当前位置:文档之家› 液力耦合器国家标准

液力耦合器国家标准

液力耦合器国家标准
液力耦合器国家标准

液力耦合器的工作原理

液力耦合器的工作原理 (一)液力耦器的结构: 液力耦合器是一种液力传动装置,又称液力联轴器。液力耦合器其结构主要由壳体、泵轮、涡轮三个部分。 泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约 3mm 一 4mm ) ;泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 (二)液力耦合器的安装方式: 液力耦合器的输入轴与电动机联在一起,随电动机的转动而转动,是液力耦合器的主动部分。涡轮和输出轴连接在一起,是液力耦合器的从动部分,与负载连在一起。 在安装时,液力耦合器安装在电动机与负载之间,通常由于负载较大,且与其它设备有联锁,采用将电机后移方案,在改造方案中需重新做电机的基础。 (三)液力耦合器的工作原理: 电动机运行时带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在受到液压油冲击力而旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘,然后又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液压油循环流动的产生,是泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差。液力耦合器工作时,电动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。液压油在循环流动的过程中,除受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,这就是液力耦合器的工作原理。 (四)、液力耦合器的调速方法: 液力耦合器在实际工作中的情形是:电动机驱动泵轮旋转,泵轮带动液压油进行旋转,涡轮即受到力矩的作用,在液压油量较小时,当其力矩不足于克服载的起步阻力矩,所以涡轮还不会随泵轮的转动而转动,增加液压油,作用在涡轮上的力矩随之增大,作用在涡轮上的力矩足以克服负载起步阻力而起步,其液压油传递的力矩与负载力矩相等时,转速随之稳定。负载的的力矩和转速成平方比,当随着液压油量的增加,输出力矩加大,涡轮的转速随之加大,达到调节转速的目的。 油液螺旋循环流动的流速 VT 保持恒定, VL 为泵轮和涡轮的相对线速度, VE 为泵轮出口速度, VR 为油液的合成速度。涡轮高速转动,即输出和输入的转速接近相同时小,而合成速度 VR 与泵轮出口速度之的夹角很大,这使液流对涡轮很小,这将使输出元件滑动,速度降低。当将油液量加大,相对速度 VL 和合成速度 VR 都很这就使液流对涡轮叶片的推力变得直到有足够的循环油液对涡轮产生足够的冲击力,输出转速变高。 (五)液力耦合器的转换效率: 液力耦合器调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。

液力耦合器常见故障及维护

液力耦合器原理、常见故障及处理 一、常见故障及处理 油泵不上油或油压太低或油压不稳定原因1.油泵损坏2.油泵调压阀失灵或调整不好3.油泵吸油管路不严,有空气进入4.吸油器堵塞5.油位太低,吸6.油压表损坏7.油管路堵塞处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤5.加油至规定油位6.更换压力表7.清洗油管路2.油温过高原因1.冷却器堵塞或冷却水量不足2.风机负荷发生变动使偶合器过负荷处理1.清洗冷却器,加大冷却水量2.检查负荷情况,防止过负荷3.勺管虽能移动但不能正常调速原因无工作油进入处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤器5.加油至规定油位6.更换压力表7.清洗油管路4.箱体振动原因1.安装精度过低2.基础刚性不足3.联轴节胶件损坏4.地脚螺栓松动处理1.重新安装校正2.加固或重新做基础3.更换橡胶件4.拧紧地脚螺丝 二、原理及故障排除: 1、原理: 液力偶合器工作原理液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的间隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液

体动能转变为输出的机械能;然后,液体又经涡轮内缘流道回泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。二、液力偶合器的调速原理液力偶合器在转动时,工作油由供油泵从液力偶合器油箱吸油排出,经冷却器冷却后送至勺管壳体中的进油室,并经泵轮入油口进入工作腔。同时,工作腔中的油液从泵轮泄油孔泻入外壳,形成一个旋转油环,这样,就可通过液力偶合器的调速装置操纵勺管径向伸缩,任意改变外壳里油环的厚度,即改变工作腔中的油量,实现对输出转速的无级调节,勺管排出的油则通过排油器回到油箱。 2、故障现象及处理: (1)过热 1)、冷却器冷却水量不足,加大水量; 2)、箱体存油过多或少调节油量规定值; 3)、油泵滤芯堵塞清洗滤芯; 4)、转子泵损坏打不出油,换内外转子; 5)、安全阀溢流过多; 6)、弹簧太松上紧弹簧; 7)、密封损坏泄油换密封件; 8)、油路堵塞,清除。 (2)输出轴不转 1)、安全阀压力值太低,上紧弹簧; 2)、油路堵塞,清除;

