A (-1,0)和点B (4,0). (1)求抛物线y 1的函数解析式;(2)如图①,将抛物线y 1沿x 轴翻折得到抛物线y 2,抛物线y 2与y 轴交于点C ,点D 是线段BC 上的一个动点,过点D 作DE ∥y 轴交抛物线y 1于点E ,求线段DE 的长度的最大值;(2)在(2)的条件下,当线段DE 处于长度最大值位置时,作线段BC 的垂直平分线交DE 于点F ,垂足为H ,点P 是抛物线y 2上一动点,⊙P 与直线BC 相切,且S ⊙P :S △DFH =2π,求满足条件的所有点P 的坐标.12.(2018·山东中考真题)抛物线y =ax 2+bx +4(a ≠0)过点A (1,﹣1),B (5,﹣1),与y 轴交于点C . (1)求抛物线的函数表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 上方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,求点P 的坐标;(3)如图2,⊙O 1过点A 、B 、C 三点,AE 为直径,点M 为 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值.13.(2019·四川中考真题)如图,已知抛物线(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求MF的值.14.(2019·江苏中考真题)如图,已知二次函数的图象与轴交于两点与轴交于点,⊙的半径为为⊙上一动点.(1)点的坐标分别为(),();(2)是否存在点,使得为直角三角形?若存在,求出点的坐标;若不存在,请说明理由;(3)连接,若为的中点,连接,则的最大值= .15.(2017·黑龙江中考真题)在平面直角坐标系中,直线交轴于点,交轴于点,抛物线经过点,与直线交于点.(1)求抛物线的解析式;(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;(3)将绕坐标平面内的某一点按顺时针方向旋转,得到,点的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点的坐标.16.(2017·甘肃中考真题)如图,抛物线与直线交于,两点,直线交轴与点,点是直线上的动点,过点作轴交于点,交抛物线于点.(1)求抛物线的表达式;(2)连接,,当四边形是平行四边形时,求点的坐标;(3)①在轴上存在一点,连接,,当点运动到什么位置时,以为顶点的四边形是矩形?求出此时点的坐标;②在①的前提下,以点为圆心,长为半径作圆,点为上一动点,求的最小值.17.(2017·湖南中考真题)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB 为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足,求二次函数的表达式.18.(2017·江苏中考真题)如图,已知二次函数的图象经过点,,且与轴交于点,连接、、.(1)求此二次函数的关系式;(2)判断的形状;若的外接圆记为,请直接写出圆心的坐标;(3)若将抛物线沿射线方向平移,平移后点、、的对应点分别记为点、、,的外接圆记为,是否存在某个位置,使经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.。
中考热点01二次函数与方程、不等式,求参数范围一、解答题1(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江杭州·统考二模)在平面直角坐标系中,已知二次函数y=-x2+bx+c(b,c是常数).(1)当b=2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,-3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.4(2023·浙江宁波·校考三模)如图,已知二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5.(1)求该二次函数的表达式及顶点坐标;(2)点C m,n在该二次函数图像上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图像直接写出m的取值范围.5(2023·浙江舟山·统考三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A1,0.点P在此抛物线上,其横坐标为m.,点B0,3(1)求此抛物线的解析式.(2)若-1≤x≤d时,-1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.6(2023·浙江杭州·统考二模)在平面直角坐标系中,设二次函数y=x2-2ax+1(a是常数).(1)当a=2时,求函数图象的顶点坐标和对称轴.(2)若函数图象经过点(1,p),(-1,q),求证:pq≤4.(3)已知函数图象经过点A(-3,y1),B(a+1,y2),点C(m,y3),若对于任意的4≤m≤6都满足y1>y3> y2,求a的取值范围.7(2023·浙江杭州·统考二模)已知函数y1=x2-m+2x+2m+3,y2=nx+k-2n(m,n,k为常数且n≠0).(1)若y1的图象经过点A-1,3,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当-1≤x≤2时,总有y1≤y2,求m+n的取值范围.8(2023·浙江杭州·统考二模)已知二次函数y1=ax x-ma≠0.和一次函数y2=ax+b a≠0(1)二次函数y1的图象过1,0点,求二次函数的表达式;,2,2(2)若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点.①求证:b=-am;②若两个函数图象的另一个交点为二次函数的顶点,求m的值.9(2023·浙江杭州·杭州市公益中学校考二模)在平面直角坐标系中,当x=-2和x=4时,二次函数y=ax2+bx-2(a,b是常数,a≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标;(2)若该函数的图象与x轴有且只有一个交点,求a,b的值.(3)记(2)中的抛物线为y1,将抛物线y1向上平移2个单位得到抛物线y2,当-2≤x≤m时,抛物线y2的最大值与最小值之差为8,求m的值.10(2023·浙江丽水·统考二模)二次函数y=x2+bx+c的图象与x轴交于点A x1,0且x1≠,B x2,0x2.(1)当x1=2,且b+c=-6时,①求b,c的值②当t≤x≤t+2时,二次函数y=x2+bx+c的最小值为2t,求t的值;(2)若x1=3x2,求证:3b-c≤3.211(2023·浙江杭州·统考二模)二次函数y=ax2+bx-1(a,b为常数,a≠0)的图像经过点A1,2.(1)求该二次函数图像的对称轴(结果用含a的代数式示)(2)若该函数图像经过点B3,2;①求函数的表达式,并求该函数的最值.②设M x1,y1,N x2,y2是该二次函数图像上两点,其中x1,x2是实数.若x1-x2=1,求证:y1+y2≤11 212(2023·浙江杭州·统考一模)二次函数y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(m,0)两点.(1)当a=1,b=2时,求m的值.(2)当0<a<2,c=2时,①求证:m>1.②点C x1,y1,D x2,y2在该抛物线上,且x1>x2,x1+x2<2,试比较y1与y2的大小.13(2023·浙江绍兴·统考一模)在平面直角坐标系xOy中,已知抛物线y=x2-2tx+1.(1)求该抛物线的对称轴(用含t的式子表示);(2)若点M t-2,m在抛物线y=x2-2tx+1上,试比较m,n的大小;,N t+3,n(3)P x1,y1是抛物线y=x2-2tx+1上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2, ,Q x2,y2求t的取值范围;(4)P t+1,y1是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值. ,Q2t-4,y214(2023·浙江杭州·模拟预测)在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.(1)求抛物线的对称轴;(用含m的式子表示)(2)记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C0,a,过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;(3)若点M2,y3也是抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G 上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,求m的取值范围.15(2022春·九年级课时练习)抛物线y =(k -1)x 2-x +1与x 轴有交点,则k 的取值范围是.16(2020秋·九年级课时练习)抛物线y =x 2+8x -4与直线x =-4的交点坐标是.17(2023·安徽淮北·校考一模)若对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),则一元二次方程ax 2+bx +c =0的根是.18(2021春·九年级课时练习)抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点的个数是.19(2023·湖北武汉·统考模拟预测)已知二次函数y =ax 2+bx +c a ≠0 的部分图象如图所示,图象过点-1,0 ,对称轴为直线x =1,下列结论:①2a +b =0;②当m ≠-1时,am 2-b m +1 <a ;③若点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,则y 1<y 3<y 2;④若关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有3个.其中正确的结论有(填序号).20(2023·浙江·校联考三模)已知点x1,y1,x2,y2为二次函数y=-x2图象上的两点(不为顶点),则以下判断正确的是()A.若x1>x2,则y1>y2B.若x1<x2,则y1<y2C.若:x1x2<x22,则y1>y2 D.若x1x2>x22,则y1<y221(2023·浙江杭州·统考二模)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<-1时,则y1>y2C.若ab<-1,当x<-1时,则y1>y2D.若ab>-1,当x>1时,则y1>y222(2023·浙江杭州·统考二模)点P m,n在二次函数y=ax2-2ax a≠0的图象上,针对n的不同取值,存在点P的个数不同,甲乙两位同学分别得到如下结论:甲:若P的个数为1,则n=-a;乙:若P的个数为2,则n≥-a则下列判断中正确的是()A.甲正确,乙正确B.甲正确,乙错误C.甲错误,乙正确D.甲错误,乙错误23(2023·浙江宁波·校考二模)已知点A x1,y1,B x2,y2在抛物线y=-(x-4)2+m(m是常数)上.若x1<4<x2,x1+x2>8,则下列大小比较正确的是()A.y1>y2>mB.y2>y1>mC.m>y1>y2D.m>y2>y124(2023·统考二模)已知二次函数y=x2+bx+c过点A x1,y1,B x1+t,y2,C x1+2t,y3三点.记m=y2-y1,n=y3-y2,下列命题正确的是()A.若n-m>2,则t<-1B.若n-m<2,则t>-1C.若t>1,则n-m>2D.若t<1,则n-m<225(2023·浙江杭州·统考二模)已知y关于x的二次函数y=2mx2+1-mx-1-m,下列结论中正确的序号是()①当m=-1时,函数图象的顶点坐标为12,12 ;②当m≠0时,函数图象总过定点:③当m>0时,函数图象在x轴上截得的线段的长度大于3 2;④若函数图象上任取不同的两点P1x1,y1、P2x2,y2,则当m<0时,函数在x>14时一定能使y2-y1x2-x1<0成立.A.①②③B.①③④C.②③④D.①②④26(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3a ≠0 上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.2<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥427(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3(a ≠0)上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.1<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥428(2023·浙江宁波·校考一模)已知二次函数y =ax 2+bx +c 的图象经过点A x 1,y 1 ,B 1-m ,n ,C x 2,y 2 ,D m +3,n ,若x 1-2 >x 2-2 ,则下列表达式正确的是()A.y 1>y 2B.y 1<y 2C.a y 1-y 2 >0D.a y 1-y 2 <029(2022·浙江宁波·校考三模)如图,二次函数y =ax 2+bx +c a <0 与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有()①abc <0;②4ac -b 24a>0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为-2<x <-1.A.1个B.3个C.4个D.5个。
