光电耦合器的检测方法
- 格式:doc
- 大小:401.00 KB
- 文档页数:11
光电耦合器分类光电耦合器是一种用于将光信号转换为电信号的器件。
根据不同的分类方式,光电耦合器可以有多种类型。
以下是光电耦合器的分类,包括结构类型、传输模式、输入输出阻抗、工作频率、隔离电压、传输速度、检测方式以及光纤类型。
1.结构类型光电耦合器可以根据其结构类型分为以下几种:1.1.微型封装:微型封装的光电耦合器体积小,适合用于高密度集成和空间受限的应用场景。
1.2.扁平封装:扁平封装的光电耦合器具有较低的高度和较宽的引脚间距,适用于需要表面安装或空间受限的情况。
1.3.宽引脚封装:宽引脚封装的光电耦合器具有较宽的引脚间距,适用于需要较高电流驱动能力的应用场景。
1.4.光纤耦合封装:光纤耦合封装的光电耦合器是将光信号从光纤中传输到光电探测器中进行转换的器件,适用于长距离和高速度的光纤通信系统。
2.传输模式光电耦合器可以根据其传输模式分为以下几种:2.1.线性模式:线性模式的光电耦合器输出电流与输入电流成比例关系,适用于模拟信号的传输。
2.2.数字模式:数字模式的光电耦合器输出为数字信号,适用于数字电路中的信号传输。
3.输入输出阻抗光电耦合器根据其输入输出阻抗可以分为以下几种:3.1.高阻抗型:高阻抗型的光电耦合器输入输出阻抗较高,适用于长线传输和噪声抑制。
3.2.低阻抗型:低阻抗型的光电耦合器输入输出阻抗较低,适用于高速数据传输和低功耗应用。
4.工作频率光电耦合器根据其工作频率可以分为以下几种:4.1.低频型:低频型的光电耦合器适用于低频信号的传输。
4.2.高频型:高频型的光电耦合器适用于高频信号的传输,具有较好的高频性能。
5.隔离电压光电耦合器根据其隔离电压可以分为以下几种:5.1.低隔离电压型:低隔离电压型的光电耦合器适用于低电压差的应用场景。
5.2.高隔离电压型:高隔离电压型的光电耦合器适用于高电压差的应用场景,具有较高的隔离能力和抗干扰能力。
6.传输速度光电耦合器根据其传输速度可以分为以下几种:6.1.低速型:低速型的光电耦合器适用于低速数据传输的应用场景。
光电耦合器L1827在线测量方法光耦在电路中的应用非常广泛,并且起到了非常重要的作用。
不同类型的光耦在电路中的功效也不尽相同,本文就将为大家介绍三极管型光电耦合器件的测量方法与检测,通过介绍的方法,希望大家能够充分对三极管耦合期间的测量与在线检测有进一步的理解。
三极管型光电耦合器件输入端工作压降约为1.2V,输入最大电流50mA,典型应用值为10MA;输出最大电流1A左右,因而可直接驱动小型继电器,输出饱合压降小于0.4V。
可用于几十kHz较低频率信号和直流信号的传输。
对输入电压/电流有极性要求。
当形成正向电流通路时,输出侧两引脚呈现通路状态,正向电流小于一定值或承受一定反向电压时,输出侧两引脚之间为开路状态。
测量方法数字表二极管档,测量输入侧正向压降为1.2V,反向无穷大。
输出侧正、反压降或电阻值均接近无穷大;指针表的x10k电阻档,测其1、2脚,有明显的正、反电阻差异,正向电阻约为几十kΩ,反向电阻无穷大;3、4脚正、反向电阻无穷大;两表测量法。
用指针式万用表的x10k电阻档(能提供15V或9V、几十μA的电流输出),正向接通1、2脚(黑笔搭1脚),用另一表的电阻档用x1k测量3、4脚的电阻值,当1、2脚表笔接入时,3、4脚之间呈现20kΩ左右的电阻值,脱开1、2脚的表笔,3、4脚间电阻为无穷大。
可用一个直流电源串入电阻,将输入电流限制在10mA以内。
输入电路接通时,3、4脚电阻为通路状态,输入电路开路时,3、4脚电阻值无穷大。
3、4种测量方法比较准确,如用同型号光耦器件相比较,甚至可检测出失效器件(如输出侧电阻过大)。
上述测量是新器件装机前的必要过程。
对上线不便测量的情况下,必要时也可将器件从电路中拆下,离线测量,进一步判断器件的好坏。
在实际检修中,离线电阻测量不是很便利,上电检测则较为方便和准确。
要采取措施,将输入侧电路变动一下,根据输出侧产生的相应的变化(或无变化),测量判断该器件的好坏。
一、实验目的1. 理解光电探测的基本原理和实验方法。
2. 掌握光电探测器的使用和调试技巧。
3. 学习光电探测实验的测量和分析方法。
4. 通过实验,加深对光电探测技术在实际应用中的理解和应用。
二、实验原理光电探测是利用光电效应将光信号转换为电信号的过程。