液力耦合器

液力耦合器 液力耦合器 液力耦合器 fluid coupling 以液体为工作介质的一种非刚性联轴器﹐又称液力联轴器。液力耦合器(见图液力耦合器简图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔﹐泵轮装在输入轴上﹐涡轮装在输出轴上。动力机(内燃机﹑电动机等)带动输入轴旋转时﹐液体被离心式泵轮甩出。这种高速液体进入涡轮后即推动涡轮旋转﹐将从泵轮获得的能量传递给输出轴。最后液体返回泵轮﹐形成周而复始的流动。液力耦合器靠液体与泵轮﹑涡轮的叶片相互作用产生动量矩的变化来传递扭矩。它的输出扭矩等于输入扭矩减去摩擦力矩﹐所以它的输出扭矩恒小于输入扭矩。液力耦合器输入轴与输出轴间靠液体联系﹐工作构件间不存在刚性联接。液力耦合器的特点是﹕能消除冲击和振动﹔输出转速低于输入转速﹐两轴的转速差随载荷的增大而增加﹔过载保护性能和起动性能好﹐载荷过大而停转时输入轴仍可转动﹐不致造成动力机的损坏﹔当载荷减小时﹐输出轴转速增加直到接近于输入轴的转速﹐使传递扭矩趋于零。液力耦合器的传动效率等于输出轴转速与输入轴转速之比。一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。液力耦合器的特性因工作腔与泵轮﹑涡轮的形状不同而有差异。它一般靠壳体自然散热﹐不需要外部冷却的供油系统。如将液力耦合器的油放空﹐耦合器就处于脱开状态﹐能起离合器的作用。 变频器调速与液力耦合器调速的优缺点比较(一) [摘要]在风机,水泵类负载进行调速节能,先期应用的液力耦合器较多,高压变频器技术成熟后,也越来越多地得到了应用。对于这两种调速节能的装置进行其优缺点的比较,提高对调速节能领域的了解。 [关键词]调速变频器液力耦合器 一、引言

固态去耦合器企业标准

Q/BZL 陕西凌雷电气有限公司企业标准 Q/LL 015-2013 LSD-50/200固态去耦合器 2013-04-21发布 2013-04-21实施陕西凌雷电气有限公司发布

目次 前言 (Ⅲ) 1 总则 (1) 2 术语和定义 (1) 3 标志 (2) 4运行条件 (2) 5技术要求 (3) 6检验规程 (4) 7 型式试验 (5) 8 例行试验 (6) 9抽样试验 (6) 10验收 (6) 11包装、运输、保管及保修期 (7) I

前言 本标准主要参照GB18802.1-2002《低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法》制定。编写格式和规则与GB/T1.1-2000一致。 本标准从批准发布之日起生效。 本标准由陕西凌雷电气有限公司技术部提出。 本标准由陕西凌雷电气有限公司质管办归口。 本标准由陕西凌雷电气有限公司技术部负责起草。 本标准由陕西凌雷电气有限公司技术部负责解释。 本标准主要起草人:戴碧辉、吴林、陈萌 II

LSD-50/200固态去耦合器 1 总则 1.1 范围 本标准规定了LSD-50/200固态去耦合器的技术要求、试验方法、检验规则、制造安装、运输供货等内容。 1.2 规范性引用文件 下列文件中的条款通过本标准的引用而构成为本标准的条款。凡是注日期的引用文件其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 IEC61643.1 连接低压配电系统的电涌保护器第一部分:性能要求和试验方法 NVCE SP0177 减轻交流电和雷电对金属构筑物和腐蚀控制系统影响的措施 GB/T2423.1 电工电子产品环境试验第2部分:试验方法试验A:低温试验 GB/T2423.2 电工电子产品环境试验第2部分:试验方法试验B:高温试验 GB/T2423.3 电工电子产品环境试验第2部分:试验方法试验C:恒定湿热试验GB/T2423.5 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击GB/T2423.10 电工电子产品环境试验第2部分:试验方法试验FC和导则:震动GB11032 交流无间隙金属氧化物避雷器 GB4208 外壳防护等级(IP代码) GB18802.1 低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法GB/T 50698 埋地钢质管道交流干扰防护技术标准 SY/T0032 地钢制管道交流排流保护技术标准 CDP-S-PC-AC-007 油气管道工程固态去耦合器技术规格书 2 术语和定义 GB18802.1、GB11032确立的以及下列术语和定义适用于本标准。 3

风机液力偶合器低油压故障分析及处理

液力偶合器低油压故障分析及处理 郭恒全 马鞍山发电厂,马鞍山市243021 文章摘要:本文结合给水泵组成的液力偶合器由于油压低而不能正常运行和热备用的现象,分析了可引起液力偶合器油压低的原因。提出了液力偶合器油压低的故障处理和防止对策。(共2页) 文章关键词:液力偶合器低油压故障分析故障处理 文章快照:液力偶合器 油压低的原因。提出7液力偶合器油压低的故障处理和防止对策。!关键词逛生堡全墨£!苎堡.垫堕坌塑处理龃造1液力偶合器低油压的情况介绍我厂2台N125机组所配套使用的4台给水泵组均是上海电力修造总厂生产的产品。给水泵型号为:DG480--180,液力偶合器型号为:cO46,前置泵型号为:QG500~8O。泵组自1990年和1991年分别投产以来运行一直稳定可自1998年5月份开始12机甲给水泵组的液力合器故障频繁。先是液力偶合器振动,接着工作油压和润滑油压相继低到无法调至正常值。最终表现为泵组处于热备用(电动润滑油泵运行)时,油滤网后油压为:0.15MPa而一但泵组投入运行后,偶合器油箱油温升高的速度很快,润滑油油压逐渐下降至0.09MPa(此值为泵组低油压保护设定值)以下,迫使电动润滑油泵自启动。因此该泵组不能视为正常运行,故始终处于热备用状态。2液力偶合器低油压原因分析l2机甲给水泵组液力偶合器油压低故障出现后,我们进行了认真的分析和研究,认为能够引起液力偶合器油压低的原因有以下各点。2.1润滑油油压低(1)润滑油滤网堵塞(2)润滑油管路有堵塞现象。(3)润滑油管路(包括油箱内部)泄漏。(4)润滑油泵因工作齿轮磨损出力不足(包括电动润滑油泵)。(5)电动润滑油泵出口逆止阀泄漏,会使给水泵组在运行时,润滑油的一部分油流通过逆止阀和电动润滑油泵齿轮间的间隙,倒入油箱。(6)润滑油溢流阎泄漏。2.2工作油油压低(1)工作油管路有堵塞现象。 (2)工作油管路泄漏(包括油箱内部) 收格日期2∞O一08~11)《安徽电力}2000年第4期 (3)工作油泵出力不足主要因各配合问隙因磨损而增大,导致油泵输出的油量减少,油压降低,(4)工作油溢流阀泄漏。2.3其它原因(1)润滑油油质乳化。使润滑油粘度下降,油压降低。乳化原因主要是油中带水。(2)泵组各

