已知抛物线y
- 格式:docx
- 大小:652.31 KB
- 文档页数:3
——二次函数压轴题常见模型小结DBO AxyC问题1:求抛物线解析式和顶点D 坐标12()()y a x x x x =--2y ax bx c=++2()y a x h k=-+十字相乘配方法(★)12轴交点(,0)、(,0)x x x 轴交点(0,c )y 顶点(h,k )原始三角形:重视四点围成的三角形(边、角关系)函数 点形2223(3)(1)(1)4y x x y x x y x =+-=+-=+-问题2:判断△ACD 的形状,并说明理由DBOAxyCD (-1,-4)BOA (-3,0)xyC (0,-3)问题3:E是y轴上一动点,若BE=CE,求点E的坐标DB OA xyCB(1,0)O xyC(0,-3)B(1,0)O xyC(0,-3)问题4:抛物线上有一动点P,过点P作PM⊥x轴于点M,交直线AC与点N,在线段PM、MN中,若其中一条线段是另一条线段的2倍,求点P的坐标。
DB OA xyC最大值及此时点P 的坐标DBO Ax yC PH DB O Ax yC PHEFDB O AxyC PHE F于G ,PH 为邻边作矩形PEGH ,求矩形PEGH 周长的最大值。
DBO Ax yCDB O AxyC PHEG问题7:在对称轴上找一点P,使得△BCP的周长最小,求出P点坐标及△BCP的周长DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题8:在对称轴上找一点P,使得∣PA-PC∣最大,求出P点坐标DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题9:线段MN=1,在对称轴上运动(M 点在N 点上方),求四边形BMNC 周长的最小值及此时M 点坐标DBOAxyC已知抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,OA=OC=3,顶点为D 2y x bx c =++B (1,0)OA (-3,0)xyC (0,-3).x=1NB ’ B ’’M将军饮马:这个将军饮的不是马,是数学!解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,对称。
二次函数综合训练(折叠,旋转,对称,平移)1、已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,将B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△ND D1面积的2倍,求点N的坐标.2、如图,已知点A(-2,4)和点B(1,0)都在抛物线y=m x2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式;(3)试求出菱形AA′B′B的对称中心点M的坐标.3、把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图②,设EF与BC交于点C,当EC=CG时,求点G的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.4、如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC 绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=a x2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求的新抛物线的解析式.5、在平面直角坐标系中点A(0,2)C(4,0),AB∥x轴,△ABC是直角三角形,∠ACB=90°.(1)求出点B的坐标,并求出过A,B,C三点的抛物线的函数解析式;(2)将△ABC直线AB翻折,得到△ABC1,再将△ABC1绕点A逆时针旋转90度,得到△AB1C2.请求出点C2的坐标,并判断点C2是否在题(1)所求的抛物线的图象上;(3)将题(1)中的抛物线平移得到新的抛物线的函数解析式为y=ax2-mx+2m,并使抛物线的顶点落在△ABC的内部或者边上,请求出此时m的取值范围.6、如图抛物线y=a x2+ax+c(a≠0)与x轴的交点为A、B(A在B的左边)且AB=3,与y轴交于C,若抛物线过点E(-1,2).(1)求抛物线的解析式;(2)在x轴的下方是否存在一点P使得△PBC的面积为3?若存在求出P点的坐标,不存在说明理由;(3)若D为原点关于A点的对称点,F点坐标为(0,1.5),将△CEF绕点C旋转,在旋转过程中,线段DE与BF是否存在某种关系(数量、位置)?请指出并证明你的结论.7、如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB.(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.8、在平面直角坐标系xOy中,把矩形AOCB绕点A逆时针旋转α角,得到矩形ADEF,设AD与BC相交于点G,且A(-9,0),C(0,6),如图甲.(1)当α=60°时,请猜测△ABF的形状,并对你的猜测加以证明.(2)当GA=GC时,求直线AD的解析式.(3)当α=90°时,如图乙.请探究:经过点F,且以点B为顶点的抛物线,是否经过矩形ADEF的对称中心H,并说明理由.9、在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC 绕点O 顺时针旋转90°,得到矩形DEFG (如图1).(1)若抛物线y=- x 2+bx+c 经过点B 和F ,求此抛物线的解析式;(2)将矩形DEFG 以每秒1个单位长度的速度沿x 轴负方向平移,平移t 秒时,所成图形如图2所示.①图2中,在0<t <1的条件下,连接BF ,BF 与(1)中所求抛物线的对称轴交于点Q ,设矩形DEFG 与矩形OABC 重合部分的面积为S1,△AQF 的面积为S2,试判断S1+S2的值是否发生变化?如果不变,求出其值;②在0<t <3的条件下,P 是x 轴上一点,请你探究:是否存在t 值,使以PB 为斜边的Rt △PFB 与Rt △AOC 相似?若存在,直接写出满足条件t 的值及点P 的坐标;若不存在,请说明理由(利用图3分析探索).10、如图所示,在平面直角坐标系中,矩形ABOC 的边BO在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知如图,抛物线n mx x y ++=221与x 轴交于A 、B 两点,与y 轴交于C 点,四边形OBHC 为矩形,CH 的延长线交抛物线于点D (5,2),连结BC 、AD .(1)求C 点的坐标及抛物线的解析式;(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.二次函数综合训练(折叠,旋转,对称,平移)答案1、已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,将B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.[解析] (1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.2、如图,已知点A(-2,4)和点B(1,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式;(3)试求出菱形AA′B′B的对称中心点M的坐标.【解析】(1)本题需先根据题意把A (-2,4)和点B (1,0)代入抛物线y=mx2+2mx+n中,解出m、n的值即可.(2)本题需先根据四边形AA′B′B为菱形得出y的解析式,再把解析式向右平移5个单位即可得到平移后抛物线的表达式.(3)本题需根据平移与菱形的性质,得到A′、B′的坐标,再过点A′作A′H⊥x轴,得出BH和A′H的值,再设菱形AA′B′B的中心点M,作MG⊥x轴,根据中位线性质得到MG、BG的值,最后求出点M的坐标.3、把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图②,设EF与BC交于点C,当EC=CG时,求点G的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.【解析】(1)依题意得点E在射线CB上,横坐标为4,纵坐标根据勾股定理可得点E.(2)已知∠BCD=60°,∠BCF=30°,然后可得∠α=60°.(3)设CG=x,则EG=x,FG=6-x,根据勾股定理求出CG的值.(4)设以C为顶点的抛物线的解析式为y=a(x-4)2,把点A的坐标代入求出a值.当x=7时代入函数解析式可得解.4、如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC 绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求的新抛物线的解析式.【解析】(1)根据四边形OABC是矩形,A(3,0),C(0,1)求出B′的坐标,设直线BB′的解析式为y=mx+n,利用待定系数法即可求出此直线的解析式,进而可得出M、N 两点的坐标,设二次函数解析式为y=ax2+bx+c,把CMN三点的坐标代入此解析式即可求出二次函数的解析式;(2)设P点坐标为(x,y),连接OP,PM,由对称的性质可得出OP⊥MN,OE=PE,PM=OM=5,再由勾股定理求出MN的长,由三角形的面积公式得出OE的长,利用两点间的距离公式求出x、y的值,把x的值代入二次函数关系式看是否适合即可;(3)由于抛物线移动的方向不能确定,故应分三种情况进行讨论.