光电探测器是光电探测系统的核心部件,它将光信号转换为电信号,然后通过放大、滤波等电路处理后,输出可供进一步处理和利用的电信号。
本实验主要涉及以下光电探测器:光电二极管、光电三极管、光电耦合器等。
光电二极管是一种半导体器件,具有光电转换效率高、响应速度快、体积小等优点。
光电三极管是一种具有放大作用的光电探测器,它可以将微弱的光信号放大成较大的电信号。
光电耦合器是一种将输入信号的光电转换和输出信号的传输分开的器件,具有良好的隔离性能。
三、实验仪器与设备1. 光源:LED灯、激光笔等。
2. 光电探测器:光电二极管、光电三极管、光电耦合器等。
3. 放大器:运算放大器、低噪声放大器等。
4. 测量仪器:示波器、万用表等。
5. 连接线、测试板等。
四、实验内容及步骤1. 光电二极管特性测试(1)测试前准备:将光电二极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电二极管正向偏置,调整偏置电压,观察并记录光电二极管的伏安特性曲线。
② 将光电二极管反向偏置,调整偏置电压,观察并记录光电二极管的反向饱和电流。
③ 测量光电二极管的暗电流和亮电流。
2. 光电三极管特性测试(1)测试前准备:将光电三极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电三极管集电极、基极和发射极分别连接到电路中,调整基极偏置电压,观察并记录光电三极管的伏安特性曲线。
② 测量光电三极管的集电极电流、基极电流和发射极电流。
③ 测试光电三极管的电流放大倍数。
3. 光电耦合器特性测试(1)测试前准备:将光电耦合器、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电耦合器的输入端和输出端分别连接到电路中,调整输入端电压,观察并记录光电耦合器的传输特性曲线。
光耦检测相序相位序列检测可以通过光耦进行。
光耦是一种光电器件,能够将光信号转换为电信号或者将电信号转换为光信号。
在电力系统中,光耦通常用于在不同的电路之间进行隔离和信号传输。
在相序检测中,光耦起到将相序信号从电信号转换为光信号的作用,然后再通过光接收器将光信号重新转换为电信号进行判断。
这种方式可以有效地进行相序的检测和判断,保证电力系统的正常运行和安全性。
以下是一些相关的参考内容:1. 光耦的基本原理:光耦是由光发射器和光接收器组成的光电器件,基本原理是利用半导体材料的特性,当外界光照射到光发射器上时,光发射器中的半导体会发生光电效应并产生电流,电流的大小与光照强度成正比。
而光接收器则是利用半导体材料的特性,当外界电流通过光感应电极时,光感应电极会产生电磁场,使得光接收器中的半导体材料发生光电效应并产生电流。
通过光发射器和光接收器的相互作用,可以实现光信号到电信号的转换。
2. 光耦在相序检测中的应用:相序检测是电力系统中一个重要的功能,可以判断电力系统中各个相序的情况,避免相序不一致或者相序错误而导致的电力设备损坏或事故发生。
光耦在相序检测中起到了连接不同电路和实现信号传输的作用。
通过光耦,可以将相序信号从电信号转换为光信号传输到另一侧,然后再通过光接收器将光信号转换为电信号进行判断和判别。
这种方式可以实现电路之间的隔离,并且能够有效地判断相序是否正确。
3. 光耦的特点和优势:相比传统的相序检测方式,光耦具有一些独特的特点和优势。
首先,光耦具有高隔离性能,可以有效地隔离两个不同电路之间的电流和信号,避免电路之间的相互影响。
其次,光耦具有较高的速度和响应能力,能够实现快速的信号传输和判别。
此外,光耦还具有较低的能耗和较小的体积,使得其在电力系统中的应用更加便捷和方便。
4. 光耦在电力系统中的其他应用:除了相序检测之外,光耦还广泛应用于电力系统的其他领域。
例如,光耦可以用于电力系统的开关控制,通过将光信号与开关控制信号进行连接,实现对开关的自动控制和远程控制。
光电耦合器的三种检测方法光电耦合器——又称光耦合器或光耦,它属于较新型的电子产品,现在它广泛应用于计算机、音视频……各种控制电路中。
由于光耦内部的发光二极管和光敏三极管只是把电路前后级的电压或电流变化,转化为光的变化,二者之间没有电气连接,因此能有效隔断电路间的电位联系,实现电路之间的可靠隔离。