二次函数压轴题一.解答题(共20小题)1.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.2.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.3.已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.4.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.5.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.6.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线的对称轴上有一点P,使PA+PC 的值最小,求点P的坐标.(Ⅲ)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y 轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.8.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c (a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P 的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.9.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.10.如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.11.如图,直线y=x+2与抛物线y=ax2+bx+6(a ≠0)相交于A (,)和B(4,m),点P 是线段AB上异于A、B的动点,过点P作PC ⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.12.如图,在平面直角坐标系xOy中,A、B为x 轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.13.如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.(1)点(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.14.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.15.如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.16.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.17.如图,抛物线y=﹣x2+bx+c与x轴交于点A (﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x 轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC 交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A 两点)上平行移动,分别交x轴于点E,交CD 于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.19.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k 的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?20.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.二次函数压轴题参考答案一.解答题(共20小题)1.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.解:(1)将x=﹣1,y=﹣1;x=3,y=﹣9,分别代入y=ax2﹣4x+c得,解得,∴二次函数的表达式为y=x2﹣4x﹣6.(2)对称轴为直线x=2;顶点坐标为(2,﹣10).(3)将(m,m)代入y=x2﹣4x﹣6,得m=m2﹣4m﹣6,解得m1=﹣1,m2=6.∵m>0,∴m1=﹣1不合题意,舍去.∴m=6,∵点P与点Q关于对称轴x=2对称,∴点Q到x轴的距离为6.2.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)根据已知条件可设抛物线的解析式为y=a (x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:直线x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是直线x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B (1,0)代入得,解得,∴y=x ﹣,∵点P 的横坐标为3,∴y=×3﹣=, ∴P (3,).(3)在直线AC 的下方的抛物线上存在点N ,使△NAC 面积最大.设N 点的横坐标为t ,此时点N (t ,t 2﹣t +4)(0<t <5),如图2,过点N 作NG ∥y 轴交AC 于G ;作AD ⊥NG 于D ,由点A (0,4)和点C (5,0)可求出直线AC 的解析式为:y=﹣x +4,把x=t 代入得:y=﹣t +4,则G (t ,﹣t +4), 此时:NG=﹣t +4﹣(t 2﹣t +4)=﹣t 2+4t ,∵AD +CF=CO=5, ∴S △ACN =S △ANG +S △CGN=AD ×NG+NG ×CF=NG•OC=×(﹣t 2+4t )×5=﹣2t 2+10t=﹣2(t ﹣)2+,∴当t=时,△CAN 面积的最大值为,由t=,得:y=t 2﹣t +4=﹣3,∴N (,﹣3).3.已知二次函数y=x 2﹣2mx +m 2﹣1.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.解:(1)∵二次函数的图象经过坐标原点O (0,0),∴代入二次函数y=x 2﹣2mx +m 2﹣1,得出:m 2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x 2﹣2x 或y=x 2+2x ; (2)∵m=2,∴二次函数y=x 2﹣2mx +m 2﹣1得:y=x 2﹣4x +3=(x ﹣2)2﹣1,∴抛物线的顶点为:D (2,﹣1), 当x=0时,y=3,∴C 点坐标为:(0,3), ∴C (0,3)、D (2,﹣1);(3)当P 、C 、D 共线时PC +PD 最短,过点D 作DE ⊥y 轴于点E , ∵PO ∥DE ,∴=,∴=,解得:PO=,∴PC +PD 最短时,P 点的坐标为:P (,0).4.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C (0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).5.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.解:(1)令y=0,解得x1=﹣1或x2=3∴A(﹣1,0)B(3,0)将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3∴C(2,﹣3)∴直线AC的函数解析式是y=﹣x﹣1;(2)设P点的横坐标为x(﹣1≤x≤2)则P、E的坐标分别为:P(x,﹣x﹣1)E(x,x2﹣2x﹣3)∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x ﹣3)=﹣x2+x+2=﹣(x ﹣)2+,∴当时,PE的最大值=;(3)存在4个这样的点F,分别是F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+,3),由于直线GF 的斜率与直线AC的相同,因此可设直线GF 的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣x+4+.因此直线GF与x 轴的交点F的坐标为(4+,0);④如图,同③可求出F的坐标为(4﹣,0).综合四种情况可得出,存在4个符合条件的F点.6.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线的对称轴上有一点P,使PA+PC 的值最小,求点P的坐标.(Ⅲ)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.解:(Ⅰ)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,﹣)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x ﹣;(Ⅱ)∵抛物线的解析式为:y=x2﹣2x ﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x ﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(Ⅲ)存在点N,使以A,C,M,N四点构成的四边形为平行四边形.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x ﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).7.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y 轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.解:(1)将B、C 两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∵C(0,﹣3),∴CO=3,又∵OE=EC,∴OE=EC=∴y=;∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去),∴P点的坐标为(,)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),设直线BC的解析式为:y=kx+d,则,解得:∴直线BC的解析式为y=x﹣3,则Q点的坐标为(x,x﹣3);当0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,∴AO=1,AB=4,S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF +QP•OF==当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.8.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c (a≠0)与x轴相交于A、B两点,其中点A 的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P 的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5);②设直线AC的解析式为y=kx+t (k≠0)将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D 点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x +)2+,∴当x=﹣时,QD 有最大值.9.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.