【解答】(3)①在上下方向上平移时,根据开口大小不变,对称轴不变,所以,二次项系数和一次项系数不变,根据它过原点,把(0,0)这个点代入得常数项为0,新解析式就为:y=-12x2+2x;②在左右方向平移时,开口大小不变,二次项系数不变,为-12,这时根据已经求出的C′(-1,0),M(5,0),可知它与X轴的两个交点的距离还是为6,所以有两种情况,向左移5个单位,此时M与原点重合,另一点经过(-6,0),代入解出解析式为y=-12x2-3x;③当它向右移时要移一个单位C′与原点重合,此时另一点过(6,0),所以解出解析式为y=-12x2+3x.5、在平面直角坐标系中点A(0,2)C(4,0),AB∥x轴,△ABC是直角三角形,∠ACB=90°.(1)求出点B的坐标,并求出过A,B,C三点的抛物线的函数解析式;(2)将△ABC直线AB翻折,得到△ABC1,再将△ABC1绕点A逆时针旋转90度,得到△AB1C2.请求出点C2的坐标,并判断点C2是否在题(1)所求的抛物线的图象上;(3)将题(1)中的抛物线平移得到新的抛物线的函数解析式为y=ax2-mx+2m,并使抛物线的顶点落在△ABC的内部或者边上,请求出此时m的取值范围.【解析】(1)过C作CD⊥AB于D,根据A、C的坐标,易求得AD、CD的长,在Rt△ACB中,CD⊥AB,利用射影定理可求得BD的长(也可利用相似三角形得到),由此求得点B的坐标,进而可利用待定系数法求得抛物线的解析式;(2)根据△ABC的两次旋转变化可知AB1落在y轴上,可过C2作C2D1⊥AB1,根据△ACD≌△AC2D1得AD1、CD1的长,从而求出点C2的坐标,然后将其代入抛物线的解析式中进行验证即可;(3)在(1)题中求得了抛物线的二次项系数,即可用m表示出平移后的抛物线顶点坐标,得(m,4m-m22),由于此顶点在△ACB的边上或内部,因此顶点横坐标必在0≤m≤5的范围内,然后分三种情况考虑:①顶点纵坐标应小于或等于A、B的纵坐标.②求出直线AC和直线x=m的交点纵坐标,那么顶点纵坐标应该大于等于此交点纵坐标.③求出直线BC和直线x=m的交点纵坐标,方法同②.结合上面四个不等关系式,即可得到m的取值范围.6、如图抛物线y=ax2+ax+c(a≠0)与x轴的交点为A、B(A在B的左边)且AB=3,与y轴交于C,若抛物线过点E(-1,2).(1)求抛物线的解析式;(2)在x轴的下方是否存在一点P使得△PBC的面积为3?若存在求出P点的坐标,不存在说明理由;(3)若D为原点关于A点的对称点,F点坐标为(0,1.5),将△CEF绕点C旋转,在旋转过程中,线段DE与BF是否存在某种关系(数量、位置)?请指出并证明你的结论.【解析】(1)抛物线y=ax2+ax+c(a≠0)的对称轴是x=-a2a=-12,又因与x轴的交点为A、B(A在B的左边)且AB=3,求出A、B点的坐标,解决第一问;(2)因为S△ABC=3,△PBC的面积是3,说明P点一定在过A点平行于BC的直线上,且一定是与抛物线的交点,因此求出过A点的直线,与抛物线联立进一步求得答案;(3)连接DC、BC,证明三角形相似,利用旋转的性质解决问题.7、如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB.(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.【解析】(1)根据旋转的性质知△COD≌△AOB,则OC=OA、OD=OB,由此可求出C、D 的坐标,进而用待定系数法即可求出抛物线的解析式;(2)将(1)题所得的抛物线解析式化为顶点式,然后根据“左加右减,上加下减”的平移规律得出平移后的抛物线解析式;联立两个函数的解析式即可得到F点的坐标;取E点关于平移后抛物线对称轴的对称点E′,那么直线E′F与此对称轴的交点即为所求的P点,可先求出直线E′F的解析式,联立这条对称轴的解析式即可得到P点的坐标;(3)可根据对称轴方程设出P点坐标,分别表示出PE、PF、EF的长;由于△PEF的直角顶点没有确定,因此要分成三种情况考虑:①∠EPF=90°,②∠PEF=90°,③∠PFE=90°;可根据上述三种情况中不同的直角边和斜边,利用勾股定理列出关于P点纵坐标的方程,求出P点的坐标.8、在平面直角坐标系xOy中,把矩形AOCB绕点A逆时针旋转α角,得到矩形ADEF,设AD与BC相交于点G,且A(-9,0),C(0,6),如图甲.(1)当α=60°时,请猜测△ABF的形状,并对你的猜测加以证明.(2)当GA=GC时,求直线AD的解析式.(3)当α=90°时,如图乙.请探究:经过点F,且以点B为顶点的抛物线,是否经过矩形ADEF的对称中心H,并说明理由.【解析】(1)根据旋转的知识可得AB=AF,根据∠BAF=60°可得∴△ABF为等边三角形;(2)利用△AGB为直角三角形,根据勾股定理可得CG的长,也求得了G的坐标,利用点A、G的坐标可得所求的直线解析式;(3)易得F坐标,利用顶点式可得经过点F,且以点B为顶点的抛物线,易得H的坐标,把横坐标代入所得函数解析式,看是否等于纵坐标即可.9、在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC绕点O顺时针旋转90°,得到矩形DEFG(如图1).(1)若抛物线y=-x2+bx+c经过点B和F,求此抛物线的解析式;(2)将矩形DEFG以每秒1个单位长度的速度沿x轴负方向平移,平移t秒时,所成图形如图2所示.①图2中,在0<t<1的条件下,连接BF,BF与(1)中所求抛物线的对称轴交于点Q,设矩形DEFG与矩形OABC重合部分的面积为S1,△AQF的面积为S2,试判断S1+S2的值是否发生变化?如果不变,求出其值;②在0<t<3的条件下,P是x轴上一点,请你探究:是否存在t值,使以PB为斜边的Rt △PFB与Rt△AOC相似?若存在,直接写出满足条件t的值及点P的坐标;若不存在,请说明理由(利用图3分析探索).【解析】(1)首先确定点B、F的坐标,将点的坐标代入函数解析式,解方程组即可求得;(2)①首先求得对称轴,根据题意用t表示出S1、S2的值即可求得.②利用相似三角形的性质即可求得:过点F作FP⊥FB,FP交x同于点P,延长FE交AB 于点M,要使Rt△PFB∽Rt△AOC,只要FB:FP=2:1即可,而Rt△BMF∽Rt△PGF,所以根据FBFP=FMFG只须FMFG=21,列出方程解答即可求出此时点P的坐标.第10、11题答案省略。
在中考数学中,抛物线是一个常见的考点,经常以压轴题的形式出现。
以下是一个关于抛物线的中考压轴题的示例:题目:已知抛物线y=ax^2+bx+c(a,b,c是常数,a≠0)经过点(-1,-1),(0,1),当x=-2时,与其对应的函数值y>1。
1. 请你求出abc的值,并判断抛物线的开口方向。
2. 设直线y=kx+d(k≠0)经过点(1,-1),且与抛物线的对称轴平行。
请你求出该直线的解析式。
3. 设E(m,n)是抛物线y=ax^2+bx+c上的一个动点,且满足∠APE=90°,请你求出m的值。
解析:1. 根据题目条件,抛物线经过点(-1,-1),(0,1),可得到方程:$a-b+c=-1$ ①$c=1$ ②将x=-2,y>1代入解析式得:$4a-2b+1>1$化简得:$2a-b>0$ ③由①②③解得:$a>0$$b>0$$c=1$所以,abc=1。
由于a>0,抛物线开口向上。
2. 由题意知:直线y=kx+d经过点(1,-1),则有:k+d=-1 ④又因为直线与对称轴平行,所以其斜率等于对称轴的斜率,即:k=-b/2a=-1/2 ⑤由④⑤解得:d=-3/2所以,直线的解析式为:y=-x/2-3/2。
3. 根据题意知:E(m,n)在抛物线上,则有:$n=am^2+bm+c$ ⑥由于∠APE=90°,所以AE与PE垂直。
根据两直线垂直的条件:斜率之积等于-1。
即:$(m-1)/(n+1)=-1$ ⑦由⑥⑦解得:m=0或m=-2综上所述,m的值为0或-2。
二次函数与线段最值定值问题(八大类型)考向分析题型一二次函数与单线段最值问题1.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于A(5,0),B(-1,0)两点,与.y轴交于点C0,52(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得△ACP是以点A为直角顶点的直角三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点G为抛物线上的一动点,过点G作GE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点G的坐标.题型二二次函数与将军饮马型问题2.如图1,抛物线y=ax2+2x+c与x轴交于A(-4,0),B(1,0)两点,过点B的直线y=kx+23分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.题型三二次函数与胡不归型线段最值问题3.已知抛物线y=-1x2+bx+c(b,c为常数)的图象与x轴交于A(1,0),B两点(点A在点B左2侧).与y轴相交于点C,顶点为D.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)若点P是y轴上一点,连接BP,当PB=PC,OP=2时,求b的值;(Ⅲ)若抛物线与x轴另一个交点B的坐标为(4,0),对称轴交x轴于点E,点Q是线段DE上一点,点NQ的最小值.N为线段AB上一点,且AN=2BN,连接NQ,求DQ+54二次函数与三线段和最值问题4.