液力耦合器的结构组成及工作原理

液力耦合器的结构组成及工作原理 来源:互联网作者:匿名发表日期:2010-4-5 9:12:15 阅读次数:124 查看权限:普通文章 液力耦合器主要由:壳体(housing)、泵轮(impeller)、涡轮(turbine)三个元件构成。在发动机曲轴1 的凸缘上,固定着耦合器外壳2。与外壳刚性连接并随曲轴一起旋转的叶轮,组成耦合器的主动元件,称为泵轮了。与从动轴5相连的叶轮,为耦合器的从动元件,称为涡轮4。泵轮与涡轮统称为工作轮。在工作轮的环状壳体中,径向排列着许多叶片。涡轮装在密封的外壳中,其端面与泵轮端面相对,两者之间留有3~4mm间隙。泵轮与涡轮装合后,通过轴线的纵断面呈环形,称为循环圆。在环状壳体中储存有工作液。 液力耦合器的壳体和泵轮在发动机曲轴的带动下旋转,叶片间的工作液在泵轮带动一起旋转。随着发动机转速的提高,离心力作用将使工作液从叶片内缘向外缘流动。因此,叶片外缘处压力较高,而内缘处压力较低,其压力差取决于工作轮半径和转速。 由于泵轮和涡轮的半径是相等的,故当泵轮的转速大于涡轮时,泵轮叶片外缘的液力大于涡轮叶片外缘。于是,工作液不仅随着工作轮绕其轴线做圆周运动,并且在上述压力差的作用下,沿循环圆依箭头所示方向作循环流动。液体质点的流线形成一个首尾相连的环形螺旋线。 液力耦合器的传动过程是:泵轮接受发动机传动来的机械能,传给工作液,使其提高动能,然后再由工作液将动能传给涡轮。因此,液力耦合器实现传动的必要条件是工作液在泵轮和涡轮之间有循环流动。而循环流动的产生,是由两个工作轮转速不等,使两轮叶片的外缘产生液力差所致。因此,液力耦合器在正常工作时,泵轮转速总是大于涡轮转速。如果二者转速相等,液力耦合器则不起传动作用。 汽车起步前,可将变速器挂上一挡位,启动发动机驱动泵轮旋转,而与整车驱动轮相连的涡轮暂时仍处于静止状态,工作液便立即产生绕工作轮轴线的圆周运动和循环流动。当液流冲到涡轮叶片上时,其圆周速度降低到零而对涡轮叶片造成一个冲击力,因而对涡轮作用一个绕涡轮轴线的力矩,力图使涡轮与泵轮同向旋转。对于一定的耦合器,发动机转速越大,则作用于涡轮的力矩也越大。 加大发动机供油量,使其转速增大到一定数值时,作用于涡轮上的转矩足以使汽车克服起步阻力而使汽车起步。随着发动机转速的继续增高,涡轮连同汽车也不断加速。

耦合器检验标准

1目的 为了确保所检验的全光纤型分支器件产品符合YD/T1117-2001产品要求,严格禁止不合格产品出厂。2范围 本标准规定了全光纤型分支器件的所有检验项目和测试方法以及产品的抽样规则等。 3职责 3.1技品部对确保正确执行本标准全权负责,检验人员应严格按照本标准进行检验,对产品质量负责,并 记录其数据与现象,交由技品部处理。 3.2包装人员对产品包装负责。 4引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。 YD/T1117-2001 全光纤型分支器件技术条件 5检验项目 5.1过程检验 注: (1)该步工艺只对1480/1550&980/1550波分复用器作要求; (2)该项检验标准只对1480/1550波分复用器作要求; (3)该项检验标准只对980/1550波分复用器作要求; (4)其中的分光比是以1工艺步骤中的A为基数;A为实际分光比。 5.2产品分级标准 5.2.11×3或3×3、1×4或4×4耦合器分级 表一耦合器的分级

5.2.21480/1550nm波分复用耦合器的分级表二 1480/1550nm波分复用耦合器的分级 5.2.3980/1550nm波分复用耦合器的分级

表三 980/1550nm波分复用耦合器的分级 *注: *1上述1480/1550nm&980/1550波分复用耦合器均为单级基本型器件,全光纤结构; *2插入损耗值为0.25mm尾纤型芯件指标,不包括连接器损耗;若包括还须加上的插入损耗(如:+=)。 *3回波损耗指器件本身的指标。 6产品性能实验 表五全光纤型分支器件机械性能实验

