构造几何图形解无理方程_组_
- 格式:pdf
- 大小:272.28 KB
- 文档页数:2
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
二元一次方程组求解的几何意义二元一次方程组是一个具有两个未知数和两个等式的数学问题,我们可以用几何图形来解释它的几何意义。
一元一次方程可以表示一条直线,而二元一次方程组可以表示两条直线。
我们可以把这两条直线画在坐标系中,然后观察它们的交点,就能够求出方程组的解。
具体来说,我们可以将两个方程写成标准形式:$ax+by=c$,然后画出它们表示的两条直线。
这两条直线的交点就是方程组的解。
当两条直线相交于一点时,方程组有唯一解。
这个交点的坐标就是方程组的解。
这种情况下,我们说这两条直线相交于同一平面内的一个点。
当两条直线平行时,方程组无解。
在这种情况下,我们说这两条直线不存在交点。
当两条直线重合时,方程组有无数解。
这种情况下,我们说这两条直线在同一平面内重合。
几何意义可以以三个不同的形式解释二元一次方程组的解:图像意义、交点意义和平面意义。
图像意义:我们知道,直线的方程是$y=ax+b$,其中$a$是直线的斜率,$b$是截距。
当$a=0$时,直线是水平的,当$b=0$时直线是竖直的。
因此,$ax+by=c$是一个斜率和截距都可以表示成$a$和$b$的线性表达式。
这个表达式对应的直线在坐标系中是如何绘制的,它与方程$ax+by=c'$对应的另一条直线相交的位置是如何定位的。
这就是图像意义。
交点意义:所有可能的直线都是某个最高次项为二次的方程的解。
然而,二次方程的全部解的计算方法是用“根”的概念来描述的。
在这种情况下,二元一次方程组要么有唯一的解,要么没有,要么有无数个解。
因此,二元一次方程组的解可以被理解为一条直线与另一条直线的交点。
而这个交点可以被解读为两个方程的“根”。
平面意义:当两条直线相交时,它们定义了一个具有两个异侧定点的平面。
这个平面的交点就是方程组的解。
这种情况下,解是一个确定的点。
当两条直线平行时,我们可以说它们定义同一个平面的两个平行边。
这种情况下,方程组无解。
最后,当两条直线重合时它们定义了同一个平面。
初中数学复习几何模型专题讲解专题04 等腰直角三角形构造三垂直模型一、解答题1.如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=kx的图象交点为C(3,4).(1)求k值与一次函数y=k1x+b的解析式;(2)在x轴上有一动点P,求当PB+PC最小时P点坐标.(3)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标;【答案】(1)k= 43,y=23x+2;(2)P(1,0);(3)(﹣5,3)或(﹣2,5)【分析】(1)根据待定系数法求解即可;(2)作点B关于x轴对称的点B',连接B'C,交x轴于点P,此时PB+PC最小,求出直线B'C的解析式,求出直线B'C与x轴的交点坐标即可;(3)分两种情况讨论:①当∠DAB=90°时;②当∠D'BA=90°时,添加辅助线构造全等三角形进行求解即可.【详解】解:(1)由题意,将点C(3,4)代入y=kx 中,得:4=3k ,解得:k= 43, 再将点C(3,4)、点A (﹣3,0)代入y =k 1x +b 中,得:113034k b k b -+=⎧⎨+=⎩, 解得:1232k b ⎧=⎪⎨⎪=⎩, ∴函数y =k 1x +b 的解析式为:y=23x+2; (2)如图,作点B 关于x 轴对称的点B ',连接B 'C ,交x 轴于点P ,此时PB+PC 最小,在y=23x+2中,令x=0,则y=2, ∴B(0,2),则B '(0,﹣2),设直线B 'C 的解析式为y =k 2x ﹣2,将C (3,4)代入得:4=3k 2﹣2,解得:k 2=2,∴直线B 'C 的解析式为y =2x ﹣2,令y=0,由0=2x ﹣2得:x=1,∴点P 坐标为(1,0);(3)根据题意,OA=3,OB=2,分两种情况:①当∠DAB=90°时,DA=AB ,过点D作DM⊥x轴于E,∵∠DAM+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAM=∠ABO,∵∠DMA=∠AOB=90°,DA=AB,∴△DAM≌△ABO(AAS),∴DM=OA=3,MA=OB=2,∴D(﹣5,3);②当∠D'BA=90°时,D'B=AB,过D'作D'N⊥y轴于N,同理可证△D'BN≌△BAO(AAS),∴BN=OA=3,D'N=OB=2,∴D'(﹣2,5),故点D的坐标为(﹣5,3)或(﹣2,5).【点睛】本题是一次函数的综合题,主要考查待定系数法求一次函数的解析式、同角的余角相等、全等三角形的判定与性质、一次函数与几何图形及最短路径相关问题、解二元一次方程组等知识,熟练掌握一次函数的相关知识,添加辅助线构造全等三角形和利用分类讨论的数学思想是解答的关键.2.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.【答案】(1)见解析;(2)见解析;(3)DE=BE﹣AD【分析】(1)由题意易得∠DAC+∠ACD=90°,则∠DAC=∠BCE,进而可证△ADC≌△CEB,然后根据全等三角形的性质可求解;(2)由题意易得∠CEB=∠ADC=90°,则可求∠CAD=∠BCE,进而可证△CAD≌△BCE,然后根据全等三角形的性质可求解;(3)根据题意可证△CAD≌△BCE,然后根据全等三角形的性质可求解.【详解】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB ,ADC CEBDAC ECB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴CD =BE ,AD =CE ,∴DE =CE+CD =AD+BE ;(2)证明:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD =90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,∵AC=BC ,∴△ADC ≌△CEB ,∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=BE﹣AD.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的两个锐角互余,熟练掌握全等三角形的性质与判定及直角三角形的两个锐角互余是解题的关键.3.课间,小明拿着老师的等腰三角板玩,不小心掉在两墙之间,如图所示:(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相同)【答案】(1)见详解;(2)砌墙砖块的厚度a为5cm.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)利用(1)中全等三角形的性质进行解答.【详解】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中ADC CEBDAC BCE AC BC∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,AD=CE=4a,∴DC+CE=BE+AD=7a=35,∴a=5,答:砌墙砖块的厚度a为5cm.【点睛】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.4.已知,A(-1,0).(1)如图1,B(0,2),以B点为直角顶点在第二象限作等腰直角△ABC.