解:(1)将A(1,0),B(﹣3,0)代y=﹣x2+bx+c 中得,∴.∴抛物线解析式为:y=﹣x2﹣2x+3;(2)存在.理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称,∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小,∵y=﹣x2﹣2x+3,∴C的坐标为:(0,3),直线BC解析式为:y=x+3,Q点坐标即为,解得,∴Q(﹣1,2);(3)存在.理由如下:设P点(x,﹣x2﹣2x+3)(﹣3<x<0),∵S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO ﹣,若S四边形BPCO 有最大值,则S△BPC就最大,∴S四边形BPCO=S△BPE+S直角梯形PEOC,=BE•PE +OE(PE+OC)=(x+3)(﹣x2﹣2x+3)+(﹣x)(﹣x2﹣2x+3+3)=,当x=﹣时,S四边形BPCO最大值=,∴S△BPC最大=,当x=﹣时,﹣x2﹣2x+3=,∴点P 坐标为(﹣,).10.如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.解:(1)∵抛物线与y轴交于点C(0,3),∴设抛物线解析式为y=ax2+bx+3(a≠0),根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为直线x=1.①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据两点间距离公式,得x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P 坐标为.②若以CD为一腰,∵点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3).∴符合条件的点P 坐标为或(2,3).(3)由B(3,0),C(0,3),D(1,4),根据勾股定理,得CB=,CD=,BD=,∴CB2+CD2=BD2=20,∴∠BCD=90°,设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,在Rt△DCF中,∵CF=DF=1,∴∠CDF=45°,由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3),∴DM∥BC,∴四边形BCDM为直角梯形,由∠BCD=90°及题意可知,以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在.综上所述,符合条件的点M的坐标为(2,3).11.如图,直线y=x+2与抛物线y=ax2+bx+6(a ≠0)相交于A (,)和B(4,m),点P 是线段AB上异于A、B的动点,过点P作PC ⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n ﹣)2+,∵PC>0,∴当n=时,线段PC 最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如答图3﹣1,过点A (,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A (,)关于对称轴x=2的对称点C,则点C在抛物线上,且C (,).当x=时,y=x+2=.∴P2(,).∵点P1(3,5)、P2(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).12.如图,在平面直角坐标系xOy中,A、B为x 轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x ,x2﹣x ﹣),则Q(x,x ﹣),PQ=x ﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ =PQ•OB=×(﹣x2+x)×3=﹣(x ﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).综上,m=﹣1或﹣时,△BDM为直角三角形.13.如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.(1)点M(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.解:(1)点M.(2)经过t秒时,NB=t,OM=2t,则CN=3﹣t,AM=4﹣2t,∵A(4,0),C(0,4),∴AO=CO=4,∵∠AOC=90°,∴∠BCA=∠MAQ=45°,∴QN=CN=3﹣t∴PQ=1+t,∴S△AMQ=AM•PQ=(4﹣2t)(1+t)=﹣t2+t+2.∴S=﹣t2+t+2=﹣t2+t ﹣++2=﹣(t ﹣)2+,∵0≤t≤2∴当时,S的值最大.(3)存在.设经过t秒时,NB=t,OM=2t则CN=3﹣t,AM=4﹣2t∴∠BCA=∠MAQ=45°①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高∴PQ是底边MA的中线∴PQ=AP=MA∴1+t=(4﹣2t)∴t=∴点M的坐标为(1,0)②若∠QMA=90°,此时QM与QP重合∴QM=QP=MA∴1+t=4﹣2t∴t=1∴点M的坐标为(2,0).14.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD 有最大值.15.如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.解:(1)把A(2,0)、B(0,﹣6)代入y=﹣+bx+c,得:解得,∴这个二次函数的解析式为y=﹣+4x﹣6.(2)∵该抛物线对称轴为直线x=﹣=4,∴点C的坐标为(4,0),∴AC=OC﹣OA=4﹣2=2,∴S△ABC =×AC×OB=×2×6=6.16.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,PE:CE=2:1,CO:OD=3:1,此时△CEF与△COD不相似.当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在第二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=﹣(t﹣1)(t+3),解得:t1=﹣2,t2=﹣3(因为P与C重合,所以舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t,t+1),∴NM=t+1.∴PN=PM﹣NM=﹣t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD=S△PCN+S△PDN,∴S△PCD=PN•CM +PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t +)2+,∴当t=﹣时,S△PCD的最大值为.17.如图,抛物线y=﹣x2+bx+c与x轴交于点A (﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x 轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.方法一:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM ∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)方法二:(1)略.(2)略.(3)若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC 轴对称.∴点D关于直线PC的对称点D′也在y轴上,∴DD′⊥CP,∵y=﹣x+3,∴D(4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)18.如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC 交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A 两点)上平行移动,分别交x轴于点E,交CD 于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.解:(1)∵抛物线y=ax2﹣2ax+c(a≠0)经过点A(3,0),点C(0,4),∴,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得,∴直线AC的解析式为y=﹣x+4.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m ,﹣m+4),∵点P的横坐标为m,点P在抛物线y=﹣x2+x+4上,∴点P的坐标为(m ,﹣m2+m+4),∴PM=PE﹣ME=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,即PM=﹣m2+4m(0<m<3);(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F 为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,若以P、C、F为顶点的三角形和△AEM相似,P点在F上,PF=﹣m2+m+4﹣4=﹣m2+m.情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即(﹣m2+m):(3﹣m)=m:(﹣m+4),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME,∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°,∴△PCM为直角三角形;②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3﹣m)=(﹣m2+m):(﹣m+4),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME,∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM,∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相。
2023年中考数学高频压轴题突破——二次函数与角度问题1.如图1,抛物线y=ax2﹣x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+3经过点B,C.(1)求抛物线的解析式;(2)若点P为直线BC下方的抛物线上一动点(不与点B,C重合),则△PBC的面积能够等于△BOC的面积吗?若能,求出相应的点P的坐标;若不能,请说明理由;(3)如图2,现把△BOC平移至如图所示的位置,此时三角形水平方向一边的两个端点点O′与点B′都在抛物线上,称点O′和点B′为△BOC在抛物线上的一“卡点对”;如果把△BOC旋转一定角度,使得其余边位于水平方向然后平移,能够得到这个三角形在抛物线上新的“卡点对”.请直接写出△BOC在已知抛物线上所有“卡点对”的坐标.2.如图,已知抛物线y=ax2+bx经过点A(4,0),点B是其顶点,∠AOB=45°,OC⊥OB交此抛物线于点C,动直线y=kx与抛物线交于点D,分别过点B、C作BE、CF垂直动直线y=kx于点E、F.(1)求此抛物线的解析式;(2)当直线y=kx把∠AOC分成的两个角的度数之比恰好为1:2时,求k的值;(3)BE+CF是否存在最大值?若存在,请直接写出此最大值和此时k的值;若不存在,请说明理由.3.如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求此抛物线的函数表达式;(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;(3)△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO1C1.当旋转后的△BO1C1有一边在直线BD上时,求△BO1C1不在BD上的顶点的坐标.4.如图1,在平面直角坐标系中,已知抛物线y=﹣x2﹣x+交x轴A,B两点,交y轴于点C,抛物线上一点D的横坐标为﹣5.(1)求直线BD的解析式;(2)点E是线段BD上的动点,过点E作x轴的垂线分别交抛物线于点F,交x轴于点G.当折线段EF+BE最大时,在直线EF上任取点P,连接BP,以BP为斜边向上作等腰直角△BPQ,连接CQ、QG,求CQ+QG的最小值.(3)如图2,连接BC,把△OBC沿x轴翻折,翻折后的△OBC记为△OBC′,现将△OBC′沿着x轴平移,平移后的△OBC′记为△O′B′C″,连接DO′、C′B,记C″B与x轴形成较小的夹角度数为α,当∠O′DB=α时,直接写出此时C″的坐标.5.