7工作需求 分支器件的测量和试验应在YD/T1117-2001中规定的正常大气条件下进行,即: 温度:15℃~31℃ 湿度:30%~70% 测量所用仪器、仪表的精度均应符合要求,并进行定期计量。 8产品检验 被检验样品应是整件的全光纤型分支器件产品。我公司对全部产品进行日常检验,有特殊情况进行型式检验。 8.1日常检验 该检验是对全部产品进行的检验,由公司内部专职检验员负责,按表一、二、三确定产品的等级。对合格产品记录其检验数据,随同产品提交给客户;对不合格产品,记录其数据与现象,交由品质部处理。检验员对所检验的产品加盖专人质量印章,并对其所检验的产品质量负责。 8.2型式检验 光分支器件有下列情况之一时,一般进行型式检验,型式检验按YD/T1117-2001质量评定程序中的 8.2.2《周期检验》进行。 a)新产品或老产品转厂生产的试制定型鉴定; b)正式生产后,如结构、材料、工艺有较大改变,可能影响产品性能时; c)产品长期停产后,恢复生产时; d)出厂检验结果与上次型式检验有较大差别时; e)国家质量监督机构提出进行型式检验要求时。 9包装、标志、运输和贮存 9.1标志 产品上位置允许时应标有产品名称、型号规格、编号、生产厂家、生产日期 9.2包装 产品应用盒子包装好,包装盒内应有产品性能指标测试数据,包装盒上应标有产品名称、规格型号、生产厂家。 9.3运输 当产品需要长途运输时,需用木箱或硬纸板作外包装,在箱上写明不能大力抛、碰、压,应有防雨防潮标志,以免损坏产品。 9.4贮存

液力耦合器

1、液力偶合器的结构 液力偶合器又称液力联轴器,是一种靠液体动能传递扭矩的传动元件。YOX系列限矩型液力偶合器,主要由输入轴、输出轴、泵轮、涡轮、外壳、易熔塞等构件组成。输入轴一端与电机相连,另一端与泵轮相连。输出轴一端与涡轮相连,另一端与工作机相连。泵轮与涡轮对称布置,都是具有径向直叶片的叶轮,叶轮工作腔的最大直径称为有效直径,是规格大小的标志。外壳与泵轮固连成密封腔,供工作介质在其中做螺旋环流运动以传递扭矩。2、液力偶合器的原理 当电机通过输入轴带动偶合器泵轮旋转时,泵轮工作腔内的工作液体受离心力的作用由半径较小的泵轮入口被加速加压抛向半径较大的泵轮出口处,同时液体的动量矩产生增量,即泵轮将输入的机械能转化成了液体动能。当携带液体动能的工作液体从泵轮出口冲向对面的涡轮时,液流便沿涡轮叶片所形成的流道做向心流动,同时释放液体动能转化机械能,驱动涡轮并带负载旋转做功。于是,输入与输出在没有直接机械连接的情况下,仅靠液体动能便柔性的连接起来了。 二、功能与用途

1、液力偶合器的功能 具有柔性传动功能:能有效的减缓冲击,隔离扭振,提高转动品质; 具有电机轻载起动功能:当电机起动时,力矩甚微,接近于空载起动,从而降低起动电流,缩短起动时间,起动过程平衡、顺利; 具有过载保护功能:有效的保护电机和工作机,在起动或超载时不受损坏,降低机器故障率,延长使用寿命,降低维护保护费用和停工时间; 具有协调多机同步起动功能:在多机起动系统,能够达到电机顺序起动,协调各电机同步、平稳驱动。 2、液力偶合器的用途 限矩型液力偶合器适用于一切需要解决起动困难、过载保护、减缓冲击震动和隔离扭振,协调多机驱动的机械设备上,广泛用于矿山。 三、安装与拆卸 1、液力偶合器的安装 (1)安装偶合器前应将原动机与工作机轴清洁干净并涂抹润滑脂。 (2)安装时不允许用压板或铁锤敲打偶合器铝制壳体,也不可热装,以免损坏密封及元件。可在工作机轴上绞螺纹孔,并在其上旋入螺杆,通过旋转螺杆上特制的螺母将套在螺杆上的偶合器主轴(联带偶合器)平衡代入,安装在工作设备上(如安装简图所示)。安装工具为选配件,如需要请在定货时提出购买。(3)偶合器输入端及输出端孔径公差推荐用户定货时注明为G7公差,如不标注均按H7公差执行。(4)直线传动式偶合器安装在原动机及工作轴上后一定要精心找正,原动机及工作机轴的中心线不平行度≤0.25mm,角误差≤30′,可用千分表检测不同轴度及角误差,具体方法可参考“YOX型液力偶合器结构简图”,也可用平行尺与塞尺检测,但推荐用户尽量采用千分表精确找正,以避免安装不同心引起振动及断轴等事故发生。找正时可用垫片或弹簧板调整原动机及工作机底座,调整完毕原动机及工作机底座应考虑相应定位紧固措施。平行传动式(皮带轮式)偶合器必须按随机带的拉紧螺栓的螺纹尺寸在原动机(电机)轴上绞40mm深的螺纹孔,用拉紧螺栓将偶合器可靠的拉紧在原动机轴上,用户定货时应提供原动机轴旋向,不提供原动机轴旋向时偶合器配带的拉紧螺栓一律为右旋。 (5)偶合器外部应设有稳固的防护罩,防护罩应有利于通风散热,露天场所应考虑防雨措施,防护罩还应考虑偶合器喷液时的防护。 2、液力偶合器的拆卸 先将原动机(电机)底板紧固螺栓松开后,在移动电机使联轴节左右半分离,用液力(螺纹)拉马卸下电机轴上的半联轴节,最后用拆卸螺杆旋入偶合器主轴的拆卸螺纹孔将偶合器主体顶出卸下(如液力偶合器安装、拆卸示意图),不可敲击偶合器铝制外壳进行拆卸。 拆卸工具为选配件,如需要请在定货时提出购买。未与专业维修人员联系之前,不得随意拆解偶合器主体,避免破坏密封与平衡精度等问题的发生,如用户自行拆卸解造成损坏,将不予保修。