①求C点的坐标;②在坐标平面内是否存在一点P (不与点C 重合),使△PAB 与△ABC 全等? 若存在,直接写出P 点坐标; 若不存在,请说明理由;(2)如图2,点E 为y 轴正半轴上一动点,以E 为直角顶点作等腰直角△AEM ,设M (a ,b ),求a-b 的值.【答案】(1)①()2,3C -;②存在,()2,1P 或()1,1-或()3,1-;(2)1.【分析】(1)作CD ⊥y 轴于D ,证△CEB ≌△BOA ,推出CE=OB=2,BE=AO=1,即可得出答案;(2)分为三种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;(3)作MF ⊥y 轴于F ,证△EFM ≌△AOE ,求出EF ,即可得出答案.【详解】(1)①作CE ⊥y 轴于E ,如图1,∵A (-1,0),B (0,2),∴OA=1,OB=2,∵∠CBA=90°,∴∠CEB=∠AOB=∠CBA=90°,∴∠ECB+∠EBC=90°,∠CBE+∠ABO=90°, ∴∠ECB=∠ABO ,在△CBE 和△BAO 中ECB ABO CEB AOB BC AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△CBE ≌△BAO ,∴CE=BO=2,BE=AO=1,即OE=1+2=3,∴C (-2,3).②存在一点P ,使PAB △与ABC 全等,分为三种情况:①如图2,过P 作PE x ⊥轴于E ,则90PAB AOB PEA ∠=∠=∠=,90EPA PAE ∴∠+∠=,90PAE BAO ∠+∠=,EPA BAO ∴∠=∠,在PEA 和AOB 中EPA BAO PEA AOB PA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,PEA ∴≌AOB ,1PE AO ∴==,2EA BO ==,123OE ∴=+=,即P 的坐标是()3,1-;②如图3,过C 作CM x ⊥轴于M ,过P 作PE x ⊥轴于E ,则90CMA PEA ∠=∠=, CBA ≌PBA ,45PAB CAB ∴∠=∠=,AC AP =,90CAP ∴∠=,90MCA CAM ∴∠+∠=,90CAM PAE ∠+∠=, MCA PAE ∴∠=∠,在CMA 和AEP △中,CMA PEA AC AP ⎪∠=∠⎨⎪=⎩,CMA ∴≌AEP △,PE AM ∴=,CM AE =,()2,3C -,()1,0A -,211PE ∴=-=,0312OE AE A =-=-=,即P 的坐标是()2,1;③如图4,过P 作PE x ⊥轴于E ,CBA ≌PAB △,AB AP =∴,90CBA BAP ∠=∠=,则90AEP AOB ∠=∠=,90BAO PAE ∴∠+∠=,90PAE APE ∠+∠=,BAO APE ∴∠=∠,在AOB 和PEA 中,AOB PEA AB AP ⎪∠=∠⎨⎪=⎩,AOB ∴≌PEA ,1PE AO ∴==,2AE OB ==,0211E AE AO ∴=-=-=,即P 的坐标是()1,1-,综合上述:符合条件的P 的坐标是()3,1-或()1,1-或()2,1.(2)过M 作MF y ⊥轴于F ,得到下图5∵(),M a b∴,MF a FO b ==,由上图得:90AEM EFM AOE ∠=∠=∠=,90AEO MEF ∠+∠=,90MEF EMF ∠+∠=,AEO EMF ∴∠=∠,在AOE △和EMF △中AOE EFM AEO EMF AE EM ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEO ∴≌()EMF AAS ,1EF AO ∴==,MF OE =,MN x ⊥轴,MF y ⊥轴,90MFO FON MNO ∴∠=∠=∠=,∴四边形FONM 是矩形,MN OF ∴=,1a b MF OF EO OF EF OA -=-=-===.【点睛】本题考查全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.5.公路上,A ,B 两站相距25千米,C 、D 为两所学校,DA AB ⊥于点A ,CB AB ⊥于点B ,如图,已知15DA =千米,现在要在公路AB 上建一报亭H ,使得C 、D 两所学校到H 的距离相等,且90DHC ∠=︒,问:H 应建在距离A 站多远处?学校C 到公路的距离是多少千米?【答案】H 应建在距离A 站10千米处,学校C 到公路的距离是10千米.【分析】先根据垂直的定义可得90A B ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得D BHC ∠=∠,然后根据三角形全等的判定定理与性质可得,15AH BC DA HB ===千米,最后根据线段的和差可得.【详解】由题意得:DH HC =,25AB =千米,,DA AB CB AB ⊥⊥,90A B ∴∠=∠=︒,90D AHD ∠∴∠+=︒,90DHC ∠=︒,18090BH D HD C C H A ∴∠+∠=︒-∠=︒,D BHC ∴∠=∠,在ADH 和BHC △中,A B D BHC DH HC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADH BHC AAS ∴≅,,AH BC DA HB ∴==,15DA =千米,25AB =千米,15HB ∴=千米,10BC AH AB HB ∴==-=千米,答:H 应建在距离A 站10千米处,学校C 到公路的距离是10千米.【点睛】本题考查了垂直的定义、直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.6.如图所示,在ABC ∆和DBC ∆中,∠ACB=∠DBC=90°,点E 是BC 的中点,EF ⊥AB ,垂足为F ,且AB=DE .(1)求证:BC=BD;(2)若BD=10厘米,求AC的长.【答案】(1)证明见解析;(2)5厘米【分析】(1)由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC;(2)由(1)可知△ABC≌△EDB,根据全等三角形的对应边相等,得到AC=BE,由E是BC的中点,得到BE=12BC=12BD=5厘米.【详解】解:(1)∵DE⊥AB,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB,在△ABC和△EDB中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ;(2)∵△ABC ≌△EDB ,∴AC=BE ,∵E 是BC 的中点,BD=10厘米,∴BE=12BC =12BD =5厘米. 【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.7.综合与实践特例研究:将矩形ABCD 和Rt CEF 按如图1放置,已知90,,,FCE AD CD CE CF CF CD ∠=︒==>,连接',BF DE .()1如图1,当点D 在CF 上时,线段BF 与DE 之间的数量关系是__ ;直线BF 与直线DE 之间的位置关系是_ ;拓广探索:()2图2是由图1中的矩形ABCD 绕点C 顺时针旋转一定角度得到的,请探索线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由.