光电耦合器的检测:判断光耦的好坏,可在路测量其内部二极管和三极管的正反向电阻来确定。
更可靠的检测方法是以下三种。
1. 比较法拆下怀疑有问题的光耦,用万用表测量其内部二极管、三极管的正反向电阻值,用其与好的光耦对应脚的测量值进行比较,若阻值相差较大,则说明光耦已损坏。
2. 数字万用表检测法下面以PC111光耦检测为例来说明数字万用表检测的方法,检测电路如图1所示。
检测时将光耦内接二极管的+端{1}脚和-端{2}脚分别插入数字万用表的Hfe的c、e插孔内,此时数字万用表应置于NPN挡;然后将光耦内接光电三极管c极{5}脚接指针式万用表的黑表笔,e 极{4}脚接红表笔,并将指针式万用表拨在R×1k挡。
这样就能通过指针式万用表指针的偏转角度——实际上是光电流的变化,来判断光耦的情况。
指针向右偏转角度越大,说明光耦的光电转换效率越高,即传输比越高,反之越低;若表针不动,则说明光耦已损坏。
3. 光电效应判断法仍以PC111光耦合器的检测为例,检测电路如图2所示。
将万用表置于R×1k电阻挡,两表笔分别接在光耦的输出端{4}、{5}脚;然后用一节1.5V的电池与一只50~100Ω的电阻串接后,电池的正极端接PC111的{1}脚,负极端碰接{2}脚,或者正极端碰接{1}脚,负极端接{2}脚,这时观察接在输出端万用表的指针偏转情况。
如果指针摆动,说明光耦是好的,如果不摆动,则说明光耦已损坏。
万用表指针摆动偏转角度越大,表明光电转换灵敏度越高。
光耦短接法判断摘要:1.光耦短接法的概念2.光耦短接法的作用3.光耦短接法的操作步骤4.光耦短接法的应用范围5.光耦短接法的优缺点正文:光耦短接法是一种用于判断光耦合器(简称光耦)是否短路的有效方法。
光耦是一种电子元件,主要用于在输入端和输出端之间传递电信号,同时隔离输入端和输出端的电流,以保护电路和设备。
在实际应用中,判断光耦是否短路至关重要,因为这会影响到整个电路的工作状态和性能。
光耦短接法的作用主要体现在以下两个方面:一是检测光耦是否存在短路故障,以确保电路的正常运行;二是为电路设计人员提供参考,帮助他们判断光耦的性能是否满足设计要求。
光耦短接法的操作步骤如下:1.准备检测工具,如万用表、示波器等;2.将光耦的输入端与电源正极相连接;3.将光耦的输出端与负载电阻相连接;4.启动电源,观察光耦的输入端和输出端的电压波形;5.若光耦存在短路故障,输入端和输出端的电压波形将出现异常;若光耦正常,则输入端和输出端的电压波形符合设计要求。
光耦短接法适用于各种类型的光耦,无论是光电二极管、光电三极管还是其他类型的光耦,都可以采用这种方法进行检测。
此外,光耦短接法也适用于不同电压、电流和功率等级的光耦。
光耦短接法具有以下优缺点:优点:1.操作简单,只需连接几个电路元件,即可完成检测;2.检测速度快,可以在短时间内判断光耦是否存在短路故障;3.适用范围广,可以检测各种类型的光耦。
缺点:1.检测精度受到检测工具的影响,如果检测工具精度不高,可能导致误判;2.需要专业知识和技能,对于非专业人士,可能难以准确判断光耦的状态。
总之,光耦短接法是一种简单有效的检测光耦是否短路的方法,适用于各种类型的光耦。
PC817A/B/C--- 电光耦合器光耦特性与应用1.概述,光耦合器亦称光电隔离器,简称光耦。
光耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。
目前它已成为种类最多、用途最广的光电器件之一。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。
由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。
又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。
所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。
在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。
,光耦的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。
其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。