液力耦合器参数对照表

Y代表液力传动O代表耦合无级传动II代表一种标准型号Z代表含制动轮,450是耦合器工作腔直径。S为旋转方向顺时针。 型号Lmin D 输入端输出端 充水量 (L) 重量(不 包括 水)(kg) 最高转 速 (r/min) 过 载 系 数d1max H1max d2max H2max max. m in. YOX206A 210 ?254?2860 ?3055 0.8 0.4 10 1500 2~2.5 YOX206D 150 ?254?2860 ?3055 0.8 0.4 9.5 1500 2~ 2.5 YOX220 190 ?272?2860 ?3055 1.28 0.64 12 1500 2~2.5 YOX250 215 ?300?3880 ?3560 1.8 0.9 15 1500 2~2.5 YOX280A 246 ?345?3880 ?40100 2.8 1.4 18 1500 2~2.5 YOXD280 338 ?345?42110 ?40100 5.6 2.8 38 1500 2~2.5

YOX320 304 ?388 ?48 110 ?45 110 5.2 2.6 28 1500 2~2.5 YOX340A 288 ?390 ?48 110 ?45 95 5.8 2.9 25 1500 2~2.5 YOX340B 288 ?390 ?48 110 ?38 95 5.8 2.9 35 1500 2~2.5 YOX360 310 ?420 ?55 110 ?55 110 7.1 3.55 49 1500 2~2.5 YOX360A 310 ?420 ?55 110 花键孔 42×2.5×16 7.1 3.55 49 1500 2~2.5 YOXD360 330 ?416 ?60 140 ?60 140 6.2 3.1 45 1500 2~2.5 YOX380 320 ?450 ?60 140 ?60 140 8.4 4.2 58 1500 2~2.5 YOX400 356 ?480 ?60 140 ?60 150 9.3 4.65 65 1500 2~2.5 YOX420 368 ?495 ?60 140 ?60 160 12 6 70 1500 2~2.5 YOX450 397 ?530 ?75 140 ?70 140 13 6.5 70 1500 2~2.5 YOX500 411 ?590 ?85 170 ?85 145 19.2 9.6 105 1500 2~2.5 YOX510 426 ?590 ?85 170 ?85 185 19 9.5 119 1500 2~2.5 YOX560 459 ?650 ?90 170 ?100 180 27 13.5 140 1500 2~2.5 TVA562 (YOX562) 449/471 ?634 ?100 170 ?110 170 30 15 131 1500 2~2.5 YOX600 474 ?695 ?90 170 ?100 180 36 18 160 1500 2~2.5 TVA650 536 ?740 ?125 225 ?130 200 46 23 219 1500 2~2.5 TVA750 603 ?842 ?140 245 ?150 240 68 34 332 1500 2~2.5 TVA866 682 ?978 ?160 280 ?160 265 111 55.5 470 1500 2~2.5 TOXSQ750 1380 ?842 ?110 210 轴 ?110 163 128 64 650 1500 2~2.5 YOX1000 722 ?1120 ?160 250 ?160 280 144 72 600 1000 2~2.5 YOX1150 830 ?1295 ?180 220 ?180 300 220 110 910 750 2~2.5 YOX1320 953 ?1485 ?200 240 ?200 350 328 164 1380 750 2~

EMC检验-国家检验标准

EMC检验的送检要求及资料说明 送检清单(主要针对YY 0505-2012(IEC60601-1-2/EN60601-1-2)适用的设备,其他如GB/T 18268.1-2010(IEC61326-1 /EN61326-1)和GB/T 18268.26-2010(IEC61326-2-6/EN61326-2-6)实验室设备参照填写): 1、送检样品及附件 测试附件(指注册单元中包含的全部配/附件) 测试软件(指确保样机以自动运行方式达到典型工作状态的专用应用程序) 测试工装(指模拟正常工作状态所需的试验装置,其介入不应引入额外的干扰噪声。); 2、技术要求(电磁兼容性包括YY0505-2012全项目及现行有效专标EMC相关条款)和EMC型号覆盖安全性预评价报告(广东省企业内适用),出英文报告不需提供技术要求和预评价报告; 3、使用、技术说明书; 4、承诺书; 5、*原理图和电路图; 6、*EMC检测报告(进口产品适用); 7、*风险分析报告; 8、产品标识、标记 设备或部件的外部标识(应符合YY0505中6.1.201.1) 警示(应符合YY0505中6.1.201.1 ) 9、产品相关资料表格(申请国内注册提供中文版本,申请出口认证提供英文版本):

表1、基本性能(essential performance,保持残留风险在可接受限值内的必需的性能特征,见IEC60601-1 第三版)未识别基本性能 有基本性能 备注:一般需要通过风险分析,才能得出产品的基本性能。如果没有经过风险分析,可以勾在“未识别基本性能”一栏。 表2、样品的预期使用场所或环境 备注:A类、B类的信息由检测工程师根据产品的适用范围予以确认。 表3、检测报告首页信息确认(与合同是否一致)