【答案】(1),BF DE BF DE =⊥;(2),BF DE BF DE =⊥,理由见解析【分析】()1,BF DE BF DE =⊥,延长ED 交B F 于点G 先证△FBC ≌△EDC (SAS ),可知,BF DE CED CFB =∠=∠,由∠DCE=90º,可得∠DEC+∠CDE=90º,可推出∠FDG+∠GFD=90º即可,()2先下结论,,BF DE BF DE =⊥,再证明,证法与(1)类似,延长ED 交CF 于点,M 交FB 于点N .由四边形ABCD 为矩形且AD=CD 可得CD CB =,()DCE BCF SAS ≅可推出,BF DE CED CFB =∠=∠.由90,FCE ∠=︒知90CME CED ∠+∠=︒.由,CME FMN ∠=∠可用等量代换得90,FMN CFB ∠+∠=︒由三角形内角和得90,FNE ∠=︒即可.【详解】解:()1,BF DE BF DE =⊥,延长ED交B F于点G,∵四边形ABCD为矩形,且AD=DC,∴BC=CD,∴∠=∠=90º,BC CEF D由旋转的FC=EC,∴△FBC≌△EDC(SAS),BF DE CED CFB=∠=∠,,∵∠DCE=90º,∴∠DEC+∠CDE=90º,∴∠FDG+∠GFD=90º∠FGD=90º,()2,=⊥,BF DE BF DE理由如下:M交FB于点N.如答图,延长ED交CF于点,,90FCE ∠=︒,四边形ABCD 为矩形,BCD FCE ∴∠=∠,FCB FCD ECD FCD ∠+∠=∠+∠,FCB ECD ∴∠=∠,AD CD =,∴矩形ABCD 为正方形.CD CB ∴=,在DCE 和BCF △中,,,CD CB ECD FCB CE CF =⎧⎪∠=∠⎨⎪=⎩,()DCE BCF SAS ∴≅.,BF DE CED CFB ∴=∠=∠.90,FCE ∠=︒90CME CED ∴∠+∠=︒.,CME FMN ∠=∠90,FMN CFB ∴∠+∠=︒90,FNE ∴∠=︒BF DE ∴⊥.【点睛】本题考查旋转中两线段的数量与位置关系问题,关键是把两线段置于两个三角形中利用全等解决问题,会利用旋转找全等条件,会计算角的和差,和证垂直的方法. 8.已知:在ABC 中,∠BAC =90°,AB =CA ,直线m 经过点A ,BD ⊥直线m 于点D ,CE ⊥直线m 于点E .求证:BDA AEC ≅△△;【答案】证明见解析.【分析】先根据垂直的定义可得90ADB CEA ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得BAD ACE =∠∠,然后根据三角形全等的判定定理即可得证.【详解】,BD m CE m ⊥⊥,90ADB CEA ∴∠=∠=︒,90ACE CAE ∴∠+∠=︒,90BAC ∠=︒,18090BAD CAE BAC ∴∠+∠=︒-∠=︒,BAD ACE ∴∠=∠,在BDA 和AEC 中,ADB CEA BAD ACE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDA AEC AAS ∴≅.【点睛】本题考查了垂直的定义、直角三角形的性质、三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.9.(提出问题)如图1,在直角ABC 中,∠BAC =90°,点A 正好落在直线l 上,则∠1、∠2的关系为(探究问题)如图2,在直角ABC 中,∠BAC =90°,AB =AC ,点A 正好落在直线l 上,分别作BD ⊥l 于点D ,CE ⊥l 于点E ,试探究线段BD 、CE 、DE 之间的数量关系,并说明理由.(解决问题)如图3,在ABC 中,∠CAB 、∠CBA 均为锐角,点A 、B 正好落在直线l 上,分别以A 、B 为直角顶点,向ABC 外作等腰直角三角形ACE 和等腰直角三角形BCF ,分别过点E 、F 作直线l 的垂线,垂足为M 、N .①试探究线段EM 、AB 、FN 之间的数量关系,并说明理由;②若AC =3,BC =4,五边形EMNFC 面积的最大值为【答案】提出问题:1290∠+∠=︒;探究问题:BD CE DE +=,理由见解析;解决问题:①EM FN AB +=,理由见解析;②492. 【分析】 提出问题:根据平角的定义、角的和差即可得;探究问题:先根据垂直的定义可得90ADB CEA ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得2ABD ∠=∠,然后根据三角形全等的判定定理与性质可得,BD AE AD CE ==,最后根据线段的和差即可得;解决问题:①如图(见解析),同探究问题的方法可得,EM AD FN BD ==,再根据线段的和差即可得;②如图(见解析),同探究问题的方法可得,ACD EAM BCD FBN ≅≅,再根据三角形全等的性质可得,ACD EAM BCD FBN S S S S ==,然后利用三角形的面积公式将五边形EMNFC 面积表示出来,由此即可得出答案.【详解】提出问题:12180,90BAC BAC ∠+∠+∠=︒∠=︒,2190∴∠+∠=︒,故答案为:1290∠+∠=︒;探究问题:BD CE DE +=,理由如下:,BD l CE l ⊥⊥,90ADB CEA ∴∠=∠=︒,190ABD ∴∠+∠=︒,由提出问题可知,1290∠+∠=︒,2ABD ∴∠=∠,在ABD △和CAE 中,2ADB CEA ABD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴≅,,BD AE AD CE ∴==,DE AE AD BD CE ∴=+=+,即BD CE DE +=;解决问题:①EM FN AB +=,理由如下:同探究问题的方法可证:,EM AD FN BD ==,AB AD BD EM FN ∴=+=+,即EM FN AB +=;②如图,过点C 作CD l ⊥于点D ,同探究问题的方法可证:,ACD EAM BCD FBN ≅≅,,ACD EAM BCD FBN S S S S ∴==, ACE 和BCF △都是等腰直角三角形,且3,4AC BC ==,3,4AE AC BF BC ∴====, 191,8222ACE BCF S AC AE S BC BF ∴=⋅==⋅=, ∴五边形EMNFC 面积为EAM ACE ACD BCD BCF FBN S S S S S S +++++, 982ACD ACD BCD BCD S S S S =+++++, ()2522ACD BCD SS =++, 2522ABC S =+, 则当ABC 面积取得最大值时,五边形EMNFC 面积最大,设ABC的BC边上的高为h,则122ABCS BC h h=⋅=,在ABC中,CAB∠、CBA∠均为锐角,∴当90ACB∠=︒时,h取得最大值,最大值为3AC=,ABC∴面积的最大值为236ABCS=⨯=,则五边形EMNFC面积的最大值为2549 2622⨯+=,故答案为:492.【点睛】本题考查了垂直的定义、三角形全等的判定定理与性质、等腰直角三角形的定义等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.10.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.【答案】见解析【分析】根据题意易得Rt△ACE≌Rt△CBF,则有∠EAC=∠BCF,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt △ACE 和Rt △CBF 中,AC BC AE CF=⎧⎨=⎩, ∴Rt △ACE ≌Rt △CBF (HL ),∴∠EAC =∠BCF ,∵∠EAC+∠ACE =90°,∴∠ACE+∠BCF =90°,∴∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.11.