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.二次函数与线段倍分关系最值问题5.抛物线y=-x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=32时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值;(3)是否存在实数a,使APPN =12若存在,求出a的值,如不存在,请说明理由.题型六二次函数与线段乘积问题6.已知直线y=12x+2分别交x轴、y轴于A、B两点,抛物线y=12x2+mx-2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;(3)如图2,经过点M(-4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.备注:抛物线顶点坐标公式-b2a,4ac-b24a7.抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上一点,且位于x轴下方.(1)如图1,若P(1,-3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,OE+OFOC是否为定值?若是,试求出该定值;若不是,请说明理由.8.如图,已知抛物线y=ax2+bx+c与x轴分别交于A(-1,0)、B(3,0)两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)如图1,点D是抛物线顶点,点P(m,n)是在第二象限抛物线上的一点,分别连接BD、BC、BP,若∠CBD=∠ABP,求m的值;(3)如图1,过B、C、O三点的圆上有一点Q,并且点Q在第四象限,连接QO、QB、QC,试猜想线段QO、QB、QC之间的数量关系,并证明你的猜想;(4)如图2,若∠BAC的角平分线交y轴于点G,过点G的直线分别交射线AB、AC于点E、F(不与点A重合),则1AE+1AF的值是否变化?若变化,请说明理由;若不变,请求出它的值.压轴题速练一、解答题1.如图,已知二次函数的图象与x轴交于A、B两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3).(1)求该二次函数的表达式;(2)试问在该二次函数图象上是否存在点G,使得△ADG的面积是△BDG的面积的35若存在,求出点G的坐标;若不存在,请说明理由.2.在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(-5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.3.如图,已知抛物线y=ax2-32x+c与x轴交于点点A(-4,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q使QB+QC最小?若存在,请求出Q点坐标;若不存在,请说明理由;(3)点P为AC上方抛物线上的动点,过点P作PD⊥AC,垂足为点D,连接PC,当△PCD与△ACO相似时,求点P的坐标.4.如图,抛物线y=-12x2+bx+c过点A3,2,且与直线y=-x+72交于B、C两点,点B的坐标为4,m.(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值.5.抛物线y=ax2+bx-3(a,b为常数,a≠0)交x轴于A-3,0两点.,B4,0(1)求该抛物线的解析式;(2)点C0,4,D是线段AC上的动点(点D不与点A,C重合).①点D关于x轴的对称点为D ,当点D 在该抛物线上时,求点D的坐标;②E是线段AB上的动点(点E不与点A,B重合),且CD=AE,连接CE,BD,当CE+BD取得最小值时,求点D的坐标.6.如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +2a ≠0 与x 轴交于A -1,0 ,B 3,0 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式;(2)点P 为直线BC 上方的抛物线上一点,过点P 作y 轴的垂线交线段BC 于M ,过点P 作x 轴的垂线交线段BC 于N ,求△PMN 的周长的最大值.(3)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有满足条件的点M 的坐标;若不存在,请说明理由.7.如图,二次函数y=-14x2+12m-1x+m(m是常数,且m>0)的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,动点P在对称轴l上,连接AC、BC、PA、PC.(1)求点A、B、C的坐标(用数字或含m的式子表示);(2)当PA+PC的最小值等于45时,求m的值及此时点P的坐标;(3)当m取(2)中的值时,若∠APC=2∠ABC,请直接写出点P的坐标.8.已知抛物线y=x+1(m为常数,m>1)的顶点为P.x-m(1)当m=5时,求该抛物线顶点P的坐标;(2)若该抛物线与x轴交于点A,C(点A在点C左侧),与y轴交于点B.①点Q是该抛物线对称轴上一个动点,当AQ+BQ的最小值为22时,求该抛物线的解析式和点Q 的坐标.②连接BC,与抛物线的对称轴交于点H,过点P作PD⊥BC,垂足为D,若BC=8PD,求该抛物线的解析式.9.已知抛物线y=ax2+bx+c(a、b、c是常数,a>0)的顶点为P,与x轴相交于点A-1,0和点B.(1)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(2)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,直接写出顶点P的坐标.10.如图,抛物线y=-x2+bx+c交x轴于A、B两点(点A在点B的左侧)坐标分别为-2,0,4,0,交y轴于点C.(1)求出抛物线解析式:5时,请求(2)如图1,过y轴上点D做BC的垂线,交线段BC于点E,交抛物线于点F,当EF=35出点F的坐标;(3)如图2,点H的坐标是0,2在抛物线上,把△PHQ沿HQ翻折,,点Q为x轴上一动点,点P2,8使点P刚好落在x轴上,请直接写出点Q的坐标.11.抛物线y =ax 2+bx +c 与坐标轴交于A -1,0 、B 4,0 、C 0,2 三点.点P 为抛物线上位于BC 上方的一动点.(1)求抛物线的解析式;(2)如图,过点P 作PF ⊥x 轴于点F ,交BC 于点E ,连结CP 、CF .当S ΔPCE =2S ΔCEF 时,求点P 的坐标;(3)过点P 作PG ⊥BC 于点G ,是否存在点P ,使线段PG 、CG 的长度是2倍关系?若存在,求出点P 的坐标;若不存在,请说明理由.12.已知抛物线y=ax2+bx+c经过点A-4,0.、B1,0、C0,4(1)求抛物线解析式和直线AC的解析式;(2)如图(1),若点P是第四象限抛物线上的一点,若S△PAC=20,求点P的坐标;(3)如图(2),点M是直线AC上方抛物线上的一个动点(不与A、C重合),过点M作MH垂直AC于点H,求MH的最大值.13.如图,已知抛物线y=-x2+bx+c与一直线相交于A-1,0两点,与y轴交于点N,其顶,C2,3点为D.(1)求抛物线及直线AC的解析式.(2)设点M3,m,求使MN+MD的值最小时m的值.(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求出点E,F的坐标;若不能,请说明理由.14.已知抛物线y=ax2+bx+c(a≠0)与x轴有且只有一个交点A2,0,且与y轴于交于点B.(1)求a与c的关系式;(2)若a=1时,点P2,1c在抛物线的对称轴上;①若过B点的直线l:y=kx+m(k≠0)与抛物线只有一个交点;证明:直线l平分∠OBP;②设过P点的直线与抛物线交于M,N点,则1PM+1PN是否为定值,若为定值请求出定值,若不是定值请说明理由.15.如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,-1≤x≤3.(1)求抛物线的表达式;(2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.①当点P的横坐标为2时,求四边形ACFD的面积;②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.16.已知抛物线y=-x2+2kx-k2+4的顶点为H,与y轴交点为A,点P a,b是抛物线上异于点H的一个动点.(1)若抛物线的对称轴为直线x=1,请用含a的式子表示b;(2)若a=1,作直线HP交y轴于点B,当点A在x轴上方且在线段OB上时,直接写出k的取值范围;(3)在(1)的条件下,记抛物线与x轴的右交点为C,OA的中点为D,作直线CD,过点P作PF⊥CD 于点E并交x轴于点F,若a<3,PE=3EF,求a的值.17.已知抛物线y=ax2+bx+c(a≠0)与x轴只有一个公共点A2,0.且经过点3,1(1)求抛物线的函数解析式;(2)直线l:y=-x+m与抛物线y=ax2+bx+c相交于B、C两点(C点在B点的左侧),与对称轴相交于点P,且B、C分布在对称轴的两侧.若B点到抛物线对称轴的距离为n,且CP=t·BP(2≤t≤3).