如图1,抛物线与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数表达式;(2)如图1,抛物线上点D的横坐标为﹣4,且DD′⊥x轴于点D′,∠DBD′=300.点E是线段BD上的动点,过点E作x轴的垂线交抛物线于点F,当EF+EB取得最大值时,在抛物线对称轴上找一点P,使EP+FP的值最小,求:EP+FP的最小值及点P 的坐标;(3)如图2,在(2)的条件下,连接BC,把△OBC沿x轴翻折,翻折后的△OBC记为△OBG,现将△OBG沿着x轴向左平移,△OBG平移后记为△MNK,连接DM、KB,记KB与x轴形成的较小夹角度数为θ,当∠MDB=θ时,求出此时K的坐标.6.如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A 在点B左侧),与y轴交于C点,点E在第一象限且四边形ACBE为矩形.(1)求∠BCE的度数;(2)如图2,F为线段BC上一动点,P为第四象限内抛物线上一点,连接CP、FP、BP、EF,M,N分别是线段CP,FP的中点,连接MN,当△BCP面积最大,且MN+EF最小时,求PF的长度;(3)如图3,将△AOC绕点O顺时针旋转一个角度α(0°<α<180°),点A,C的对应点分别为A',C',直线A'C'与x轴交于点G,G在x轴正半轴上且.线段KH 在直线A'C'上平移(K在H左边),且KH=5,△KHC是否能成为等腰三角形?若能,请求出所有符合条件的点K的坐标;若不能,请说明理由.7.如图,抛物线y=﹣x2+(m+2)x+与x轴交于A(﹣2﹣n,0),B(4+n,0)两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求此抛物线的解析式;(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;(3)将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.当旋转后的△BO′C′有一边与BD重合时,求△BO′C′不在BD上的顶点的坐标.8.如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣2分别与x轴交于A,B两点,与y轴交于C点,直线EF垂直平分线段BC,分别交BC于点E,y轴于点F.(1)判定△ABC的形状;(2)在线段BC下方的抛物线上有一点P,当△BCP面积最大时,点P沿适当的路径运动到直线AC上的点M处,再沿垂直于AC的方向运动到直线EF上的点N处,最后沿适当的路径运动到点B处停止运动,当点P的运动路径最短时,求点N的坐标及点P经过的最短路径长.(3)如图2,过点E作EH⊥x轴于点H,将△EHD绕点E逆时针旋转一个角度α(0°≤α≤90°),∠DEH的两边分别交BO,CO于点T,点K,当△KET为等腰三角形时,求此时KT的值.9.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).10.如图1,在平面直角坐标系中,已知抛物线y=﹣x2﹣x+交x轴于A,B两点,交y轴于点C,抛物线上一点D的横坐标为﹣5.(1)求直线BD的解析式;(2)点E是线段BD上的动点,过点E作x轴的垂线交抛物线于点F,当折线EF+BE 最大时,在对称轴上找一点P,在y轴上找一点Q,连接QE、OP、PQ,求OP+PQ+QE 的最小值;(3)如图2,连接BC,把△OBC沿x轴翻折,翻折后的△OBC记为△OBC′,现将△OBC′沿着x轴平移,平移后△OBC′记为△O′B′C″,连接DO′、C″B,记C″B 与x轴形成较小的夹角度数为α,当∠O′DB=α时,求出此时C″的坐标.11.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y =x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△P AQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.12.已知:直线y=﹣x+3与x轴y轴分别交于点A、点B,抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线的解析式;(2)点C(0,2),点P(m,0)是线段OA上的一点(不与O、A重合),过点P作PM垂直x轴,交抛物线于点M,连接BM、AC、AM,设四边形ACBM的面积为S,求S与m的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,点D是线段OP的中点,连接BD,当S取最大值时,试求直线BD与AC所成的锐角度数.13.已知抛物线y=ax2﹣2ax+a﹣4与x轴分别交于A,B,与y轴交于C点,顶点为P.(1)直接写出此抛物线的对称轴.(2)连接BP,Q点是抛物线上一动点(不与P点重合),过Q点的直线y=﹣3x+b与直线BP相交所成的锐角为45度,求此抛物线的解析式;(3)平移(2)中的抛物线,使抛物线的顶点在直线CP上滑动,滑动之后的抛物线顶点记为点P',且与PC交于另一点R.若点M在直线AC上方,且为(2)中的抛物线上点,当以M,P',R三点为顶点的三角形是含30°角的直角三角形时,求出所有符合条件的M的坐标.14.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,M为抛物线的顶点,试在直线BC 上找一点N,使△MND的周长最小,求此时的N点坐标;(3)在(2)的条件下,在抛物线是上找一点P,使△PBD中有一个角为45度,求点P的坐标.14.如图,已知△ABO中,点B在x轴上,∠ABO=90°,点A(1,),把△ABO绕点A按逆时针方向旋转到△ACD的位置,使点O的对应点D在x轴上,抛物线以点A 为顶点且经过点C.(1)求旋转角∠OAD的度数,并求点C的坐标;(2)求出抛物线的解析式;(3)在抛物线的对称轴上是否存在一点P,使PC+PD的值最小?若存在,求出点P的坐标;若不存在,说明理由.16.张亮是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=ax2(a>0)的性质时,将一把直角三角形的直角顶点平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:(1)若测得OA=OB=2,(如图1),求a的值;(2)对于同一条抛物线,张亮将三角板绕点O旋转到如图2位置时,过B作BD⊥x轴于点D,测得OD=1,写出此时点B的坐标,并求点A的横坐标;(3)对该抛物线,张亮将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.17.如图,直角∠AOB顶点置于平面直角系的原点O,两直角边与抛物线C1;y=﹣x2交于A,B两点.(1)∠AOB绕点旋转到如图位置时,过B作BF⊥x轴于点F,测得OF=1,写出此时B 点的坐标,并求出点A的横坐标;(2)∠AOB绕点O旋转任意角度时,交点A,B的连线段总经过一个固定的点,试说明理由,并求出该点的坐标;(3)若将抛物线C1右移1个单位后在向上移2个单位得到抛物线C2,其顶点为G,与x轴交于M,N两点(M左N右),现已知点P(1,t)(t>0),是否存在实数t,使得以点P为圆心的⊙P恰好与线段MN和线段NG相切?若存在,求出t的值;若不存在,说明理由.18.把一块三角板置于平面直角坐标系中,三角板的直角顶点为P,两直角边与x轴交于A、B,如图1,测得P A=PB,AB=2.以P为顶点的抛物线y=﹣(x﹣2)2+k恰好经过A、B两点,抛物线的对称轴x=a与x轴交于点E.(1)填空:a=,k=,点E的坐标为;(2)设抛物线与y轴交于点C,过P作直线PM⊥y轴,垂足为M.如图2,把三角板绕着点P旋转一定角度,使其中一条直角边恰好过点C,另一条直角边与抛物线的交点为D,试问:点C、D、E三点是否在同一直线上?请说明理由.(3)在(2)的条件下,若Q(m,n)为抛物线上的一动点,连接CF、QC,过Q作QF⊥PM,垂足为F.试探索:是否存在点Q,使得△QCF是以QC为腰的等腰三角形?若存在,请求出m的值;若不存在,请说明理由.19.如图,将矩形OABC置于平面直角坐标系xOy中,A(,0),C(0,2).(1)抛物线y=﹣x2+bx+c经过点B、C,求该抛物线的解析式;(2)将矩形OABC绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA′B′C′,设A′C′的中点为点E,连接CE,当θ=°时,线段CE 的长度最大,最大值为.20.如图,二次函数y=﹣x2+bx+c的图象与x轴交于点B(﹣3,0),与y轴交于点C(0,﹣3).(1)求直线BC及二次函数的解析式;(2)设抛物线的顶点为D,与x轴的另一个交点为A.点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)连接CD,求∠OCA与∠OCD两角和的度数.参考答案:1.【分析】(1)分别把x=0,y=0代入一次函数表达式得:点C、B的坐标分别为(0,3)、(4,0),同理将点B、C的坐标代入二次函数表达式即可求解;(2)直线y=﹣x和直线BC平行,直线y=﹣x和抛物线的交点就是满足条件的点P,即可求解;(3)分O′B′在水平位置时、O′C′在水平位置时、B′C′在水平位置时,三种情况分别求解即可.【解答】解:(1)分别把x=0,y=0代入一次函数表达式得:点C、B的坐标分别为(0,3)、(4,0),将点B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2﹣x+3;(2)直线y=﹣x和直线BC平行,直线y=﹣x和抛物线的交点就是满足条件的点P,则,解得:,即当(2,﹣)时,两个三角形面积相同;(3)抛物线的对称轴为:x=,①当O′B′在水平位置时,如图2所示,O′B′=4,则点B′和O′的横坐标分别为、,将横坐标代入二次函数表达式得:y=,故此时的“卡点对”坐标为(,)和(,);②当O′C′在水平位置时,O′C′=3,则点B′和O′的横坐标分别为4、1,将横坐标代入二次函数表达式得:y=0,故此时的“卡点对”坐标为(1,0)和(4,0);③当B′C′在水平位置时,同理可得:此时的“卡点对”坐标为(0,3)和(5,3);故抛物线上所有“卡点对”的坐标是(,)和(,)、(1,0)和(4,0)、(0,3)和(5,3).【点评】本题为二次函数综合运用题,涉及到一次函数、图形面积计算等知识点,其中(3),要注意分类求解,避免遗漏.2.【分析】(1)过点B作BH⊥x轴于点H,求出点B的坐标,用待定系数法可求出解析式;(2)先求出点C的坐标,分两种情况:∴①当∠AOD=30°时,过点D作DP⊥x轴于点P,可求出k的值;②当∠COD=30°时,如图,设CQ与OF的交点为K,过点D 作DP⊥x轴于点P,过点K作KN⊥OC于N,证明△ODP∽△OKQ,求出CN、CK、KQ 的长,则k的值可求出;(3)连接BC,由垂线段最短可知BE+CF≤BC,当且仅当直线y=kx与BC垂直,即点E、F重合时,BE+CF=BC,此时BE+CF取得最大值,可求出最大值和k的值.【解答】解:(1)∵A(4,0),∴OA=4,过点B作BH⊥x轴于点H,如图1,∴∠OHB=90°,OH=AH=2,∵∠AOB=45°,∴∠OBH=∠AOB=45°,∴OH=BH=2,∴点B的坐标为(2,﹣2),∴,解得,,∴此抛物线的解析式为y=;(2)如图2,过点C作CQ⊥x轴于点Q,∵OC⊥OB,∠AOB=45°,∴∠COA=∠AOB=45°,∴CQ=OQ,∴,解得,x1=0,x2=6,∴点C的坐标为(6,6),∵直线y=kx把∠AOC分成的两个角的度数之比恰好为1:2,∴①当∠AOD=30°时,过点D作DP⊥x轴于点P,k=,②当∠COD=30°时,如图3,设CQ与OF的交点为K,过点D作DP⊥x轴于点P,过点K作KN⊥OC于N,∴DP∥CQ,∠CNK=∠ONK=90°,∴,∴K=,又∵∠OCQ=45°,∴CN=KN,CK=,∴OC=ON+NC=()CN,∵∠BOC=90°,点B、C的坐标分别为(2,﹣2),(6,6)∠COF=∠AOB=45°,∴OB=,OC=,∴,∴CN=3,∴,∴KQ=CQ﹣CK=6﹣()=12﹣6,∴K=,(3)如图4,连接BC,由垂线段最短可知BE+CF≤BC,当且仅当直线y=kx与BC垂直,即点E、F重合时,BE+CF=BC,此时BE+CF取得最大值,∴BE+CF=,D点的坐标为(3,﹣1.5).k=﹣.【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质,等腰直角三角形的性质,锐角三角函数及相似三角形的判定与性质等知识点.3.