如图1,在△ABC 中,∠ACB =90°,AC =BC ,过C 在△ABC 外作直线MN ,AM ⊥MN 于点M ,BN ⊥MN 于点N .(1)求证:MN =AM +BN ;(2)如图2,若过点C 作直线MN 与线段AB 相交,AM ⊥MN 于点M ,BN ⊥MN 于点N (AM >BN ),(1)中的结论是否仍然成立?说明理由.【答案】(1)见解析;(2)不成立,理由见解析【分析】(1)根据垂直的定义得到∠AMC=∠CNB=90°,则∠MAC+∠ACM=90°,又∠ACB=90°,则∠ACM+∠NCB=90°,于是根据等量代换得到∠MAC=∠NCB ,根据“AAS ”可证明△ACM ≌△CBN ,根据全等的性质得到AM=CN ,CM=BN ,则MN=MC+CN=AM+BN .(2)根据已知条件能证得△ACM ≌△CBN ,利用全等的性质得到AM=CN ,CM=BN ,而MN=CN-CM=AM-BN .【详解】解:(1)∵AM ⊥MN 于点M ,BN ⊥MN 于点N ,∴∠AMC=∠CNB=90°,∴∠MAC+∠ACM=90°,∵∠ACB=90°,∴∠ACM+∠NCB=90°,∴∠MAC=∠NCB ,在△ACM 和△CBN 中,AMC CNB MAC NCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩\ ∴ACM ≌△CBN ,∴AM=CN ,CM=BN ,∴MN=MC+CN=AM+BN .(2)题(1)中的结论不成立,同题(1)证明可知:ACM ≌△CBN ,∴AM=CN ,CM=BN ,∴MN=CN-CM=AM-BN ,【点睛】本题主要考查的是全等三角形的性质与判断,正确的掌握全等三角形的性质与判断是解题的关键.12.在平面直角坐标系中,函数443y x =-+的图像分别交x 轴、y 轴于点A C 、,函数y ax b =+的图象分别交x 轴、y 轴于点,B C ,且4OC OB =,过点C 作射线//CR x 轴. (1)求直线BC 的解析式;(2)点P 自点C 沿射线CR 以每秒1个单位长度运动,同时点Q 自点A 沿线段AC 以每秒1个单位长度的速度向终点C 运动,其中一个点停止运动时,另一个点也停止运动,连接PQ .设POC ∆的面积为S ,点Q 的运动时间为t (秒),求S 与t 的函数关系式,并直接写出t 的取值范围;(3)在(2)的条件下,过点P 作//PF CB ,交x 轴于点F ,连接QF ,在P Q 、运动的过程中,是否存在t 值,使得45PFQ ︒∠=,若存在,求t 值:若不存在,请说明理由.【答案】(1)44y x =+;(2)()222055S t t t =-+<<;(3)存在,1511或257【分析】(1)利用待定系数法求出A ,C 两点坐标,再求出点B 坐标即可解决问题; (2)想办法用t 表示点Q 坐标,利用三角形面积公式计算即可;(3)分两种情形,通过辅助线构造等腰直角三角形,利用相似三角形解决问题.【详解】解:(1)函数443y x =-+的图象分别交x 轴、y 轴于点A ,C , (3,0)A ∴,(0,4)C ,3OA =,4OC =,4OC OB =,1OB =∴,(1,0)B ∴-,设直线BC 的解析式为y kx b =+,则有40b k b =⎧⎨-+=⎩, 解得44k b =⎧⎨=⎩, ∴直线BC 的解析式为44y x =+.(2)如图1中,由题意AQ PC t ==,易知3(35Q t -,4)5t ,2142(4)2(05)255S t t t t t ∴=-=-+<< (3)存在;情形①如图2中,取点(4,3)M ,连接CM ,BM ,作MG CR ⊥垂足为G 交OA 于K ,作QH OA ⊥垂足为H .4CG CO ==,90CGM COB ∠=∠=︒,1MG BO ==()CGM COB ASA ∴≅△△,GCM OCB ∴∠=∠,CB CM =,90BCM OCG ∴∠=∠=︒,BCM ∴∆的等腰直角三角形,1345∴∠=∠=︒,//PF BC ,2145∴∠=∠=︒,445∠=︒,24∴∠=∠,//FQ BN ∴,QFH MBK ∴∠=∠,90QHF MKB ∠=∠=︒,QHF MKB ∴△∽△, ∴QH FH MK BK =,∴433(1)5535t t t ---=, 1511t ∴=. 情形②如图3中,由2445∠=∠=︒,可知90MNF ∠=︒,由QHF BKM △∽△得到QH HF BK MK=, ∴43(4)5553t t t --=, 257t ∴=, 综上所述1511t或257. 【点睛】此题考查一次函数的应用,直角三角形的性质及全等三角形以及相似三角形的判定及性质,属于综合性较强的题目,对于此类动点型题目,首先要确定符合题意的条件下动点所在的位置,然后用时间t 表示出有关线段的长度,进而建立关于线段的关系式,学会添加常用辅助线,构造特殊三角形解决问题,难度较大.13.已知:如图,在平面直角坐标系中,点A (a ,0)、C (b ,c ),且a 、b 、c满足()2b 32c -++∣=0. (1)求点A 、C 的坐标;(2)在x 轴正半轴上有一点E ,使∠ECA =45°,求点E 的坐标;(3)如图2,若点F 、B 分别在x 轴正半轴和y 轴正半轴上,且OB=OF ,点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.【答案】(1)(-3,0);(3,-2);(2)(2,0);(3)证明见详解【分析】(1)根据题意,由算术平方根,绝对值和平方数的非负性,求出a 、b 、c 的值,即可得出点A 、C 的坐标;(2)通过辅助线作图,构造一线三垂直模型,证明ALG CKA S≌S ,求出点G 的坐标,由等面积法求出AE 长度即可求出点E 坐标;(3)作EO ⊥OP 交PG 的延长线于E ,连接EB 、EN 、PB ,只要证明四边形ENPB 是平行四边形即可.【详解】(1()2b 32c -++∣=0, 所以a=-3,b=3,c=-2,点A 坐标为(-3,0),点C 坐标为(3,-2),故答案为:(-3,0);(3,-2);(2)过点A 作AC 的垂线,交CE 的延长线于点G ,过点A 作x 轴的垂线KL ,过点C 作KL 的垂线于点K ,过点G 作KL 的垂线于点L ,过点G 作x 轴的垂线于M ,过点C作x 轴的垂线于N ,∵∠ECA =45°,AG ⊥AC ,∴∠CAG=90°,AG=AC ,△CAG 为等腰直角三角形,由一线三垂直模型可知,∠GAL=∠ACK ,在△ALG 和△CKA 中90GAL ACKAG A AC LG CKA ∠=∠∠=∠==︒⎧⎪⎨⎪⎩∴ALG CKA S ≌S ,∴AL=CK=AN=3+3=6,LG=AK=CN=2,∴GM=6,OM=3-2=1,∴点G 坐标为(-1,3),在Rt △ANC 中,AN=6,CN=2,由勾股定理得,由等面积法,得11()22AC AG AE GM CN ⨯⨯=⨯⨯+,∴11822AE ⨯⨯⨯, ∴AE=5,∴OE=AE-OA=5-3=2,故点E 坐标为(2,0),故答案为:(2,0);(3)如图,作EO ⊥OP 交PG 的延长线于E ,连接EB 、EN 、PB ,∵∠EOP=90°,∠EPO=45°,∴∠OEP=∠EPO=45°,∴EO=PO ,∵∠EOP=∠BOF=90°,∴∠EOB=∠POF ,在△EOB 和△POF 中,BO OF EOB POF OE OP =⎧⎪∠=∠⎨⎪=⎩∴△EOB ≌△POF ,∴EB=PF=PN ,∠1=∠OFP ,∵∠2+∠PMO=180°,∵∠MOF=∠MPF=90°,∴∠OMP+∠OFP=180°,∴∠2=∠OFP=∠1,∴EB ∥PN ,∵EB=PN ,∴四边形ENPB 是平行四边形,∴BG=GN ,即点G 是BN 的中点.