①试探求n与t的数量关系;②求线段BC的最大值,以及当BC取得最大值时对应m的值.18.如图1,二次函数y =ax 2+bx +3的图像与x 轴交于点A -1,0 ,B 3,0 ,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 为抛物线上一动点.①如图2,过点C 作x 轴的平行线与抛物线交于另一点D ,连接BC ,BD .当S △PBC =2S △DBC 时,求点P 的坐标;②如图3,若点P 在直线BC 上方的抛物线上,连接OP 与BC 交于点E ,求PE OE的最大值.19.抛物线y=ax2-4经过A、B两点,且OA=OB,直线EC过点E4,-1,点D是线段,C0,-3OA(不含端点)上的动点,过D作PD⊥x轴交抛物线于点P,连接PC、PE.(1)求抛物线与直线CE的解析式;(2)求证:PC+PD为定值;(3)在第四象限内是否存在一点Q,使得以C、P、E、Q为顶点的平行四边形面积最大,若存在,求出Q点坐标;若不存在,请说明理由.20.如图1.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A-2,0,,点B4,0与y轴交于点C0,2.(1)求抛物线的解析式;(2)点P是第一象限内的抛物线上一点.过点P作PH⊥x轴于点H,交直线BC于点Q,求PQ+5CQ的最大值,并求出此时点P的坐标;5(3)如图2.将地物线沿射线BC的方向平移5个单位长度.得到新抛物线y1=a1x2+b1x+c1a1≠0,新抛物线与原抛物线交于点G,点M是x轴上一点,点N是新抛物线上一点,若以点C、G、M、N为顶点的四边形是平行四边形时,请直接写出点N的坐标.。
二次函数在中考高频压轴题中的分类训练基础知识:如图,已知抛物线y=- 14x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)证明:△ABC为直角三角形(5)在BC上求一个点D,使得OD将△ABC的面积平分(一)最值问题:(6) 在抛物线的对称轴上求一点P,使PA+PC的值最小值?若P1是∠ABC角平分线上的一点,P2是射线BC上的一点,求CP1+P1P2最小值(7)M为BC上方抛物线上的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(8)M为BC上方抛物线上的一点,求△BCM面积的最大值;变式练习:1若点E 是抛物线顶点,点D (4,m )在抛物线上,在X 轴和Y 轴上找两个点M,N 使四边形DEMN 的周长最小,求M 和N 点的坐标2.若点Q 是线段AB 上的动点,过点Q 作QE\\BC,交AC 于点E ,连接CQ ,当△CQE 面积最大时,求点Q 坐标3.若点Q 是抛物线上的动点,过点Q 作QE\\X 轴,交线段AC 于点E ,交线段BC 于点F,分别过E,F 两点向X 轴作垂线,垂足分别为M,N ,当矩形EMNF 面积最大时,求点Q 坐标4.若M 为BC 上方抛物线上的一点,N 为线段BC 上的一点,且MN 垂直于BC,垂足为N ,求MN 的最大值;5.若M 为BC 上方抛物线上的一点,连接OM 交BC 于点N ,求ONMN的最大值;6.若M为BC上方抛物线上的一点,N为线段BC上的一点,且MN平行于AC,交点为N,求MN的最大值;(二)面积问题:(9)在抛物线上找一个点P,使△ABC与△PBC的面积相等变式练习:1若点F是抛物线上的一个动点,是否存在点F使△BCF的面积为8,若存在,求出点F的坐标;若不存在,请说明理由(三)等腰三角形问题:(10)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.变式练习:1.若点N在X轴上运动,当△BCN是等腰三角形时,求N点的坐标。
十种二次函数解析式求解方法〈一〉三点式。
1, 已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。
2, 已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。
〈二〉顶点式。
1, 已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。
2, 已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。
〈三〉交点式。
1, 已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。
2, 已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。
〈四〉定点式。
1, 在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。
2, 抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。
3, 抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。
〈五〉平移式。
1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。
2, 抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。
1, 抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。
2, 已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。
〈七〉对称轴式。
1、 抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。
专题14 二次函数的分类讨论问题1、已知抛物线y =﹣16x 2﹣23x +2与x 轴交于点A ,B 两点,交y 轴于C 点,抛物线的对称轴与x 轴交于H 点,分别以OC 、OA 为边作矩形AECO . (1)求直线AC 的解析式;(2)如图2,P 为直线AC 上方抛物线上的任意一点,在对称轴上有一动点M ,当四边形AOCP 面积最大时,求|PM ﹣OM |的最大值.(3)如图3,将△AOC 沿直线AC 翻折得△ACD ,再将△ACD 沿着直线AC 平移得△A 'C ′D '.使得点A ′、C '在直线AC 上,是否存在这样的点D ′,使得△A ′ED ′为直角三角形?若存在,请求出点D ′的坐标;若不存在,请说明理由.【答案】(1) y =13x +2;(2) 点M 坐标为(﹣2,53)时,四边形AOCP 的面积最大,此时|PM ﹣OM |有最大值√616; (3)存在,D ′坐标为:(0,4)或(﹣6,2)或(−35,195).【解析】(1)令x =0,则y =2,令y =0,则x =2或﹣6,△A (﹣6,0)、B (2,0)、C (0,2),函数对称轴为:x =﹣2,顶点坐标为(﹣2,83),C 点坐标为(0,2),则过点C 的直线表达式为:y =kx +2,将点A 坐标代入上式,解得:k =13,则:直线AC 的表达式为:y =13x +2; (2)如图,过点P 作x 轴的垂线交AC 于点H .四边形AOCP 面积=△AOC 的面积+△ACP 的面积,四边形AOCP 面积最大时,只需要△ACP 的面积最大即可,设点P 坐标为(m ,−16m 2−23m +2),则点G 坐标为(m ,13m +2),S △ACP =12PG •OA =12•(−16m 2−23m +2−13m ﹣2)•6=−12m 2﹣3m ,当m =﹣3时,上式取得最大值,则点P 坐标为(﹣3,52).连接OP 交对称轴于点M ,此时,|PM ﹣OM |有最大值,直线OP 的表达式为:y =−56x ,当x =﹣2时,y =53,即:点M 坐标为(﹣2,53),|PM ﹣OM |的最大值为:|√(−3+2)2+(52−53)2−√22+(53)2|=√616. (3)存在.△AE =CD ,△AEC =△ADC =90°,△EMA =△DMC ,△△EAM △△DCM (AAS ),△EM =DM ,AM =MC ,设:EM =a ,则:MC =6﹣a .在Rt△DCM 中,由勾股定理得:MC 2=DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a =83,则:MC =103,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt△DMC 中,12DH •MC =12MD •DC ,即:DH ×103=83×2,则:DH =85,HC =√DC 2−DH 2=65,即:点D 的坐标为(−65,185);设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣6√10√10),点D ′坐标为(−65+√10185+√10),而点E 坐标为(﹣6,2),则A′D′2=(−6+65)2+(185)2=36,A′E 2=(√10)2+(√102)2=m 2√104,ED′2=(245+√10)2+(85+√10)2=m 2√101285.