这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。
,近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。
光耦的选型与应用[ 2008-2-3 8:54:00 | By: SystemARM ]4推荐光耦全称是光耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。
光耦的结构是什么样的?光耦隔离就是采用光耦合器进行隔离,光耦合器的结构相当于把发光二极管和光敏(三极)管封装在一起。
为什么要使用光耦?发光二极管把输入的电信号转换为光信号传给光敏管转换为电信号输出,由于没有直接的电气连接,这样既耦合传输了信号,又有隔离干扰的作用。
光耦爱坏吗?只要光耦合器质量好,电路参数设计合理,一般故障少见。
如果系统中出现异常,使输入、输出两侧的电位差超过光耦合器所能承受的电压,就会使之被击穿损坏。
光耦的参数都有哪些?是什么含义?1、CTR:电流传输比2、Isolation Voltage:隔离电压3、Collector-Emitter Voltage:集电极-发射极电压CTR:发光管的电流和光敏三极管的电流比的最小值隔离电压:发光管和光敏三极管的隔离电压的最小值集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?关于TLP521-1的光耦的导通的试验报告要求:3.5v~24v 认为是高电平,0v~1.5v认为是低电平思路:1、0v~1.5v认为是低电平,利用串接一个二极管1N4001的压降0.7V+光耦的LED的压降,吃掉1.4V左右;2、24V是最高电压,不能在最高电压的时候,光耦通过的电流太大;所以选用2K的电阻;光耦工作在大概10mA的电流,可以保证稳定可靠工作n年以上;3、3.5V以上是高电平,为了尽快进入光敏三极管的饱和区,要把光耦的光敏三极管的上拉电阻加大;因此选用10K;同时要考虑到ctr最小为50%;电路:1、发光管端:实验室电源(0~24V)->2K->1N4001->TLP521-1(1)->TLP521-1(2)-gnd12、光敏三极管:实验室电源(DC5V)->10K->TLP521-1(4)->TLP521-1(3)-gnd23、万用表直流电压挡20V万用表+ -> TLP521-1(4)万用表- -> TLP521-1(3)试验结果输入电源万用表电压(V)1.3V 51.5V 4.81.7V 4.411.9V 3.582.1V 2.942.3V 1.82.5V 0.582.7V 0.22.9V 0.193.1V 0.173.3V 0.163.5V 0.165V 0.1324V 0.06思考题:光耦的CTR(电流传输比)是什么含义?思考题:1、光耦的CTR(电流传输比)是什么含义?2、CTR与上拉电阻和光耦的光敏三极管之间与饱和导通或者截至之间的关系;参考资料:TLP521-1的CTR为50%(最小值);TLP521-1的长相TLP521-1的长相线性光耦原理与电路设计【转】线性光耦原理与电路设计来源:21IC中国电子网作者:佚名1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。
光电耦合器的检测方法
判断光耦的好坏,可在路测量其内部二极管和三极管的正反向电阻来确定。
更可靠的检测方法是以下三种。
1.比较法拆下怀疑有问题的光耦,用万用表测量其内部二极管、三极管的正反向电阻值,用其与好的光耦对应脚的测量值进行比较,若阻值相差较大,则说明光耦已损坏。
2.数字万用表检测法下面以PC111光耦检测为例来说明数字万用表检测的方法,检测电路如图1所示。
检测时将光耦内接二极管的+端{1}脚和-端{2}脚分别插入数字万用表的Hfe的c、e插孔内,此时数字万用表应置于NPN挡;然后将光耦内接光电三极管c极{5}脚接指针式万用表的黑表笔,e极{4}脚接红表笔,并将指针式万用表拨在R×1k挡。
这样就能通过指针式万用表指针的偏转角度——实际上是光电流的变化,来判断光耦的情况。
指针向右偏转角度越大,说明光耦的光电转换效率越高,即传输比越高,反之越低;若表针不动,则说明光耦已损坏。
3.光电效应判断法仍以PC111光耦合器的检测为例,检测电路如图2所示。