【点睛】本题考查了算术平方根,绝对值和平方数的非负性,一线三垂直模型,等面积法求线段长度,三角形全等的判定和性质,平行四边形的判定和性质应用,熟练掌握图形的判定和性质是解题的关键.14.在平面直角坐标系中,已知点(),0A a 、()0,C b 满足2(2)0+=a(1)直接写出:a =____________,b =________.(2)点B 为x 轴正半轴上一点,如图1,BE AC ⊥于点E ,交y 轴于点D ,连接OE ,若OE 平分AEB ∠,求直线BE 的解析式.(3)在(2)的条件下,点M 为直线BE 上一动点,连OM ,将线段OM 绕点M 逆时针旋转90︒,如图2,点O 的对应点为N ,当点M 运动时,判断点N 的运动路线是什么图形,并说明理由.【答案】(1)2-,5-;(2)2y x 25=-;(3)点N 的运动路线是直线32077=--y x ,理由见解析【分析】(1)根据题意得到关于a 、b 的方程,求a 、b 即可;(2)如图1,过点O 作OF OE ⊥,交BE 于F ,分别证明EOC FOB ∆∆≌,AOC DOB ∆∆≌,得到OB OC =,OA OD =,确定点B 、D 坐标,利用待定系数法即可求解; (3)如图2,过点M 作MG x ⊥轴,垂足为G ,过点N 作⊥NH GM 交GM 的延长线于H ,证明NOM ∆为等腰直角三角形,得到=OG MH ,=GM NH ,设2,25⎛⎫- ⎪⎝⎭M m m ,则3,25--⎛⎫ ⎪⎝⎭H m m ,得到732,255⎛⎫--- ⎪⎝⎭N m m ,即752-=m x ,325--=m y ,消去m ,即可得到点N 运动轨迹.【详解】解:(1)由题意得a+2=0,b+5=0,解得a=2-,b=5-,故答案为:2-,5-;(2)如图1,过点O 作OF OE ⊥,交BE 于F ,∵BE AC ⊥,OE 平分AEB ∠,∴EOF ∆为等腰直角三角形,∴OE=OF ,∠BOF=∠COE=45°,∵BE AC ⊥于点E ,∴∠1+∠BAC=90°,∵∠2+∠BAC=90°,∴∠1=∠2,∴EOC FOB ∆∆≌,∴OB OC =,∵∠1=∠2, ∠AOC=∠DOB=90°,∴AOC DOB ∆∆≌,∴OA OD =,∵()2,0A -,()0,5C -,∴()0,2D -,()5,0B ,设直线BD 解析式为y kx b =+,∴250b k b =-⎧⎨+=⎩, ∴ 225b k =-⎧⎪⎨=⎪⎩, ∴直线BD ,即直线BE 的解析式为2y x 25=-;(3)由题意得,NOM ∆为等腰直角三角形如图2,过点M 作MG x ⊥轴,垂足为G ,过点N 作⊥NH GM 交GM 的延长线于H , ∵NOM ∆为等腰直角三角形,∴≌∆∆GOM HMN ,∴=OG MH ,=GM NH ,由(2)得直线BD 的解析式2y x 25=-, 设2,25⎛⎫- ⎪⎝⎭M m m ,则3,25--⎛⎫ ⎪⎝⎭H m m , ∴732,255⎛⎫--- ⎪⎝⎭N m m , 令752-=m x ,325--=m y , ∴32077=--y x , 即点N 的运动路线是直线32077=--y x .【点睛】本题为一次函数综合题,考查了三角形全等判定,等腰直角三角形性质,待定系数法等,综合性强,根据题意构造全等,理解函数图象是点的运动轨迹是解题的关键.15.如图,将Rt△ABC的斜边BC绕点B顺时针旋转90°得边BD,过点D作AB的垂线,交AB延长线于点E,求证:△EDB≌△ABC.【答案】见解析.【分析】先由旋转的性质得到BC=BD,∠DBC=90°=∠CAB,再运用“AAS”证得△EDB≌△ABC 即可.【详解】证明:∵BC绕点B顺时针旋转90°得边BD,∴BC=BD,∠DBC=90°=∠CAB,∴∠ABC+∠ACB=90°,∠ABC+∠DBE=90°,∴∠ACB=∠DBE,又∵∠CAB=∠DEB=90°,∴△EDB≌△ABC(AAS).【点睛】本题考查了全等三角形的判定和旋转的性质,根据旋转的性质得到判定全等三角形的条件是解答本题的关键.16.如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE 长.【答案】(1)见解析;(2)7【分析】(1)此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF了.【详解】解:(1)∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC,BE=AF.∴EF=EB+CF.(2)解:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC=3,BE=AF=10.∴EF=AF﹣CF=10﹣3=7.【点睛】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.17.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,(1)当直线MN绕点C旋转到图(1)的位置时,请你探究线段DE、AD、BE之间的数量关系并加以证明;(2)当直线MN绕点C旋转到图(2)的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.【答案】(1)DE=AD+BE,理由见详解;(2)发生变化,AD=BE+DE,理由见详解;(3)BE=AD+DE.【分析】(1)由题意易得∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠DCA+∠DAC=90°,则有∠DAC=∠ECB,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可求证;(2)由题意易得∠CDA=∠BEC=90°,∠DCA+∠CAD=90°,∠DCA+∠BCE=90°,则有∠DAC=∠ECB,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可求证;(3)由题意易得∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠EBC+∠BCE=90°,则有∠ACD=∠CBE,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可得解.【详解】解:(1)DE=AD+BE,理由如下:∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠DCA+∠DAC=90°,∴∠DAC=∠ECB,AC=BC,∴△ADC≌△CEB,∴AD=CE,CD=BE,DE=DC+CE∴DE=AD+BE;(2)发生变化,AD=BE+DE,理由如下:∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠CDA=∠BEC=90°,∠DCA+∠CAD=90°,∠DCA+∠BCE=90°,∴∠DAC=∠ECB,AC=BC,∴△ADC≌△CEB,∴AD=CE,CD=BE,CE=DC+DE∴AD=BE+DE;(3)BE=AD+DE,理由如下:同理(2)的方法可得△ADC≌△CEB,∴AD=CE,CE=AD,CD=EC+DE∴BE=AD+DE.【点睛】本题主要考查三角形全等的判定与性质,熟练掌握三角形全等的性质与判定是解题的关键.18.如图,在ABC 中∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)求证:ADC CEB △≌△;(2)若AD=2,BE=3,求ABC 的面积.