GB4706-2005检测标准

第1章范围 本部分涉及的单相器具额定电压不超过250V,其他器具额定电压不超过480V的家用和类似用途电器的安全。 不作为一般家用,但对公众仍可能引起危险的器具,例如打算在商店、轻工业和农场中由非专业的人员使用的器具也属于本部分的范围。 注1:这种器具的示例为:工业和商业用炊事设备、清洁器具以及在理发店使用的器具。 就实际情况而言,本部分所涉及的各种器具存在的普通危险,是在住宅和住宅周围环境中所有的人可能会遇到的。 然而,一般说来本部分并未涉及: ——无人照看的幼儿和残疾人使用器具时的危险; ——幼儿玩耍器具的情况。 注2:注意下述情况: ——对于打算用在车辆、船舶或航空器上的器具,可能需要附加要求。 ——在许多国家中,全国性的卫生保健部门,全国性劳动保护部门,全国性供水管理部门以及类似的部门都对器具规定了附加要求。 注3:本部分不适用于: ——专为工业用途而设计的器具; ——打算使用在经常产生腐蚀性或爆炸性气体(如灰尘、蒸汽或瓦斯气体)特殊环境场所的器具; ——音频、视频和类似电子设备(GB8898); ——医用电气设备(GB9706.1); ——手持式电动工具(GB3883.1); ——信息技术设备(GB4943); ——可移动式电动工具(GB 13960)。 ******************************************* .以下哪些危险是安规工程师需要考虑的:电击危险机械危险辐射危险化学危险 .GB4706.1-2005标准所认可的是家用和类似用途电器在注意到制造商使用说明的条件下按正常使用时,对器具的电气、机械、火灾以及辐射等危险防护的一个国际可接受水平。 .就实际情况而言,GB4706.1所涉及的各种器具存在的普通危险,指的是什么危险? 火灾危险机械危险烫伤危险触电危险辐射危险 第2章规范性引用文件 下列文件中的条款通过本部分的引用而成为本部分的条款。凡是标注日期的引用文件,其 随后所有的修改单(不包括勘误内容)或修订版均不适用于本部分,然而,鼓励根据本部分达 成协议的各方研究是否可使用这些文件的最新版本。凡是未标注日期的引用文件,其最新版本 适用于本部分。 GB/T 2423.2 电工电子产品环境试验第二部分:试验方法试验B:干热(GB/T 2423.2-2001,idt IEC 60068-2-2:1974) GB/T 2423.8 电工电子产品环境试验第二部分:试验方法试验Ed:自由跌落(GB/T 2423.8-1995,idt IEC 60068-2-32:1990) GB 3667 交流电动机电容器(GB 3667-1997,idt IEC 60252:1993)

液力耦合器讲义

液力耦合器 一、液力耦合器的名词解释 二、液力耦合器的工作过程 三、液力耦合器的油系统 四、勺管的调节原理 五、液力耦合器的运行知识 六、液力耦合器的特点 七、液力耦合器运转的注意事项 一、液力耦合器的名词解释 以液体为工作介质的一种非刚性联轴器,又称液力联轴器。 如图: 液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。最后液体返回泵轮,形成周而复始的流动。 液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。 二、液力耦合器的工作过程 液力耦合器主要由泵轮、涡轮、转动外壳、主动轴及从动轴等

构件组成,见图8—10。液力耦合器和传动齿轮安装在一个箱体内,功率传输从电动机到液力耦合器,再传到泵上。泵轮装在与原动机轴相连的主动轴上(或第一级增速齿轮轴上),相当于离心泵的叶轮;涡轮装在与泵相连的从动轴上(或第二级增速齿轮轴上),相当于水轮机的叶轮,两轮彼此不接触,相互之间保持几毫米的轴向间隙,不能进行扭矩的直接传递。泵轮和涡轮的形状相似,尺寸相同,相向布置,合在一起很像汽车的车轮,分开时均为具有20~40片径向直叶片的叶轮,涡轮的片数一般比泵轮少1~4片,以避免产生共振。这种叶轮的后盖板及轮毂在轴面上形成两个对称的碗状投影,且与叶片共同组成沿圆周对称分布的几十个凹形流道,称为工作腔。每个工作腔的进、出口均沿轴向,且在叶轮同侧,运行时工作油就在两轮的凹形工作腔内循环流动。为防止工作油泄漏,一般在泵轮外缘还用螺栓连接旋转外壳,将涡轮密封在壳内。 泵轮和涡轮形成的工作油腔内的油自泵轮内侧引入后,在离心力的作用下被甩到油腔外侧形成高速的油流,并冲向对面的涡轮叶片,驱动涡轮一同旋转。然后,工作油又沿涡轮叶片流向油腔内侧并逐渐减速,流回到泵轮内侧,构成一个油的循环流动圆,见图8—11。 图8 11液力稍合器中工作油循环 在涡轮和转动外壳的腔中,自泵轮和涡轮的间隙(或涡轮上开设的进油孔)流入的工作油随转动外壳和涡轮旋转,在离心力的作用下形成油环。这样,工作油在泵轮内获得能量,又在涡轮里释放能量,完成了能量的传递。由于流体只能依靠压降在主、从动轮问流通,这就要求涡轮的转速低于泵轮的转速,即泵轮和涡轮之间必须有转速差。泵轮转速和涡轮转速之差与泵轮转速的比值,称为转