若△A ′ED ′为直角三角形,分三种情况讨论:△当A′D′2+A′E 2=ED′2时,36+m 2−√104=m 2+√101285,解得:m =2√105,此时D ′(−65+√10185+√10)为(0,4);△当A′D′2+ED′2=A′E 2时,36+m 2+10+1285=m 210+4,解得:m =−8√105,此时D ′(−6510185+10)为(-6,2);△当A′E 2+ED′2=A′D′2时,m 2√10+4+m 2√101285=36,解得:m =−8√105或m =√105,此时D ′(−65√10185√10)为(-6,2)或(−35,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(−35,195).2、已知抛物线1l :212y ax =-的项点为P ,交x 轴于A 、B 两点(A 点在B 点左侧),且sin ABP ∠=.(1)求抛物线1l 的函数解析式;(2)过点A 的直线交抛物线于点C ,交y 轴于点D ,若ABC ∆的面积被y 轴分为1: 4两个部分,求直线AC 的解析式;(3)在(2)的情况下,将抛物线1l 绕点P 逆时针旋转180°得到抛物线2l ,点M 为抛物线2l 上一点,当点M 的横坐标为何值时,BDM ∆为直角三角形?【答案】(1)21128y x =-;(2)直线AC 的解析式为114y x =+;(3)点M 横坐标为16-+16--16-+16--BDM ∆为Rt ∆.【解析】(1)当0x =时,2122y ax =-=- △顶点()0,2P -,2OP = △90BOP ∠=︒,△sin OP ABP BP ∠==△BP ==△4OB ===△()4,0B ,代入抛物线1l 得:1620a -=,解得18a =,△抛物线1l 的函数解析式为21128y x =- (2)△知抛物线1l 交x 轴于A 、B 两点 △A 、B 关于y 轴对称,即()4,0-A △8AB =设直线AC 解析式:y kx b =+点A 代入得:40k b -+= △4b k =△直线AC :4y kx k =+,()0,4D k △14|4|8||2AOD BOD S S k k ∆∆==⨯⨯= △21248x kx k -=+,整理得:2832160x kx k ---= △128x x k += △14x =-△284C x x k ==+,()284488C y k k k k k =++=+△2(84,88)C k k k ++ △21||32||2ABC C S AB y k k ∆=⋅=+ △若0k >,则:=1:4AOD OBCD S S ∆四边形 △15AOD ABC S S ∆∆= △()218325k k k =⨯+ 解得:10k =(舍去),214k = △直线AC 的解析式为114y x =+ △若k 0<,则8AOD BOD S S k ∆∆==-,()232ABC S k k ∆=-+△()218|32|5k k k -=⨯-+解得:10k =(舍去),214k =(舍去)综上所述,直线AC 的解析式为114y x =+. (3)由(2)得:()0,1D ,()4,0B△抛物线1l 绕点P 逆时针旋转180︒得到抛物线2l △抛物线2l 解析式为:22128y x =-- 设点M 坐标为21(,2)8m m --△若90BDM ∠=︒,如图1,则0m < 过M 作MN y ⊥轴于点N△90MND BOD BDM ∠=∠=∠=︒,MN m =-,22111(2)388DN m m =---=+ △90MDN BDO MDN DMN ∠+∠=∠+∠=︒ △BDO DMN ∠=∠ △BDO DMN ∆∆△BO ODDN MN=,即BO MN DN OD ⋅=⋅ △21438m m -=+解得:116m =-+,216m =--△若90DBM ∠=︒,如图2,过点M 作MQ x ⊥轴于点Q△90BQM DBM BDM ∠=∠=∠=︒,4BQ m =-,2211(2)288MQ m m =---=+ △90BMQ MBQ MBQ DBO ∠+∠=∠+∠=︒△BMQ DBO ∠=∠ △BMQ DBO ∆∆△BQ MQDO BO=,即BQ BO MQ OD ⋅=⋅△()214428m m -=+解得:116m =-+216m =--△若90BMD ∠=︒,则点M 在以BD 为直径的圆除点B 、D 外的圆周上 显然以AB 为真径的圆与抛物线2l 无交点,故此情况不存在满足的m综上所述,点M 横坐标为16-+16--16-+16--BDM ∆为Rt ∆. 3、已知:如图,一次函数y=12x+1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y=12x 2+bx+c 的图象与一次函数y=12x+1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P 使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值,若不存在,请说明理由. (4)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值,若不存在,说明理由.【答案】△y =12x 2−32x +1;(2)92;(3)t =1或3;(4)a =23√5或65√5【解析】(1)将B (0,1),D (1,0)的坐标代入y=12x 2+bx+c , 得:{c =1b +c +12=0,解得:{b =−32c =1故解析式y=12x 2−32x +1;(2)设C (x 0,y 0), 则有 {y 0=12x 0+1y 0=12x 02−32x 0+1 , 解得{x 0=4y 0=3, △C (4,3),由图可知:S=S △ACE -S △ABD ,又由对称轴为x=32可知E (2,0),△S=12AE•y 0-12AD×OB=12×4×3-12×3×1=92; (3)设符合条件的点P 存在,令P (t ,0): 当P 为直角顶点时,如图:过C 作CF△x 轴于F ;△Rt△BOP△Rt△PCF , △BOPF=OP CF ,即 14−t =t3, 整理得t 2-4t+3=0, 解得a=1或a=3; 故可得t=1或3.(4)存在符合条件的a 值,使△APQ 与△ABD 相似, △当△APQ△△ABD 时,AP AB=AQAD , 解得:a=6√55;△当△APQ△△ADB 时,AP AD=AQ AB , 解得:a=2√53,△存在符合条件的a 值,使△APQ 与△ABD 相似,a=6√55或2√53.4、已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使P A +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭.【思路引导】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则CM =,AC ==AM =AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【解析】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+.当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则CM =,AC ==AM =分三种情况考虑:①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【方法总结】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.5、如图,动直线 y =kx+2(k >0)与 y 轴交于点 F ,与抛物线 y =14x 2+1 相交于A ,B 两点,过点 A ,B 分别作 x 轴的垂线,垂足分别为点 C ,D ,连接 CF ,DF ,请你判断△CDF 的形状,并说明理由.【答案】△CFD 是直角三角形.见解析。
抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。
AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。
证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。
2.证明:|BF|=x^2/(2p)。
3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。
5.证明:∠A’FB’=90°。
6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。
7.证明:C’F= A’B’=C’A’=C’B’。
8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。
9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。
11.证明:AF/BF=p/(1-cosα)。
12.证明:点A处的切线为y=y1+p(x+x1)。
1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。
方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。
2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。
(y1+y2)/2),证毕。
3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。
t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。