【答案】(1)见解析;(2)132【分析】 (1)根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证出△ADC 和△CEB 全等即可;(2)由(1)可推出CD =BE ,AD =CE ,进而可得到AC=AB=△ABC 面积即可.【详解】解:(1)证明:∵∠ACB =90°,AD ⊥MN ,BE ⊥MN ,∴∠BEC =∠ACB =∠ADC =90°,∴∠ACE+∠BCE =90°,∠BCE+∠CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中ADC=BEC ACD=CBE AC=BC ⎧⎪⎨⎪⎩∠∠∠∠,∴△ADC ≌△CEB (AAS );(2)∵△ADC ≌△CEB∴BE =CD ,AD =CE ,AC=BC ,又AD=2,BE=3,∴∴△ABC 的面积为11322=, 故△ABC 的面积为132.【点睛】全等三角形的性质和判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.二、填空题19.一个等腰直角三角尺不小心掉到两墙之间(如图),已知90,ACB AC BC ∠=︒=,从三角尺的刻度可知20,AB cm AD =为三块砖的厚度,BE 为两块砖的厚度,小聪很快就知道了砌墙所用砖块的厚度(每块砖的厚度相等,两块砖间的缝隙忽略不计)为____________cm .【答案】13【分析】设砖块的厚度为xcm ,由题意可知:AD=3x ,BE=2x ,根据等腰直角三角形的性质和勾股定理求出AC ,利用AAS 即可证出△DAC ≌△ECB ,从而得出CD=BE=2xcm ,利用勾股定理列出方程即可求出x .【详解】解:设砖块的厚度为xcm ,由题意可知:AD=3xcm ,BE=2xcm∵90,ACB AC BC ∠=︒=,20AB cm =∴222AC BC AB +=解得AC BC ==由题意可知:∠ADC=∠CEB=90°∴∠DAC +∠ACD=90°,∠ECB +∠ACD=90°∴∠DAC=∠ECB∴△DAC ≌△ECB∴CD=BE=2xcm在Rt △ADC 中,222AD DC AC +=即()()(22232x x +=解得:x=13. 【点睛】此题考查的是等腰直角三角形的性质、勾股定理和全等三角形的判定及性质,掌握等腰直角三角形的性质、勾股定理和全等三角形的判定及性质是解题关键.20.如图,在平面直角坐标系中,A(0,5),B(2,0),点C是第一象限内的点,且△ABC 是以AB为直角边,满足AB=AC,则点C的坐标为________.【答案】(5,7)【分析】依题∠BAC=90°,AB=AC,画出C点位置,利用全等三角形的判定与性质,即可求得点C的坐标.【详解】解:如图:当∠BAC=90°,AB=AC时,过点C作CD⊥y轴于点D,在△OAB和△DCA中,AOB CDA OAB DCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△OAB ≌△DCA (AAS ),∴AD=OB=2,CD=OA=5,∴OD=OA+AD=7,∴点C 的坐标为(5,7);【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的性质,注意掌握数形结合思想的应用.21.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B . C 作过点A 的直线的垂线BD 、CE ,垂足分别为D 、 E ,若BD=4,CE=2,则DE=___.【答案】6【分析】先证明∠DBA=∠CAE ,从而根据AAS 定理证明△BDA ≌△AEC ,根据全等三角形的性质可得AD=CE=2,AE=BD=4,进而得到答案.【详解】解:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD ⊥DE ,∴∠BDA=90°,∴∠BAD+∠DBA=90°,∴∠DBA=∠CAE ,∵CE ⊥DE ,∴∠AEC=90°,在△BDA 和△AEC 中,ABD CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDA ≌△AEC (AAS ),∴AD=CE=2,AE=BD=4,∴DE=AD+AE=2+4=6;故答案为:6.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,关键是掌握全等三角形的判定定理与性质定理.22.如图,直线a 经过正方形ABCD 的顶点A ,已知BE a ⊥于点E ,DF a ⊥于点F .若3BE =,8DF =,则线段EF 的长为______.【答案】11【分析】根据题意易得△AEB ≌△DFA ,则有BE=AF ,DF=AE ,进而问题可得解.【详解】解:∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=90°,∵BE a ⊥,DF a ⊥,∴∠DFA=∠AEB=90°,∴∠FAD+∠ADF=90°,又∵∠FAD+∠BAE=90°,∴∠ADF=∠BAE ,∴△AEB ≌△DFA ,∵3BE =,8DF =,∴BE=AF=3,DF=AE=8,∴EF=AF+AE=3+8=11;故答案为11.【点睛】本题主要考查全等三角形的判定与性质及正方形的性质,熟练掌握全等三角形的判定与性质及正方形的性质是解题的关键.23.如图,AO⊥OM,OA=7,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P 点,当点B在射线OM上移动时,则PB的长度____________.【答案】7 2【分析】根据题意过点E作EN⊥BM,垂足为点N,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE并分析即可得出答案.【详解】解:如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,。
一、解答题1.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=度.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?解析:(1)45°,理由见解析;(2)35;(3)12α,理由见解析【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)表示出∠AOC度数,表示出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35.(3)如图3,∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α.【点睛】本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC-∠NOC.2.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC 、线段AD 、线段AE 、线段AB 、线段CD 、线段CE 、线段CB 、线段DE 、线段DB 、线段EB.能用大写字母表示的射线:射线AC 、射线CD 、射线DE 、射线EB 、射线CA 、射线DC 、射线ED 、射线BE.(2)因为n 个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段, 所以n 个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC 与线段CA , 所以这条直线上共有(1)2n n -条线段. 因为一个端点对应延伸方向相反的两条射线, 所以当一条直线上有n 个点时,共有2n 条射线. 