耦合器测试标准

范围 本标准规定了无源器件的技术要求,供中国移动和厂商共同使用。适用于为中国移动通信有限公司室分系统所提供的各类功分器、耦合器、电桥、合路器、衰减器和负载研发、生产、出厂验收和入网测试的技术规定,其他同类产品也可遵照该规范的要求执行。 1.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。 2.术语、定义和缩略语 下列术语、定义和缩略语适用于本标准。 2.1. 术语 插入损耗 Insertion loss:通过无源器件,在有效工作带宽内引入的传输损耗。 中心频率 Center frequency:无源器件的工作发射支路(或接收支路)允许工作频率范围内的中心称为发射支路(或接收支路)的中心频率。 驻波比 VSWR:无源器件或有源器件中,除信源的输入端(或输出端)以外的其他端口与标称阻抗负载相连接,信源的输入端(或输出端)电压的波峰和波谷的比值 带内波动(纹波)Inband Ripple:输出端口通带范围内最大信号和最小信号的差值。标称阻抗 Impedance:RF 射频无源及有源器件在工作范围内各端口规定的电阻性阻抗。耦合度 Coupling degree:耦合支路与通路信号强度的差值。 幅度平衡Amplitude Balance:等分定义端口之间的插入损耗的差值,用dB 表示。 抑制度 Suppression:合路器的收发支路之间信号进入的抑制程度。 最大输入功率 Maximum input power:无源器件正常工作时输入端口所允许的最大输入平均功率。 峰值输入功率Peak-peak input power:无源器件正常工作时发射端口所允许的最大峰值输入功率。

液力耦合器工作原理介绍

用途 液力偶合器作为节能设备,可以无级变速运转,工作可靠,操作简便,调节灵活,维修方便。 采用液力偶合器便于实现工作机全程自动调节,以适应载荷的变化,可节约大量电能,广泛适用于电力、冶金、石化、工程机械、矿山、市政供水供气和纺织、轻工等行业,适用于各种需要变负荷运转的给水泵、风机、粉碎机等旋转式工作机。 工作原理 液力偶合器是以液体为介质传递功率的一种动力传递装置,主要由两个带有径向叶片的碗状工作轮组成。由主动轴传动的轮称为泵轮,带动从动轴转动的轮称为涡轮,泵轮和涡轮中间有间隙,形成一个循环圆状腔室结构。 工作时,原动机带动液力偶合器主动轴——泵轮转动,泵轮内的液体介质在离心力作用下由机械能转换为动能,形成高压、高速液流冲向涡轮叶片;在涡轮内,液流沿外缘被压向内侧,经减压减速后动能转换为机械能,带动涡轮——从动轴旋转,实现能量的柔性传递。作功后的液体介质返回泵轮,形成液流循环。 液力偶合器工作原理示意图 液力偶合器内液体的循环是由于泵轮——涡轮流道间不同的离心力产生压差而形成,因此泵

轮、涡轮必须有转速差,这是液力偶合器的工作特性所决定的。泵轮、涡轮的转速差称为滑差,在额定工况下,滑差为输入转速的2%~3%。 调速型液力偶合器可以在主动轴转速恒定的情况下,通过调节液力偶合器内液体的充满程度实现从动轴的无级调速(调速范围为0到输入轴转速的97%~98%),调节机构称为勺管调速机构,它通过调节勺管的工作位置来改变偶合器流道中循环液体的充满程度,实现对被驱动机械的无级调速,使工作机按负载工作范围曲线运行。 特点 ?节省能源。输入转速不变的情况可获得无级变化的输出转速,对离心机械(如泵)在部分负荷的工作情况下,与节流式相比节省了相当大的功率损失。 ?空载启动。电动机启动后工作油系统开始工作,按需要加载控制、无级变速,电动机启动电流小,延长了使用寿命,并可选用较小电动机,节省投资。 ?离合方便。充油即行接合,传递扭矩、平稳升速;排油即行脱离。 ?振动阻尼与冲击吸收。工作轮之间无机械联系,通过液体传递扭矩,柔性连接,具有良好的隔振效果;并能大大减缓两端设备的冲击负荷。 ?过载保护。当从动轴阻力矩突然增加时,滑差增大直至制动,而原动机仍能继续运转而不致损坏,同时保护了从动机不致进一步损坏。 ?无磨损,坚固耐用,安全可靠。 ?润滑油系统可供工作机和电动机所用润滑油。 ?结构紧凑。增速齿轮和工作轮安装在同一箱体中,只需很小空间。 ?可根据用户需要安装不同的执行器。 调速范围: 被驱动的机械具有抛物线负载力矩时,如离心泵和通风机,调速范围为4:1,特殊情况下可以达到5:1。 被驱动的机械具有近乎恒定负载力矩时,调速范围为3:1以下。 工作时排空液力偶合器内的工作液,可以使被驱动的机械停止运转。