【分析】(1)将A、B两点的坐标代入抛物线y=﹣x2+bx+c,即可求b、c的值;(2)过点P作PH⊥x轴于H,PG⊥y轴于G,连接PB,由条件可证得PC=PE=PB,证明△PCG≌△PBH,得出PG=PH,则P点坐标易求;(3)有两种可能:当BC1在直线BD上时,过点O1作O1M⊥OB,证明△MBO1∽△CBD,得出比例线段可求出BM、O1M的长,则点O1的坐标可求出;当BO1与BD重合时,过点B作x轴的垂线BN,过点C1作C1N⊥BN于点N,易证△NBC1∽△CBD,可求出BN、NC1的长,则C1的坐标可求出.【解答】解:(1)把A(﹣1,0),B(3,0)两点代入y=﹣x2+bx+c,得:,解得b=2,c=3,∴抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,(2)过点P作PH⊥x轴于H,PG⊥y轴于G,连接PB,设P(m,﹣m2+2m+3),易知C(0,3),∵OC=OB,∴∠OCB=∠OBC=45°,∵PC=PB,∴∠PBC=∠PCB,∴∠PCG=∠PBC,又∵PC=PB,∴Rt△PCG≌Rt△PBH(AAS),∴PG=PH,∴m=﹣m2+2m+3,解得:m=.∴P为()或();(3)如图2,当BC1在直线BD上时,过点O1作O1M⊥OB,由y=﹣x2+2x+3可得D(1,4).∴DC=,BC=3,DB=2,∴DC2+BC2=BD2,∴△BCD为直角三角形,且∠BCD=90°,∵∠DBC+∠CBO1=∠CBO1+∠ABO1=45°,∴∠ABO1=∠DBC,∴△MBO1∽△CBD,∴,即,∴BM=,,∴点O1的坐标为(3﹣),如图3,当BO1与BD重合时,过点B作x轴的垂线BN,过点C1作C1N⊥BN于点N,易证△NBC1∽△CBD,∴,∴,∴BN=,NC1=,则C1的坐标为(3+).【点评】本题考查了待定系数法求二次函数解析式、全等三角形的判定与性质、相似三角形的判定与性质、二次函数图象上点的坐标特征、勾股定理以及解一元二次方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用二次函数图象上点的坐标特征求出点P的坐标;(3)根据相似三角形的性质求出线段的长.4.【分析】(1)先求出点A、B、C的坐标,再由D点横坐标求出D点坐标,即可求解;(2)先通过折线段EF+BE最大,求出点E的坐标,再通过证明△PMQ≌△BNQ(AAS),确定四边形MQNG为正方形,得出MQ=MG,当C、M、Q三点共线,且QM⊥EF 时,CQ+QG取得最小值,即可求解;(3)利用△O′MD∽△C″O′B,求出线段OO′的长度,即可求解.【解答】解:(1)令y=0,则x=﹣4或1,令x=0,则y=,故:点A、B、C的坐标分别为(﹣4,0)、(1,0)、(0,),当x=﹣5时,y=﹣2,即点D(﹣5,﹣2),设直线BD的表达式为:y=kx+b,则,解得:,则直线BD的表达式为:y=x﹣;(2)如图,设BD交y轴于点K,则K(0,﹣),设:点E(m,m﹣),点F(m,﹣m2﹣m+),tan∠ABD=,∴∠ABD=30°,EF+EB=﹣m2﹣m+﹣(m﹣)+2(﹣m)=﹣(m+3)2+,故:当m=﹣3时,折线段EF+BE最大,此时,点E(﹣3,﹣);如图,过点Q分别作QN⊥x轴交于点N,作QM⊥y轴交于点M,∵∠MQP+∠PQN=90°,∠PQN+∠NQB=90°,∴∠NQB=∠PQM,又∠PMQ=∠QNB=90°,QP=QB,∴△PMQ≌△BNQ(AAS),∴QM=QN,∴GMQN为正方形,∴QM=QG,∴CQ+QG=QM+QC,当C、M、Q三点共线,且QM⊥EF时,CQ+QG取得最小值,最小值为3;(3)如图,作O′M⊥BD于点M,设:O′B=a,则O'M=a,MB=a,DM=BD﹣BM=4﹣a,∠O′DM=∠C″BO′,∠O′MD=∠BO′C″=90°,∴△O′MD∽△C″O′B,∴,∴,解得:a=4或﹣8(负值相当于点O′在点B的右侧),故:点C″的坐标为(﹣3,﹣)或(9,﹣).【点评】本题考查的是二次函数综合应用,涉及到三角形全等、相似、平移、正方形性质等诸多知识点,其中(2),确定四边形MQNG为正方形是本题解题的关键,该题难度很大.5.【分析】(1)由题意,设抛物线的解析式为y=a(x+3)(x﹣1),将点C(0,﹣)代入y=a(x+3)(x﹣1)即可得到结论;(2)根据已知条件得到D(﹣4,),求得直线BD的解析式为:y=﹣x+;则设E(),F(),得到EF+EB=﹣(m+)2+,当m=﹣时,EF+EB取得最大值,求得E(),F(),于是得到结论;(3)过M作MH⊥BD于点H,记BM=t,根据勾股定理得到BD==,根据相似三角形的性质即可得到结论.【解答】解:(1)由题意,设抛物线的解析式为y=a(x+3)(x﹣1),将点C(0,﹣)代入y=a(x+3)(x﹣1)中,得a=.∴y=(x+3)(x﹣1),即y=x2+x﹣;(2)∵点D的横坐标为﹣4,∴y=,∴D(﹣4,),∴直线BD的解析式为:y=﹣x+;则设E(),F(),∵∠D B D′=30°,∴EF+EB=﹣m+﹣(m2+m﹣)+2(﹣m+)=﹣m2﹣m+2=﹣(m+)2+,∴当m=﹣时,EF+EB取得最大值,此时E(),F(),抛物线y=x2+x﹣的对称轴是直线x=﹣1,作点E关于对称轴x=﹣1的对称点E′,由对称性可知E′()连接E′F交对称轴x=﹣1于点P,则EP+FP=E′P+FP,当E′,F,P三点共线时,E′P+FP的值最小,即E′P+FP===,由作图可知点P是线段E′F的中点,所以点P();(3)过M作MH⊥BD于点H,记BM=t,因∠D B D′=300,则MH=,BH=BM=t,∵BD==,∴DH=BD﹣BH=﹣,∵∠MDH=∠KBM=θ,∠MHD=∠KMB=90°,∴△MDH∽△KBM,∴=,即=,解得:t=或,∴点K(,).【点评】本题考查了待定系数法确定函数关系式,勾股定理,相似三角形的判定和性质,最值问题,正确的作出辅助线是解题的关键.6.【分析】(1)在Rt△OBC中,tan∠OBC==,推出∠OBC=30°,由四边形ACBE 是矩形,推出QB=QC,可得∠BCE=∠QBC=30°;(2)如图2中,作CD⊥y轴,FH⊥CD于H,EH′⊥CD于H′交BC于F′.设P(m,m2﹣m﹣3),根据S△PBC=S△POC+S△POB﹣S△OBC,构建二次函数,了也重合时的性质,确定点P坐标,由CM=MP,FN=NP,推出MN=CF,在Rt△FCH中,易知∠FCH=30°,推出FH=CF,推出FH=MN,推出MN+EF=EF+FH,推出当F 与F′重合,H与H′重合时,MN+EF的值最小,求出点F的坐标即可解决问题;(3)如图3中,作OM⊥KH于M,直线KH交y轴于P,作CN⊥KH于N.首先确定直线KH的解析式,求出点N的坐标,分三种情形分别求解即可解决问题.【解答】解:(1)如图1中,设AB交CE于Q.令y=0,得到x2﹣﹣3=0,解得x=﹣或3,∴A(﹣,0),B(3,0),在Rt△OBC中,tan∠OBC==,∴∠OBC=30°,∵四边形ACBE是矩形,∴QB=QC,∴∠BCE=∠QBC=30°.(2)如图2中,作CD⊥y轴,FH⊥CD于H,EH′⊥CD于H′交BC于F′.设P(m,m2﹣m﹣3),S△PBC=S△POC+S△POB﹣S△OBC=×3×m+×3×(﹣m2+m+3)﹣×3×3=﹣m2+m=﹣(m﹣)2+,∵﹣<0,∴m=时,△PBC的面积最大,此时P(,﹣),∵CM=MP,FN=NP,∴MN=CF,在Rt△FCH中,易知∠FCH=30°,∴FH=CF,∴FH=MN,∴MN+EF=EF+FH,∴当F与F′重合,H与H′重合时,MN+EF的值最小.易知E(2,3),F′(2,﹣1),∴PF==.(3)如图3中,作OM⊥KH于M,直线KH交y轴于P,作CN⊥KH于N.在Rt△OMG中,易知,OM=,OG=,∴MG==2,∵tan∠POG==,∴=,∴OP=,∴直线PG的解析式为y=﹣x+,∵CN⊥PG,∴直线CN的解析式为y=x﹣3,由,解得,∴N(,),①当CK=CH时,NK=NH=,点N向上平移个单位,向左平移2个单位得到K,∴K(,).②当CK=KH时,设K(m,﹣m+),∴m2+(﹣m++3)2=52,解得m=,∴K(,)或(,),③当CH=KH=5时,同法可得H(,)或(,),点H向上平移3个单位,向左平移4个单位得到K,∴K(,)或(,),综上所述,满足条件的点K的坐标为K(,)或(,)或(,)或(,)或(,).【点评】本题考查二次函数综合题.一次函数的应用、垂线段最短、等腰三角形的判定和性质,平移变换的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短,解决最短问题,学会利用参数构建方程解决问题,属于中考压轴题.7.【分析】(1)利用根与系数的关系,列出方程求出m即可解决问题;(2)如图1中,设P(m,﹣m2+2m+3).易知A(﹣1,0),B(3,0),C(0,3).根据PC=PB,利用两点间距离公式,列出方程即可解决问题;(3)应分两种情况考虑:1)BC′与BP重合,此时O′为所求点.过O′作x轴的垂线,设垂足为D,在①中已证得∠CBO=∠C′BO′=45°,这两个等角同时减去∠CBO′后可得到∠PBC=∠O′BD,即可证得△PBC∽△O′BD,根据PC、BC的比例关系,可求得O′D、BD的比例关系,进而可由勾股定理和O′B(即OB)的长求出O′D、BD的长,即可得到点O′的坐标;2)当BO′与BP重合时,C′为所求的点.可过B作直线BE⊥x轴,过C′作C′E⊥BE于E,按照1)的思路,可证△EBC′∽△CBP,同样能得到C′E、BE的比例关系,进而由勾股定理出这两条线段的长,即可得到点C′的坐标.【解答】解:(1)由题意﹣2﹣n+4+n=m+2,解得m=0,∴y=﹣x2+2x+3(2)如图1中,设P(m,﹣m2+2m+3).易知A(﹣1,0),B(3,0),C(0,3).∵PC=PE,∠CBE=90°,∴PB=PC=PE,∴m2+(﹣m2+2m+3﹣3)2=(m﹣3)2+(﹣m2+2m+3)2,整理得:m2﹣m﹣3=0,∴m=,∴P(,)或P(,).(3)如图2中,当BC′与BP重合时,过点O′作O′D⊥OB于D.因为∠PBC+∠CBO′=∠CBO′+∠ABO′=45°,所以∠ABO′=∠PBC.则△DBO′∽△CBP,所以=,所以=,所以BD=3O′D.设O′D=x,则BD=3x,根据勾股定理,得x2+(3x)2=32,解得x=,所以BD=,所以点O′的坐标为(3﹣,).如图3中,当BO′与BP重合时,过点B作x轴的垂线BE,过点C′作C′E⊥BE于E,因为∠PBE+∠EBC′=∠PBE+∠CBP=45°,所以∠EBC′=∠PBC.所以△EBC′∽△CBP,所以=,所以=,所以BE=3C′E.设C′E为y,则BE=3y,根据勾股定理,得y2+(3y)2=(3 )2,解得y=,所以BE=,所以C′的坐标为(3+,).【点评】此题考查了二次函数解析式的确定、直角三角形的判定、图象的旋转变换、相似三角形的判定和性质、勾股定理的应用等知识.在(3)中,能够通过辅助线正确的构建与所求相关的出相似三角形是解决问题的关键.8.【分析】(1)结论:△ABC是直角三角形.求出A、B、C三点坐标,求出AC、BC、AB 的长,利用勾股定理的逆定理证明即可.(2)如图1中,设P(m,m2﹣m﹣2),由S△BCP=S△OCP+S△OBP﹣S△OBC,构建二次函数,理由二次函数的性质,求出点P的坐标,作P关于直线AC的对称点P′,连接P′E交直线AC于M,作MN⊥EF于N,则线路P→M→N→B的路径最短,理由对称求出点P′坐标,求出想EP′与AC的交点M,再利用平移的性质可得N的坐标,再求出最短路径=EP′+EB即可解决问题.(3)①如图2中,当K与O重合,T与D重合时,△EKT的等腰三角形,求出KT即可解决问题.②如图3中,当TE=KE时,作KN⊥CE于N,EQ⊥OC于Q,则四边形OQEH是矩形,由△KEN≌△ETH,推出KN=EH=1,再想办法求出OK,OT即可解决问题.【解答】解:(1)结论:△ABC是直角三角形.理由如下:对于抛物线抛物线y=x2﹣x﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣或2,∴A(﹣,0),B(2,0),令x=0得到y=﹣2,∴C(0,﹣2),∴OA=,OC=2,OB=2,AB=∴AC==,BC=4,∴AC2+BC2=,AB2=,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)如图1中,设P(m,m2﹣m﹣2),S△BCP=S△OCP+S△OBP﹣S△OBC=•2•m+•2•(﹣m2+m+2)﹣•2•2=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时P(,﹣),作P关于直线AC的对称点P′,连接P′E交直线AC于M,作MN⊥EF于N,则线路P→M→N→B的路径最短,理由:易证四边形MNBE是平行四边形,可得MN=EC=EB,EM=BN,∴PM+MN+NB=P′M+EM+EB,根据两点之间线段最短可知,此时线路P→M→N→B 的路径最短.∵直线AC的解析式为y=﹣x﹣2,P、P′关于直线AC对称,∴P′(﹣,﹣),∴直线EP′的解析式为y=x﹣,由,解得,∴M(,﹣),∵CM=EN,CM∥EN,由平移的性质可知N(,﹣).