y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。
《二次函数》50题一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y3>y2>y13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤26.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.27.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y28.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y29.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y012.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.413.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.1615.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.418.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.519.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣522.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<823.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.427.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣228.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.229.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为531.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.232.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.1133.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<334.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=235.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<036.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.740.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定44.若二次函数y=﹣x2+px+q的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y3<y1 45.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)46.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个47.已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a+c=1;②b2﹣4ac≥0;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个48.若二次函数y=|m|x2+nx+c的图象经过A(a,b)、B(0,y1)、C(5﹣a,b)、D(,y2)、E(3,y3),则y1、y2、y3的大小关系是()A.y2<y3<y1B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 49.如图,在平面直角坐标系中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.D.50.如图,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴的负半轴交于点B,点M是对称轴上的一个动点.连接AM,BM,当|AM﹣BM|最大时,点M的坐标是()A.(1,4)B.(1,2)C.(1,﹣2)D.(1,﹣6)参考答案与试题解析一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)【解答】解:∵抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,∴(﹣+)=﹣1,∴m+n=﹣5,∴抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是(﹣2,y),∴2m﹣4=4+2(3m+n)+n,∴4m+3n=﹣8,解得m=7,∴y=2m﹣4=10,∴在抛物线W2上的对应点A′坐标是(﹣2,10),故选:B.2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1【解答】解:抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,∴抛物线开口向上,对称轴为x==﹣1.∵|﹣1﹣(﹣2)|<|1+1|<|+1|∴y3>y2>y1,故选:D.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣2,∴b=4a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵点B到直线x=﹣2的距离大于2,∴点A到直线x=﹣2的距离大于2,即点A在(﹣4,0)的左侧,∴当x=﹣4时,y>0,即16a﹣4b+c>0,∴a﹣b+c>0,所以②正确;∵C(0,c),OB=OC,∴B(c,0),∴ac2+bc+c=0,即ac+b+1=0,所以③错误;∵点A与点B关于直线x=1对称,∴A(﹣4﹣c,0),∴﹣4﹣c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确.故选:C.4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②∵对称轴为直线x=﹣1,即﹣=﹣1,解得b=2a,即2a﹣b=0,所以②正确;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;∵m>n>0,∴m﹣1>n﹣1>﹣1,由x>﹣1时,y随x的增大而减小知x=m﹣1时的函数值小于x=n﹣1时的函数值,所以④正确;故选:D.5.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤2【解答】解:∵二次函数y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的对称轴为x=1,顶点(1,1),∴当y=1时,x=1,当y=2时,x2﹣2x+2=2,x=0或2,∵当0≤x≤a时,y的最大值为2,y的最小值为1,∴1≤a≤2,故选:D.6.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.2【解答】解:抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,可知函数的对称轴x=1,∴﹣=1,∴b=2;故选:D.7.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【解答】解:∵抛物线y=﹣2x2+4x+c的对称轴为直线x=1,且抛物线的开口向下,∴离抛物线对称轴的水平距离越远,对应函数值越小,∵点(4,y3)离对称轴的距离最远,点(,y2)离对称轴的距离最近,∴y2>y1>y3,故选:C.8.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y2【解答】解:∵抛物线y=3x2﹣6x+m,∴抛物线的开口向上,对称轴是直线x=﹣=1,∴抛物线上的点离对称轴最远,对应的函数值就越大,∵点(﹣4,y3)离对称轴最远,点A(3,y1)离对称轴最近,∴y1<y2<y3.故选:C.9.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.【解答】解:抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,可知函数的对称轴x==1,∴m=﹣;将点(﹣,n)代入函数解析式,可得n=2(﹣﹣1)2=;故选:A.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y0【解答】解:∵x0满足关于x的方程ax+2=0,∴x0=﹣,∴点(x0,y0)是二次函数y=ax2+4x+c的顶点坐标.∵a>0,∴对于任意实数x都有y≥y0.故选:A.