【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法. 3.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.解析:8cm 【解析】 【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长. 【详解】设MC =xcm ,则CB =2xcm , ∴MB =3x .∵M 点是线段AB 的中点,AB =12cm , ∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC , ∴AC =3x +x =4x =4×2=8(cm ). 故线段AC 的长度为8㎝. 【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.4.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:5.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
解析几何综合题解题思路案例分析解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。
据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.1 判别式----解题时时显神功案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:y ,令判别式0=∆l 的距离为2212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k kx k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2 判别式与韦达定理-----二者联用显奇效案例2 已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
相交线听课总结相交线是数学中常见的概念,它在几何学和代数学中都有重要的应用。
在本次听课中,我学到了关于相交线的一些基本性质和应用,下面我将对听课内容进行总结。
一、相交线的定义和性质1. 相交线的定义:在平面上,两条不平行的直线或曲线交于一点或一组点的线称为相交线。
2. 相交线的性质:a. 相交线的交点数量可以是1个、无穷多个或者不存在。
b. 如果两条直线相交于一点,则该点是这两条直线的公共点。
c. 相交线的交点可以是实数、有理数或者无理数。
d. 如果两条直线平行,则它们没有交点,因此也没有相交线。
e. 相交线可以是直线、线段或者射线。
二、相交线的应用1. 相交线在几何学中的应用:a. 相交线可以用来判断两条直线是否相交,从而确定两条直线之间的关系。
b. 相交线可以帮助我们求解几何问题,如求解两条直线的交点坐标、求解线段的长度等。
c. 相交线可以用来构造几何图形,如三角形、四边形等。
2. 相交线在代数学中的应用:a. 相交线可以用来解方程。
当两条直线表示的方程相交时,它们的解就是相交线的交点坐标。
b. 相交线可以用来求解线性方程组。
线性方程组的解就是相交线的交点坐标。
c. 相交线可以用来表示平面上的点或向量的集合。
三、相交线的实际应用相交线不仅在数学中有重要的应用,而且在实际生活中也有很多应用场景。
以下是一些常见的实际应用:1. 建筑设计:相交线的概念可以用来确定建筑物之间的角度、距离和位置关系,帮助设计师进行规划和布局。
2. 交通规划:相交线可以用来确定道路的交叉口、路口的交通信号灯布置等,保证交通流畅和安全。
3. 电路设计:相交线可以用来表示电路中元件之间的连接关系,帮助工程师进行电路设计和布线。
4. 统计学:相交线可以用来表示数据之间的关系,帮助统计学家进行数据分析和预测。
四、总结通过本次听课,我对相交线的定义、性质和应用有了更深入的理解。
相交线在数学中起着重要的作用,不仅帮助我们解决几何问题,还可以应用于实际生活中的各个领域。
初中数学思想方法专题讲座——整体思想解题策略整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一.数与式中的整体思想【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7相应练习:1. 若代数式2425x x -+的值为7,那么代数式221x x -+的值等于( ).A .2B .3C .-2D .42.若3a 2-a-2=0,则 5+2a-6a 2=3.先化简,再求值222142442a a a a a a a a +--⎛⎫-÷ ⎪--+-⎝⎭,其中a 满足a 2-2a -1=0.总结:此类题是灵活运用数学方法解题技巧求值的问题,首先要观察已知条件和需要求解的代数式,然后将已知条件变换成适合所求代数式的形式,运用主题带入法即可得解。
【例2】.已知114a b -=,则2227a ab ba b ab---+的值等于( )A.6B.6-C.125 D.27-分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b-的形式,再整体代入求解.【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.总结:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化.【例4】逐步降次代入求值:已知m 2-m -1=0,求代数式m 3-2m +2005的值.相应练习:1、已知m 是方程2250x x +-=的一个根,求32259m m m +--的值.2、已知m 是方程2310x x -+=的根,求代数式10214+-m m 的值.总结:此类题目通常为初中阶段很少接触到得三次方程甚至更高次的方程,那么用初中阶段的知识直接解题时肯定行不通的,所以这个时候我们就要考虑如何降次的问题。
一、解答题1.如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由;(2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD .解析:(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11 【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF =∠BOF ,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG :∠GOF =4:3时;②当∠COG :∠GOF =3:4时;进行讨论即可求解.【详解】(1)因为∠AOD +∠BOC =360°﹣∠AOB ﹣∠DOC =360°﹣90°﹣90°=180°,所以∠AOD 和∠BOC 互补.(2)因为OE 平分∠AOD ,所以∠AOE =∠DOE ,因为∠COF =180°﹣∠DOC ﹣∠DOE =90°﹣∠DOE ,∠BOF =180°﹣∠AOB ﹣∠AOE =90°﹣∠AOE ,所以∠COF =∠BOF ,即OF 是∠BOC 的平分线.(3)因为OG 将∠COF 分成了4:3的两个部分,所以∠COG :∠GOF =4:3或者∠COG :∠GOF =3:4.①当∠COG :∠GOF =4:3时,设∠COG =4x °,则∠GOF =3x °,由(2)得:∠BOF =∠COF =7x °因为∠AOB +∠BOF +∠FOG =180°,所以90°+7x +3x =180°,解方程得:x =9°,所以∠AOD =180°﹣∠BOC =180°﹣14x =54°.