(把点E向左平移个单位,向下平移个单位得到N),最短路径=EP′+EB=+2=.(3)①如图2中,在Rt△BOC中,tan∠CBO==,∴∠CBO=30°,∵EF⊥BC,∴∠FEB=90°,∠EDB=60°,∵EH⊥OB,∴∠DEH=30°,当K与O重合,T与D重合时,△EKT的等腰三角形,易知TE=TK=•EB=.②如图3中,当TE=KE时,作KN⊥CE于N,EQ⊥OC于Q,则四边形OQEH是矩形,易知:HE=1,∠CKN=30°,∵∠QEH=90°,∠KET=30°,∴∠TEH=60°﹣∠QEK,∴∠EKN=90°﹣∠QEC﹣∠QEK=60°﹣∠QEK,∴∠EKN=∠TEH,∵ET=EK,∠KNE=∠EHT=90°,∴△KEN≌△ETH,∴KN=EH=1,在Rt△CNK中,易知CN=,CK=,∴EN=2﹣,∴TH=EN=2﹣,∴OT=﹣2,OK=2﹣,∴KT2=OK2+OT2=﹣8,∴KT=.综上所述,当△ETK是等腰三角形时,KT的值为、.【点评】本题考查二次函数综合题、涉及矩形的性质、直角三角形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识角问题,学会用分类讨论的思想思考问题,综合程度较高,属于中考压轴题.9.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②可将求d1+d2最大值转化为求AC的最小值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=×m×3+×1×(﹣m2+2m+3)﹣×1×3=﹣(m﹣)2+∴当m=时,S取得最大值.(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD =d1,ME=d2,∵S△ABM′=×AC×(d1+d2)当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.根据B(0,3)和M′(,)可得BM′=,∵S△ABM=×AC×BM′=,∴AC=,当AC⊥BM′时,cos∠BAC===,∴∠BAC=45°.【点评】本题考查二次函数的综合问题,涉及待定系数求二次函数解析式,求三角形面积,圆的相关性质等知识,内容较为综合,学生需要认真分析题目,化动为静去解决问题.10.【分析】(1)先求出B、D两点坐标,再利用待定系数法即可解决问题.(2)如图1中,设BD交y轴于K,则K(0,﹣),设E(m,m﹣),则F(m,﹣m2﹣m+),构建二次函数确定m的值,求出点E坐标,如图2中,作点E关于y轴的对称点N,EM⊥AB于M,连接MN,交对称轴于P,交y轴于Q,当M、N、P、Q共线时,OP+PQ+QE最小,最小值为MN,(3)如图3中,作O′M⊥BD于M,设O′B=a,则O′M=a,BM=a,DM =BD﹣BM=4﹣a,由△O′MD∽△C″O′B,得=,列出方程即可解决问题.【解答】解:(1)令y=0,则=﹣x2﹣x+=0,解得x=﹣4或1,∴A(﹣4,0),B(1,0),令x=0,则y=,∴C(0,),当x=﹣5时,y=﹣+5+=﹣2,∴点D坐标(﹣5,﹣2),设直线BD解析式为y=kx+b则有,解得,∴直线BD的解析式为y=x﹣.(2)如图1中,设BD交y轴于K,则K(0,﹣),设E(m,m﹣),则F(m,﹣m2﹣m+),∴tan∠ABD=,∴∠ABD=30°,∴EF+EB=﹣m2﹣m+﹣(m﹣)+2(﹣m)=﹣(m+3)2+,∴m=﹣3时,EF+EB的值最大,此时点E坐标(﹣3,﹣),如图2中,作点E关于y轴的对称点N,EM⊥AB于M,连接MN,交对称轴于P,交y 轴于Q,∵M、O关于对称轴对称,∴OP=PM,E、N关于y轴对称,∴QE=QN,∴OP+PQ+QE=PM+PQ+QN,∴当M、N、P、Q共线时,OP+PQ+QE最小,最小值为MN,在Rt△MNE中,MN===.∴OP+PQ+QE的最小值为.(3)如图3中,作O′M⊥BD于M,设O′B=a,则O′M=a,BM=a,DM =BD﹣BM=4﹣a,∵∠O′DM=∠C″BO′,∠O′MD=∠BO′C″=90°,∴△O′MD∽△C″O′B,∴=,∴=,∴a2+4a﹣32=0,解得a=4或﹣8(舍弃),∴C″坐标为(﹣3,﹣).根据对称性可知当点C″在y轴的右边时,C″(5,﹣).【点评】本题考查二次函数综合题、一次函数、相似三角形的判定和性质、最小值问题等知识,解题的关键是熟练掌握基本知识的应用,学会利用对称的思想解决最小值问题,学会利用相似三角形的性质构建方程解决问题,属于中考压轴题.11.【分析】(1)把抛物线的解析式化成顶点式即可求得对称轴;求得直线与坐标轴的交点坐标,即可证得直线和坐标轴围成的图形是等腰直角三角形,从而求得直线PQ与x轴所夹锐角的度数;(2)分三种情况分别讨论根据已知条件,通过△OBE∽△ABF对应边成比例即可求得;(3)①过点C作CH∥x轴交直线PQ于点H,可得△CHQ是等腰三角形,进而得出AD ⊥PH,得出DQ=DH,从而得出PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH 是等腰直角三角形,得出PH=PM,因为当PM最大时,PH最大,通过求得PM的最大值,从而求得PH的最大值;由①可知:PD+PH≤6,设PD=a,则DQ﹣a,得出PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,当点P在抛物线的顶点时,a=3,得出PD•DQ≤18.【解答】方法一:解:(1)∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线的对称轴是直线x=2,∵直线y=x+m,∴直线与坐标轴的交点坐标为(﹣m,0),(0,m),∴交点到原点的距离相等,。
成都中考B卷分类突破专题:二次函数1.(2018•成都)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP 为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b 与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.4.(2014•成都)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b 与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?5.(2013•成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.6.(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.7.(2011•成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x 轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC =15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.的面积S△ABC(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.8.(2017•潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l 将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.9.(2018•成都模拟)如图,在平面直角坐标系xoy中,把抛物线y=x2先向右平移1个单位,再向下平移4个单位,得到抛物线y=(x﹣h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为M;(1)写出h、k的值以及点A、B的坐标;(2)判断三角形BCM的形状,并计算其面积;(3)点P是抛物线上一动点,在y轴上找点Q.使点A,B,P,Q组成的四边形是平行四边形,直接写出对应的点P的坐标.(不用写过程)(4)点P是抛物线上一动点,连接AP,以AP为一边作正方形APFG,随着点P 的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,请直接写出对应的点P的坐标.(不写过程)10.(2018•兰陵县二模)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.11.(2014•舟山)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.12.(2018•青羊区模拟)已知点A(﹣2,2),B(8,12)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E.连接FH、AE,求之值(用含m的代数式表示)(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.13.(2017•枣庄)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P 在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.14.(2018•金牛区模拟)抛物线y=x2+bx+5经过点A(t,0)和点B(5t,0).(t >0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=2x+5相交于C.D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.15.(2018•成都模拟)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;=(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB ,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.答案解析1.(2018•成都)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.【解答】解:(1)由题意可得,解得a=1,b=﹣5,c=5;∴二次函数的解析式为:y=x2﹣5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,则,∵MQ=,∴NQ=2,B(,);∴,解得,∴,D(0,),同理可求,,=S△BCG,∵S△BCD∴①DG∥BC(G在BC下方),,∴=x2﹣5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,﹣1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2﹣5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,﹣1),G(,).(3)由题意可知:k+m=1,∴m=1﹣k,∴y l=kx+1﹣k,∴kx+1﹣k=x2﹣5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4﹣)(),∵k>0,∴k==﹣1+.2.(2016•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x 轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP 为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.四边形ABCD从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M 1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,根据中点坐标公式的M(,),∴点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).3.(2015•成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b 与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【解答】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)如图1,过点E作EN⊥y轴于点N设点E(m,a(m+1)(m﹣3)),y AE=k1x+b1,则,解得:,∴y AE=a(m﹣3)x+a(m﹣3),M(0,a(m﹣3))∵MC=a(m﹣3)﹣a,NE=m=S△ACM+S△CEM=[a(m﹣3)﹣a]+[a(m﹣3)﹣a]m=(m+1)[a(m ∴S△ACE﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知x D﹣x P=x A﹣x Q,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=y D+y Q=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=(1﹣4)2+(26a﹣5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).4.