将万用表置于R×1k电阻挡,两表笔分别接在光耦的输出端{4}、{5}脚;然后用一节1.5V的电池与一只50~100Ω的电阻串接后,电池的正极端接PC111的{1}脚,负极端碰接{2}脚,或者正极端碰接{1}脚,负极端接{2}脚,这时观察接在输出端万用表的指针偏转情况。
如果指针摆动,说明光耦是好的,如果不摆动,则说明光耦已损坏。
万用表指针摆动偏转角度越大,表明光电转换灵敏度越高。
高速
光电耦合器(光耦)6N137
6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AlGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。
具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。
其工作原理是: 6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
6N137电气参数:
•最大输入电流,低电平:250uA
•最大输入电流,高电平:15mA
•最大允许低电平电压(输出高):0.8v
•最大允许高电平电压:Vcc
•最大电源电压、输出:5.5V
•扇出(TTL负载):8个(最多)
•工作温度范围:-40°C to +85°C
•典型应用:高速数字开关,马达控制系统和A/D转换等
6N137光电耦合器的真值表
如表1所示:
6N137特性:
①转换速率高达10MBit/s;
②摆率高达10kV/us;
③扇出系数为8;
④逻辑电平输出;
⑤集电极开路输出;
6N137典型应用电路
6N137典型应用电路如图2所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。
隔离器使用方法如图2所示,假设输入端属于模块I,输出端属于模块II。
输入端有A、B 两种接法,分别得到反相或同相逻辑传输,其中RF为限流电阻。
发光二极管正向电流0-250uA,光敏管不导通;发光二极管正向压降1.2-1.7V,正向电流6.5-15mA,光敏管导通。
若以B方法连接,TTL电平输入,Vcc为5V时,RF可选500Ω左右。
如果不加限流电阻或阻值很小,6N137仍能工作,但发光二极管导通电流很大对Vcc1有较大冲击,尤其是数字波形较陡时,上升、下降沿的频谱很宽,会造成相当大的尖峰脉冲噪声,而通常印刷电路板的分布电感会使地线吸收不了这种噪声,其峰-峰值可达100mV以上,足以使模拟电路产生自激,A/D不能正常工作。
所以在可能的情况下,RF应尽量取大。
输出端由模块II供电,Vcc2=4.5-5.5V。
在Vcc2(脚8)和地(脚5)之间必须接一个
0.1uF高频特性良好的电容,如瓷介质或钽电容,而且应尽量放在脚5和脚8附近。
这个电容可以吸收电源线上的纹波,又可以减小光电隔离器接受端开关工作时对电源的冲击。
脚7是使能端,当它在0-0.8V时强制输出为高(开路);当它在2.0V-Vcc2时允许接收端工作,见附表。
脚6是集电极开路输出端,通常加上拉电阻RL。
虽然输出低电平时可吸收电路达13mA,但仍应当根据后级输入电路的需要选择阻值。
因为电阻太小会使6N137耗电增大,加大对电源的冲击,使旁路电容无法吸收,而干扰整个模块的电源,甚至把尖峰噪声带到地线上。
一般可选4.7kΩ,若后级是TTL输入电路,且只有1到2个负载,则用47kΩ或15kΩ也行。
CL是输出负载的等效电容,它和RL影响器件的响应时间,当RL=350Ω,CL=15pF 时,响应延迟为48-75ns。
注意:6N137不应使用太多,因为它的输入电容有60pF,若过多使用会降低高速电路的性能。
情况允许时,可考虑把并行传输的数据串行化,由一个光电隔离器传送。
光电耦合器6N137应用注意事项
需要注意的是,在6N137光耦合器的电源管脚旁应有—个0.1uF的去耦电容。
在选择电容类型时,应尽量选择高频特性好的电容器,如陶瓷电容或钽电容,并且尽量靠近6N137光耦合器的电源管脚;另外,输入使能管脚在芯片内部已有上拉电阻,无需再外接上拉电阻。
6N137光耦合器的使用需要注意两点:
1) 6N137光耦合器的第6脚Vo输出电路属于集电极开路电路,必须上拉一个电阻;
2) 6N137光耦合器的第2脚和第3脚之间是一个LED,必须串接一个限流电阻。