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以①正确;∵抛物线的顶点坐标为(,1),∴抛物线得对称轴为直线x=﹣=,∴b=﹣a,即a+b=0,所以②正确;∵抛物线与x轴的负半轴的交点到原点的距离小于1,∴x=﹣1时,y<0,∴a﹣b+c<0,即b>a+c,所以③错误;∵抛物线的顶点的纵坐标为1,∴=1,把b=﹣a代入得4c﹣a=4,所以④正确.故选:C.13.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④【解答】解:∵抛物线与x轴交于点A(x1,0),B(x2,0),且x1<x2,∴△=b2﹣4ac>0,所以①错误;若a+c=b+3,即a﹣b+c=3,则该抛物线一定经过点(﹣1,3),所以②错误;当P(m,n)为抛物线的顶点时,方程ax2+bx+c=n的解是x=m;若P(m,n)不为抛物线的顶点,则方程ax2+bx+c=n有两个不相等的实数解,所以③错误;当P点为顶点时,△P AB的面积最大.此时x=﹣=m,∵x1、x2为方程ax2+bx+c=0的两不相等的实数解,∴x1+x2=﹣,∴m=,所以④正确.故选:D.14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.16【解答】解:∵点P(m,n)是抛物线y=x2+k上的点,∴n=m2+k,∴k=n﹣m2,∴点P(m,n)是和谐点,对应的和谐矩形的面积为16,∴2|m|+2|n|=|mn|=16,∴|m|=4,|n|=4,当n≥0时,k=n﹣m2=4﹣16=﹣12;当n<0时,k=n﹣m2=﹣4﹣16=﹣20.故选:A.15.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,即2a﹣b=0,所以①正确;∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∴当x=﹣3时,y>0,即9a﹣3b+c>0,所以②错误;∵抛物线开口向下,点(﹣2,y1)到直线x=﹣1的距离比点(,)到直线x=﹣1的距离小,∴y1>y2,所以③错误;∵x=2,y=0,∴4a+2b+c=0,把b=2a代入得4a+4a+c=0,解得c=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,所以④正确.故选:B.16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限【解答】解:由抛物线y=﹣x2+3x﹣1可知抛物线开口向下,与y轴的交点为(0,﹣1),对称轴为直线x=﹣>0,∴抛物线对称轴在y轴的右侧,∴直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2)都在第四象限,故选:D.17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.18.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.5【解答】解:根据题意得=3,﹣=5,解得a=﹣,b=2或b=﹣2,∴抛物线y=ax2+bx(a≠0)的解析式为y=﹣x2+2x或y=﹣x2﹣2x,∵y=﹣x2+2x=﹣(x﹣4)2+4,y=﹣x2﹣2x=﹣(x+4)2+4,∴二次函数y=ax2+bx有最大值4.故选:A.19.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+2m,∴这条抛物线的顶点为(2,2m+4),∴关于x轴对称的抛物线的顶点(2,﹣2m﹣4),∵它们的顶点相距6个单位长度.∴|2m+4﹣(﹣2m﹣4)|=6,∴4m+8=±6,当4m+8=6时,m=﹣,当4m+8=﹣6时,m=﹣,∴m的值是﹣或﹣.故选:D.20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.【解答】解:A、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b>0,所以函数y=ax2+bx+2b的图象开口向上,对称轴x<0,与y轴的交点位于直线的上方,由ax2+bx+2b=﹣ax+b整理得ax2+(a+b)x+b=0,由于△=(a+b)2﹣4ab=(a﹣b)2≥0,则两图象有交点,故A错误;B、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故B错误;C、一次函数的图象经过一、二、三象限,则﹣a>0,即a<0,b>0,所以函数y=ax2+bx+2b开口向下,对称轴x>0,故C错误;D、一次函数的图象经过二、三,四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故D正确;故选:D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣5【解答】解:∵抛物线y=﹣2x2﹣3向右平移2个单位长度,∴平移后解析式为:y=﹣2(x﹣2)2﹣3,∴再向上平移1个单位长度所得的抛物线解析式为:y=﹣2(x﹣2)2﹣3+1.即y=﹣2(x﹣2)2﹣2;故选:B.22.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<8【解答】解:∵抛物线y=x2+bx+3的对称轴为直线x=2.∴﹣=2,解得:b=﹣4,∴y=x2﹣4x+3,∴一元二次方程x2+bx+3﹣t=0有实数根可以看做y=x2﹣4x+3与函数y=t只有一个交点,∵方程x2﹣4x+3﹣t=0(t为实数)在1<x<5的范围内只有一个实数根,当x=1时,y=0;当x=5时,y=8;当x=2时,y=﹣1;∴t的取值范围是0≤t<8或t=﹣1.故选:A.23.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 【解答】解:∵抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),∴点A(﹣2,0),点B(2,0),该抛物线的顶点坐标为(0,4),∵将抛物线M绕点B旋转180°,得到新的抛物线M',∴新的抛物线M'的顶点坐标为(4,﹣4),点A关于点B的对称点为(6,0),∴新的抛物线M'的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,故选:D.24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+【解答】解:∵抛物线y=x2+2x﹣3=(x+3)(x﹣1),∴令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则(x+3)(x﹣1)=0,∴x=﹣3或1,∴B(1,0),∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴对称轴为x=﹣1,∵CD∥AB,∴C、D两点关于x=﹣1对称,∴D(﹣2,﹣3),设BD的解析式为y=mx+n(m≠0),则,∴,∴BD的解析式为y=x﹣1,∴E(0,﹣1),令y=﹣1,则y=x2+2x﹣3=﹣1,解得,x=﹣1,∴F(﹣1﹣,﹣1),G(﹣1+,﹣1),∴FG=(﹣1+)﹣(﹣1﹣)=2,故选:C.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)当x=﹣2时,y>0,∴4a﹣2b+c>0,故本说法错误;(2)方程ax2+bx+c=0两根分别为1,3,都大于0,故本说法正确;(3)当x>2时,y随x的增大而增大,故本说法错误;(4)由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,一定不过第二象限,故本说法正确;故选:B.26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时,a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:C.27.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣2【解答】解:∵k<0,∴函数y=kx2+(4k+3)x+1的图象在对称轴直线x=﹣的左侧,y随x的增大而增大.∵当x<m时,y随着x的增大而增大∴m≤﹣,而当k<0时,﹣=﹣2﹣>﹣2,所以m≤﹣2,故选:D.28.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.2【解答】解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.29.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧【解答】解:∵二次函数y=ax2+(1﹣2a)x(a>0),∴当a=时,该函数的对称轴是y轴,故选项A正确;该函数的对称轴为直线x=﹣=1﹣<1,当x>2时,y随x的增大而增大,故选项B、C正确;∵该函数的对称轴为x=1﹣<1,∴当a=时,x=﹣1,则此时对称轴在y轴左侧,故选项D错误;故选:D.30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为5【解答】解:A、y=2(x﹣2)2+5=2x2﹣8x+13,则图象与y轴的交点坐标为(0,13),原题说法正确,故此选项不合题意;B、对称轴为x=2,图象的在y轴的右侧,原题说法正确,故此选项不合题意;C、a=2,开口向上,对称轴为x=2,则当x>2时,y的值随x值的增大而增大,原题说法错误,故此选项符合题意;D、顶点坐标为(2,5),开口向上,则当x=2时,函数有最小值为5,原题说法正确,故此选项不合题意;故选:C.31.