(2014•成都)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b 与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.∴抛物线的函数表达式为:y=(x+2)(x﹣4).即y=x2﹣x﹣.(2)由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠ABC=tan∠PAB,即:=,∴y=x+.∴P(x,x+),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+,整理得:x2﹣4x﹣12=0,解得:x=6或x=﹣2(与点A重合,舍去),∴P(6,2k).∵△ABC∽△PAB,=,∴=,解得k=±,∵k>0,∴k=,综上所述,k=或k=.(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.=AH,AH与直线BD的交点,即为所求之F点.过点A作AH⊥DK于点H,则t最小∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∥AB,AH⊥DK,AH交直线BD于点F,∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=,∵l BD:y=﹣x+,∴F X=A X=﹣2,∴F(﹣2,).5.(2013•成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【解答】解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=x2+2x﹣1.(2)方法一:i)∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1),则平移后抛物线的函数表达式为:y=(x﹣m)2+m﹣1.解方程组:,解得,∴P(m,m﹣1),Q(m﹣2,m﹣3).过点P作PE∥x轴,过点Q作QF∥y轴,则PE=m﹣(m﹣2)=2,QF=(m﹣1)﹣(m﹣3)=2.∴PQ==AP0.若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).由A(0,﹣1),B(4,﹣1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l1的解析式为:y=x+b1,∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,∴直线l1的解析式为:y=x﹣5.解方程组,得:,∴M1(4,﹣1),M2(﹣2,﹣7).②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.如答图2,取AB的中点F,则点F的坐标为(2,﹣1).由A(0,﹣1),F(2,﹣1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为.过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l2的解析式为:y=x+b2,∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,∴直线l2的解析式为:y=x﹣3.解方程组,得:,∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).方法二:∵A(0,1),C(4,3),∴l AC:y=x﹣1,∵抛物线顶点P在直线AC上,设P(t,t﹣1),∴抛物线表达式:,∴l AC与抛物线的交点Q(t﹣2,t﹣3),∵一M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1),①当M为直角顶点时,M(t,t﹣3),,∴t=1±,∴M1(1+,﹣2),M2(1﹣,﹣2﹣),②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),∴,∴t1=4,t2=﹣2,∴M1(4,﹣1),M2(﹣2,﹣7),③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).ii)存在最大值.理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.∴的最大值为=.6.(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.【解答】解:(1)∵经过点(﹣3,0),∴0=+m,解得m=,∴直线解析式为,C(0,).∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(﹣3,0),∴另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x﹣5),∵抛物线经过C(0,),∴=a•3(﹣5),解得a=,∴抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC=EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO=∠EFG,又∵,∴△CAO≌△EFG,∴EG=CO=,即y E=,∴=x E2+x E+,解得x E=2(x E=0与C点重合,舍去),∴E(2,),S▱ACEF=;(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,同理可求得E′(+1,),S▱ACF′E′=.(3)要使△ACP的周长最小,只需AP+CP最小即可.如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度).∵B(5,0),C(0,),∴直线BC解析式为y=x+,∵x P=1,∴y P=3,即P(1,3).令经过点P(1,3)的直线为y=kx+b,则k+b=3,即b=3﹣k,则直线的解析式是:y=kx+3﹣k,∵y=kx+3﹣k,y=x2+x+,联立化简得:x2+(4k﹣2)x﹣4k﹣3=0,∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.∵y1=kx1+3﹣k,y2=kx2+3﹣k,∴y1﹣y2=k(x1﹣x2).根据两点间距离公式得到:M1M2===∴M1M2===4(1+k2).又M1P===;同理M2P=∴M1P•M2P=(1+k2)•=(1+k2)•=(1+k2)•=4(1+k2).∴M1P•M2P=M1M2,∴=1为定值.7.(2011•成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x 轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC =15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.的面积S△ABC(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵OA:OB=1:5,OB=OC,设OA=m,则OB=OC=5m,AB=6m,由S=AB×OC=15,得×6m×5m=15,解得m=1(舍去负值),△ABC∴A(﹣1,0),B(5,0),C(0,﹣5),设抛物线解析式为y=a(x+1)(x﹣5),将C点坐标代入,得a=1,∴抛物线解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5;(2)设E点坐标为(n,n2﹣4n﹣5),抛物线对称轴为x=2,由2(n﹣2)=EF,得2(n﹣2)=﹣(n2﹣4n﹣5)或2(n﹣2)=n2﹣4n﹣5,解得n=1±或n=3±,∵n>0,∴n=1+或n=3+,边长EF=2(n﹣2)=2﹣2或2+2;(3)存在.由(1)可知OB=OC=5,∴△OBC为等腰直角三角形,即B(5,0),C(0,﹣5),设直线BC解析式为y=kx+b,将B与C代入得:,解得:,则直线BC解析式为y=x﹣5,依题意△MBC中BC边上的高为,∴直线y=x+9或直线y=x﹣19与BC的距离为7,联立,,解得或,∴M点的坐标为(﹣2,7),(7,16).8.(2017•潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l 将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+△PEF)=﹣(t﹣)2+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.9.(2018•成都模拟)如图,在平面直角坐标系xoy中,把抛物线y=x2先向右平移1个单位,再向下平移4个单位,得到抛物线y=(x﹣h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为M;(1)写出h、k的值以及点A、B的坐标;(2)判断三角形BCM的形状,并计算其面积;(3)点P是抛物线上一动点,在y轴上找点Q.使点A,B,P,Q组成的四边形是平行四边形,直接写出对应的点P的坐标.(不用写过程)(4)点P是抛物线上一动点,连接AP,以AP为一边作正方形APFG,随着点P 的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,请直接写出对应的点P的坐标.(不写过程)【解答】解:(1)∵抛物线y=x2先向右平移1个单位,再向下平移4个单位,得到抛物线y=(x﹣1)2﹣4,∴h=1,k=﹣4;令y=0,即(x﹣1)2﹣4=0解得x=﹣1或x=3,∴A(﹣1,0),B (3,0),(2)∵令x=0,得y=(0﹣1)2﹣4=﹣3,∴点C的坐标为(0,﹣3),点M的坐标为(1,﹣4)∴BC=3,MC=,BM=2∴BC2+MC2=BM2∴△BMC是直角三角形;∴S=BC•CM=×3×=3;(3)由(1)知,抛物线y=(x﹣1)2﹣4=x2﹣2x﹣3,∵点P是抛物线上一动点,∴设P(p,p2﹣2p﹣3),∵点Q在y轴上,∴设Q(0,m),∵A(﹣1,0),B(3,0),∴AB=4,AB的中点M(1,0)∵点A,B,P,Q组成的四边形是平行四边形,①当AB为边时,AB∥PQ,AB=PQ,∴p2﹣2p﹣3=m,|p|=4,Ⅰ、当p=4时,m=5,∴P(4,5),Ⅱ、当p=﹣4时,m=21,∴P(﹣4,21)②当AB为对角线时,点M是PQ的中点,∴p=2,p2﹣2p﹣3+m=0,∴p=2,m=3,∴P(2,﹣3),∴点P的坐标为(4,5),(﹣4,21)或(2,﹣3),(4)①如图(1),(2)当点G在y轴上时,由△AOG≌△PHA,得PH=OA,得y P=x A=﹣1,∴x2﹣2x﹣3=﹣1,得x=1±,∴P1(1﹣,﹣1),P2(1+,﹣1)②如图(3),当点F在y轴上时,由△AMP≌△FNP,得PM=PN,得y P=x P,则x2﹣2x﹣3=x,得x=,x=故P3(,)或(,)10.(2018•兰陵县二模)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【解答】解:(1)当x=0时,y=4,∴B(0,4),当y=0时,﹣x+4=0,x=6,∴C(6,0),把B(0,4)和C(6,0)代入抛物线y=ax2+x+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+4;(2)如图1,过E作EG∥y轴,交直线BC于G,设E(m,﹣m2+m+4),则G(m,﹣m+4),∴EG=(﹣m2+m+4)﹣(﹣m+4)=﹣+4m,=EG•OC=×6(﹣+4m)=﹣2(m﹣3)2+18,∴S△BEC∵﹣2<0,∴S有最大值,此时E(3,8);(3)y=﹣x2+x+4=﹣(x2﹣5x+﹣)+4=﹣(x﹣)2+;对称轴是:x=,∴A(﹣1,0)∵点Q是抛物线对称轴上的动点,∴Q的横坐标为,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形;①如图2,以AM为边时,由(2),可得点M的横坐标是3,∵点M在直线y=﹣x+4上,∴点M的坐标是(3,2),又∵点A的坐标是(﹣1,0),点Q的横坐标为,根据M到Q的平移规律:可知:P的横坐标为﹣,∴P(﹣,﹣);②如图3,以AM为边时,四边形AMPQ是平行四边形,由(2),可得点M的横坐标是3,∵A(﹣1,0),且Q的横坐标为,∴P的横坐标为,∴P(,﹣);③以AM为对角线时,如图4,∵M到Q的平移规律可得P到A的平移规律,∴点P的坐标是(﹣,),。