液力耦合器工作原理

液力偶合器工作原理 一、工作原理 1、概述 液力偶合器又称液力联轴器,是以液体为工作介质,利用液体的动能的变化来传递能量的叶片式传动机械。 它具有空载启动电机,平稳无级变速等特点,用于电站给水泵的转速调节,可简化锅炉给水调节系统,减少高压阀门数量,由于可通过调速改变给水量和压力来适应机组的起停和负荷变化,调节特性好,调节阀前后压降小,管路损失小,不易损坏,使给水系统故障减少,当给水泵发生卡涩、咬死等情况时。对泵和电机都可起到保护作用,故现代电站中,机组锅炉给水泵普遍采用了带液力偶会器的调速给水泵。 2、用途 液力偶合器作为节能设备,可以无级变速运转,工作可靠,操作简便,调节灵活,维修方便。 采用液力偶合器便于实现工作机全程自动调节,以适应载荷的变化,可节约大量电能,广泛适用于电力、冶金、石化、工程机械、矿山、市政供水供气和纺织、轻工等行业,适用于各种需要变负荷运转的给水泵、风机、粉碎机等旋转式工作机 3、耦合器的基本结构 偶合器的基本结构主要部件:泵轮、涡轮、转动外壳、主动(输入)轴、从动(输出)轴及勺管。 泵轮与涡轮称为工作轮,两轮中均有叶片,两轮分别与输入、输出轴相联接,它们之间是有间隙的,泵轮和涡轮均有径向尺寸相同的腔形,所以,合在一起形成工作油腔室,工作油从泵轮内侧进入,并跟随动力机一起作旋转运动,油在离心力的作用下,被甩到泵轮的外侧,形成高速油流冲向对面的涡轮叶片,流向涡轮内侧逐步减速并流回到泵轮的内侧,构成了一个油的循环。 4、偶合器调速范围 调速型液力偶合器可以在主动轴转速恒定的情况下,通过调节液力偶合器内液体的充满程度实现从动轴的无级调速(调速范围为0到输入轴转速的

液力耦合器的工作原理、日常维护、故障应急处理

液力耦合器的工作原理、日常维护及常 见故障应急处理 一、工作原理:以液体为工作介质的一种非刚性联轴器,又称液力联轴器。液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。最后液体返回泵轮,形成周而复始的流动。 液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。 二、液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。

三、简介:变速型液力偶合器的结构大致分为:泵轮,涡轮,工作室,勺管,主油泵,油箱,进油室和回油室,有的可能还有辅助油泵,根据各个厂家的设计制造不同可能结构上稍有差异! 1>泵轮和涡轮是带有径向叶片的碗状性结构,相互扣在一起,有的称两者间的空间为工作室,但为了便于更方便的理解我们不那样叫!我这里所说的工作室是指旋转外壳包围的空间,勺管则是控制这里的油压来控制传动力矩,故我认为这里称为工作室更合理!

功放耦合器功分器合路器部分指标检测方法

功放耦合器功分器合路器部分指标检测方法 一、功放的基本概念 功放全称功率放大器,英文缩写为PA,使用场所多,例如直放站。 二、需要使用到的主要仪表 1.信号源:提供射频信号的作用。 2.频谱仪:检测射频信号,读取射频信号值的作用,内带衰减器。 3.网络分析仪:测试端口驻波比时会用到该仪表,内带信号源。 三、需要用到的测试配件 1.衰减器:起到减少信号的作用,保护频谱仪,一般选用衰减为-40dBm的就合适。 2.校准件:它分母头和公头,分别包含open/closed/BB。由于频率的不同、扫描点的不同、 输入射频信号大小的不同,在每次网络分析仪,都要用校准件校对网分。 3.隔直器:起到隔开直流电压的作用,保护信号源和频谱仪,一般在信号源以及频谱仪的 端口上分别安装一个。 4.隔离器:起到使射频信号单方向导通的作用,保护信号源,一般在信号源上安装一个。 5.同轴电缆:射频信号的载体。 四、PA的部分指标的定义 1.端口驻波比:是指到PA的输入输出端口的信号,输入的与反射的信号比。 2.最大输出功率:指模块的最大输出功率。 3.增益:是指模块在线性范围内的放大倍数。 4.增益调节精度:测试ATT的衰减与实际下降的功率是否误差过大。 5.增益平坦度:也称带内波动,检测模块的输出功率在整个频段内的波动有多大。 6.互调:开双信号时,检测模块的三阶互调是否能满足要求。 五、PA的部分指标的检测方法 1.端口驻波比:先校准网分,校准时,分别设置起止频率、扫频点、输出功率(一般为10dBm),设置完毕后按提示用open/closed/BB 三种校准件开始校准。校准完毕后, BB头不取,按marker键,查看校准情况,一般小于1.02 就算合格。测PA输入端口时,模块需通电测试,输出接大功率的负载。测输出端口时,模块不需要通电,输入端口接2W或5W的小负载。一般情况下,PA的端口驻波比要求<1.3就算合格。 2.最大输出功率:测试前,需校线。校线顺序为先校信号源再校频谱仪的线或先校频谱仪再校信号源的线,两种方法都可以。现以现校信号源为例来说明。首先按隔直器、隔离器、同轴电缆的顺序将此接入到信号源上,注意隔离器有方向性。再把电缆的另一头通过N型转接头与频谱仪相接。开始设置仪表,以DCS的上行PA为例,将信号源、频谱仪的频率设置为1733MHz(起止频率为1710~1755MHz,中心频率为1732.5MHz,但实际设置为1733MHz即可)。信号源的校准功率和输出功率以及频谱仪的校准功率都设置为0dBm,开信号。调节频谱仪的显示,读取数值。例如频谱仪显示为-0.56dBm。关信号,然后将信号源的校准功率设置为-0.56dBm,输出功率依然设置为0dBm,再开信号,观察频谱仪的数值,应为0dBm,否则未校成功。开始校准频谱仪,首先按隔直器、同轴电缆、衰减器、同轴电缆的顺序将此接入到频谱仪上,注意衰减器有方向性。同轴电

相关主题
文本预览
相关文档 最新文档