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.2【解答】解:∵抛物线y=ax2﹣2ax+a2+1(a≠0),∴对称轴为直线x=﹣=1,∵当x≥3时,y随x的增大而增大,∴a>0,且x≤1时,y随x的增大而减小,∵当﹣2≤x≤0时,y的最大值为10.,∴当x=﹣2时,y=a2+8a+1=10,∴a=1或a=﹣9(舍去),∴抛物线为y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴此抛物线关于y轴的对称的抛物线为y=(x+1)2+1,∴函数y=(x+1)2+1,∴抛物线y=(x+1)2+1在﹣2≤x≤3内,当x=3时取最大值,即y=17,故选:B.32.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.11【解答】解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.33.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<3【解答】解:设y=ax2+b|x|+c,则函数y=ax2+b|x|+c的图象,如右图所示,∵抛物线y=ax2+bx+c的图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,∴ax2+b|x|+c=k有四个不相等的实数根时,k满足﹣3<k<﹣1,故选:C.34.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=2【解答】解:由题A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,知A、B两点关于y轴对称,记斜边AB交y轴于点D,可设A(﹣,b),B(,b),C(a,a2),D(0,b),则斜边上的高为h,故h=b﹣a2,∵△ABC是直角三角形,由其性质直角三角形斜边中线等于斜边一半,∴CD=,∴=,方程两边平方得b﹣a2=(a2﹣b)2,即h=(﹣h)2,因为h>0,所以h=1,是个定值.故选:B.35.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<0 【解答】解:由图象可知,函数函数y=ax2+bx图象的对称轴为直线x=﹣<1,∵a<0,∴2a+b<0,故C正确;∵当x=2时,函数y=ax2+bx中y<0,即4a+2b<0,当x=1时,y<1,即a+b<1∴5a+3b<1,故A正确;∵a+b<1,∴2a+2b<2∵2a+b<0,∴4a+3b<2故B正确;∵﹣>,a<0,∴b>﹣a,∴2b>﹣2a,∴a+2b>﹣a,∴a+2b>0,故D错误;故选:D.36.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.【解答】解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个【解答】解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b的图象在第一、二、三象限,二次函数y=ax2+bx的图象经过原点,顶点在y轴的左侧,故选项A、B错误;当a>0,b<0时,一次函数y=ax+b的图象在第一、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的右侧,函数图象开口向上,函数y=ax2+bx与y=ax+b 交点在x轴上,故选项C正确;当a<0,b<0时,一次函数y=ax+b的图象在第二、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的左侧,函数图象开口向下,故选项D错误;故选:C.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.7【解答】解:设各自抛出后1.2秒时到达相同的最大离地高度为h,这个最大高度为h,则小球的高度y=a(t﹣1.2)2+h,由题意a(t﹣1.2)2+h=a(t﹣2﹣1.2)2+h,解得t=2.2.故第一个小球抛出后2.2秒时在空中与第二个小球的离地高度相同.故选:A.40.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④【解答】解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x ﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵(3,0)关于直线x=1的对称点坐标为(﹣1,0)∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b﹣c=0,故②错误;∵﹣=1,∴b=﹣2a∴a+2a﹣c=0,∴c=3a,故③正确;∵b=﹣2a,c=3a,a<0,∴4a+2b﹣c=4a﹣4a﹣3a=﹣3a>0,即4a+2b﹣c>0,故①正确;∵4a+2b﹣c>0,a﹣b﹣c=0,两式相加:5a+b﹣2c>0,故④正确,故选:C.42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④【解答】解:由图象可知,抛物线开口向下,则a<0,∵对称轴为直线x=,∴x=0与x=3所对应的函数值相同,∵当x=0时y<0,∴x=3时y<0,∴x>3时,y<0,∴①正确;∵x==﹣,∴b=﹣3a,∴4a+b=4a﹣3a=a<0,∴②正确;∵抛物线经过点A(,0),∴a+b+c=0,∴c=a,∵B在(0,0)和(0,﹣1)之间,∴﹣1<c<0,∴﹣1<a<0,∴﹣<a<0,∴③正确;4ac+b2﹣4a=4a×a+(﹣3a)2﹣4a=5a2+9a2﹣4a=14a2﹣4a=2a(7a﹣2),∵a<0,∴2a(7a﹣2)>0,∴4ac+b2﹣4a>0,∴④不正确;故选:B.43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定【解答】解:y=(x﹣m)(x﹣n)与x轴的交点为(m,0),(n,0),由(x﹣m)(x﹣n)﹣x=0,则y=(x﹣m)(x﹣n)与y=x的两个交点为(a,a),(b,b),如图1:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴正半轴时,(m,0),(n,0)在(a,a),(b,b)点的下方,∴a<m<n<b,∴(a﹣m)(b﹣n)<0,不符合;如图2:当函数y=(x﹣m)(x﹣n)与x轴交点分别在x轴正半轴和负半轴时,此时m<a<n<b,∴(a﹣m)(b﹣n)>0,∴mn<0;如图3:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴负半轴时,此时m<a<b<n,∴(a﹣m)(b﹣n)<0,不符合题意;综上所述:当(a﹣m)(b﹣n)>0时,mn<0,。
1、已知抛物线y=ax2+bx+c经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8
的另一点坐标为
2、已知抛物线y=ax2+bx+c经过(0,-6),(8,-6)两点,其顶点的纵坐标是2,求这个抛物线的
解析式.
3、已知抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的函
数解析式
4、已知抛物线y=ax2+bx+c经过A(1,-4),B(-1、0),C(-2,5)三点.
(1)求抛物线的解析式并画出这条抛物线;
(2)直角坐标系中点的横坐标与纵坐标均为整数的点称为整点.试结合图象,写出在第四象限内抛物线上的所有整点的坐标.
5、
6、
7、
8、已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),求此抛物线对应的关
系式及顶点坐标.
9、已知抛物线y=ax2+bx+c经过点(-5,0)、(-1,0)、(1,12),求这个抛物线的表达式及其
顶点坐标.
10、已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在,说明理由;
若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?
11、已知抛物线y=ax2+bx+2经过点(3,2),那么该抛物线的对称轴是直线
12、已知,抛物线y=ax2+bx-3a经过A(-1,0)、C(0,-3)两点,与轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D与C关于抛物线的对称轴对称,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接DB,问在抛物线上是否存在一点M,使∠DBM=45°?若存在,求出点M的坐标;若不存在,请说明理由.
13、物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、
(1)填空:抛物线的对称轴为直线x=,抛物线与x轴的另一个交点D的坐标为
(2)求该抛物线的解析式.
1、
2
34、
5、
6。