②当∠COG :∠GOF =3:4时,设∠COG =3x °,∠GOF =4x °,同理可列出方程:90°+7x +4x =180°,解得:x = 90()11,所以∠AOD=180°﹣∠BOC=180°﹣14x720 ()11 .综上所述:∠AOD的度数是54°或720 () 11.【点睛】本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用.2.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:3.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键. 4.百羊问题 甲赶群羊逐草茂,乙牵肥羊一只随其后,戏问甲及一百否?甲云所说无差谬.若得原有一群凑,再添一半小一半,得你一只来方凑,玄机奥妙谁猜透?请列出方程.(说明:“小一半”是指一半的一半,即四分之一)解析:x +x +12x +14x +1=100. 【分析】 根据“再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只”这一等量关系列出方程即可.【详解】设羊群原有羊x 只,根据题意可列出方程:x +x +12x +14x +1=100. 【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.5.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.6.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠, 40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒, 40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 7.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+15a 2b +3,B =﹣12a 2b +a 3,C =a 3﹣1,D =﹣15(a 2b +15),且相对两个面所表示的代数式的和都相等,求E 、F 代表的代数式. 解析:(1)面F ,面E ;(2)F =12a 2b ,E =1 【分析】(1)根据“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E ,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A 与D ,B 与F ,C 与E ,列式计算即可.【详解】(1)由“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E.故答案为:面F ,面E. (2)由题意得:A 与D 相对,B 与F 相对,C 与E 相对,A +D =B +F =C +E将A =a 315+a 2b +3,B 12=-a 2b +a 3,C =a 3﹣1,D 15=-(a 2b +15)代入得: a 315+a 2b +315-(a 2b +15)12=-a 2b +a 3+F =a 3﹣1+E ,∴F 12=a 2b , E =1. 【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.8.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.9.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.10.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.解析:(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE ∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE =90°-(80°-∠B OD )=10°+∠B OD即∠COE -∠BOD =10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键. 11.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)连接E 、F 交BC 于点G ;(4)连接AD ,并将其反向延长;(5)作射线BC .解析:见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ;(2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD 并从D 向A 方向延长即可;(4)连接BC ,并且以B 为端点向BC 方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.12.如图所示,A,B两条海上巡逻船同时在海面发现一不明物体,A船发现该不明物体在他的东北方向(从靠近A点的船头观测),B船发现该不明物体在它的南偏东60 的方向上(从靠近B点的船头观测),请你试着在图中确定这个不明物体的位置.解析:见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A点向东北方向作一条线,在B点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A和B所在位置作出不明物体所在它们的方向上的射线,两线的交点D即为不明物体所处的位置.如图所示,点D即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键.13.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)解析:(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,⨯⨯=(立方分米).所以甲型盒的容积为24540乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,⨯⨯=(立方分米),容积为2228故答案为40,8.⨯=(平方分米),(2)甲型盒的底面积为248⨯=(立方分米),两个乙型盒中的水的体积为8216÷=(分米).所以甲型盒内水的高度为1682答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.14.如图所示,∠AOB=35°,∠BOC=50°,∠COD=22°,OE平分∠AOD,求∠BOE的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.15.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm ).从A ,B 两题中任选一题作答.A .该长方体礼品盒的容积为______3cm .B .如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm .解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意 高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.18.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。