常考二次函数综合题整理 题型一最短路径问题1、如图,抛物线y=﹣12x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【变式】如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;题型二最大面积(线段最长)问题2、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?并求出这个最大值.3、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH△x轴于点H,与BC交于点M,连接PC,求线段PM的最大值.【变式】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,过点P作PE△y轴于点E,连接AE.求△PAE面积S的最大值;题型三 存在点构成等腰三角形问题4、如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.5、如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【变式】已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【变式】如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点()0,2C -,点A 的坐标是()2,0,P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线1x =-.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且14PE OD =,求PBE ∆的面积. (3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的下方,是否存在点M ,使BDM ∆是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.题型四 存在点构成直角三角形问题6、如图,抛物线2y ax bx 4=+-经过()A 3,0-,()B 5,4-两点,与y 轴交于点C ,连接AB ,AC ,BC .()1求抛物线的表达式;()2求证:AB 平分CAO ∠;()3抛物线的对称轴上是否存在点M ,使得ABM V 是以AB 为直角边的直角三角形,若存在,求出点M 的坐标;若不存在,请说明理由.【变式】如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.●题型四存在点构成等腰直角三角形问题7、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P作x轴的垂线,交线段AB于点D,再过点P做PE△x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.●题型四存在点构成平行四边形问题8、如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.()B-,对称轴为直线l,点M是线段AB的中点.0,5(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.9、如图,已知抛物线y=12x2+bx+c与直线AB:y=12x+12相交于点A(1,0)和B(t,52),直线AB交y轴于点C.(1)求抛物线的解析式及其对称轴;(2)设点M是抛物线对称轴上一点,点N在抛物线上,以点A、B、M、N为顶点的四边形是否可能为矩形?若能,请求出点M的坐标,若不能,请说明理由.10、如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.11、如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在x轴下方且在抛物线对称轴上,是否存在一点Q,使△BQC=△BAC?若存在,求出Q点坐标;若不存在,说明理由.12、如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.连接AC,当直线AM与直线BC的夹角等于△ACB 的2倍时,请直接写出点M的坐标【变式】如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【变式】如图,抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0),C (0,3)三点,D 为直线BC 上方抛物线上一动点,DE△BC 于E .(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D ,使得△CDE 中有一个角与△CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.【变式】如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.题型七 存在点使三角形相似问题13、如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.14、如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣12x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【变式】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求△ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE△AC,当△DCE 与△AOC相似时,求点D的坐标.【变式】如图,抛物线y=12x2+bx+c与直线y=12x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ△PA交y轴于点Q,问:是否存在点P 使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.题型七二次函数与圆结合问题15、如图,△E的圆心E(3,0),半径为5,△E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与△E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.16、如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+53x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣13x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【变式】如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP△x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.。
1.已知:如图一次函数y =x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =12x 2+bx +c 的图象与一次函数y =x +1的图象交于B 、C 两点,与x 轴交于D 、E 两1212点且D 点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.第1题图2.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(,0)、(0,4),抛物线经过B 点,3-223y x bx c =++且顶点在直线上.52x =(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,并求l 取最大值时,点M 的坐标.3.如图是二次函数k m x y ++=2)((1)求出图象与轴的交点A,B 的坐标;x (2)在二次函数的图象上是否存在点P ,使,若存在,求出P 点的坐标;MAB PAB S S ∆∆=45若不存在,请说明理由;(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一x x 个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点)1(<+=b b x y 时,的取值范围.b图9图14.如图, 已知抛物线与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐c bx x y ++=221标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.5.将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0).(1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;备用图题图26(3)在第一象限内的该抛物线上是否存在点G ,使△AGC 的面积与(2)中△APE 的最大面积相等?若存在,请求出点G 的坐标;若不存在,请说明理由.64与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 分别交于F、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.7.如图7,在平面直角坐标系中,点A 的坐标为(1 ,△AOB (1)求点B 的坐标;(2)求过点A 、O 、B 的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△AOC 的周长最小?若存在,求出点C 的 坐标;若不存在,请说明理由;(4)在(2)中,x 过点P 作轴的垂线,交直线AB 于点D ,线段x 把△AOB 分成两个三角形.与四边形BPOD 面积比为2:3 ?若存在,求出点P 的坐标;若不存在,请说明理由.8.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
初中数学二次函数的解析式一、考点突破1. 掌握求二次函数解析式的方法。
2. 能够根据题目要求选择合适的求解析式的方法解决问题。
二、重难点提示重点:求二次函数解析式。
难点:根据问题选择合适的方法,求二次函数解析式。
考点精讲1.二次函数的解析式的四种形式一般式:()。
顶点式:()。
其中(,)为顶点,对称轴为。
交点式:()。
其中,为抛物线与轴交点的横坐标。
对称点式:()。
其中(,),(,)为图象上两个对称的点。
2.确定二次函数解析式的几种基本思路根据已知条件确定二次函数解析式,通常利用待定系数法。
用待定系数法求二次函数的解析式,必须根据题目的特点,选择适当的形式,才能使解题简便。
一般来说,有如下几种情况:①已知抛物线上三点的坐标,一般选用一般式;②已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;③已知抛物线与轴的两个交点的横坐标,一般选用交点式;④已知抛物线上纵坐标相同的两点,常选用对称点式。
典例精讲例题1(宝安区一模)如图,已知抛物线l1:y=(x-2)2-2与x轴分别交于O、A 两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数解析式为()A. y=(x-2)2+4B. y=(x-2)2+3C. y=(x-2)2+2D. y=(x-2)2+1思路分析:根据题意可推知由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积就是矩形ABCO的面积;然后再根据抛物线l1的解析式,求得O、A两点的坐标,从而解得OA的长度;最后再由矩形的面积公式,求得AB的长度,即l2是由抛物线l1向上平移多少个单位得到的。
答案:解:连接BC,∵l2是由抛物线l1向上平移得到的,∴由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积就是矩形ABCO的面积;∵抛物线l1的解析式是y=(x-2)2-2,∴抛物线l1与x轴分别交于O(0,0)、A(4,0)两点,∴OA=4;∴OA•AB=16,∴AB=4;∴l2是由抛物线l1向上平移4个单位得到的,∴l2的解析式为:y=(x-2)2-2+4,即y=(x-2)2+2,选C。