抗震设计中反应谱的应用
- 格式:doc
- 大小:38.50 KB
- 文档页数:3
规准化场地地震动反应谱谱参数1. 引言1.1 研究背景地震动反应谱是描述地震动对结构物产生影响的重要参数,对于工程领域的地震设计和抗震分析具有重要意义。
规范化场地地震动反应谱是指在考虑地震动波形、震源距离等因素的影响后,将地表地震动反应谱进行标准化处理,得到的反应谱曲线。
在地震工程领域,研究规范化场地地震动反应谱参数具有重要意义。
规范化场地地震动反应谱参数可以反映地震动频率和幅值之间的关系,帮助工程师更好地理解地震动作用于结构物的特性。
规范化场地地震动反应谱参数可以用于地震设计规范的制订和修订,为工程建设提供重要依据。
规范化场地地震动反应谱参数还可以用于工程结构的抗震设计和性能评估,提高结构物的抗震能力。
深入研究规范化场地地震动反应谱参数及其影响因素,对于提高工程结构的抗震性能和减轻地震灾害具有重要意义。
【研究背景】部分将重点探讨规范化场地地震动反应谱的相关基础知识,为后续内容的展开提供必要基础。
1.2 研究目的研究目的是为了深入理解规范化场地地震动反应谱谱参数的意义和计算方法,探讨其在工程实践中的应用及影响因素。
通过对规范化场地地震动反应谱参数的研究,可以更好地评估结构在地震作用下的响应,为工程设计和抗震加固提供科学依据。
通过总结规范化场地地震动反应谱参数的特点和规律,为今后的地震工程研究和实践提供参考和借鉴。
未来的研究方向包括进一步完善规范化场地地震动反应谱参数的计算方法,探讨不同地震动特征对参数的影响以及拓展其在不同工程场景下的应用。
通过深入研究规范化场地地震动反应谱参数,可以提高工程抗震性能,减少地震灾害带来的损失,促进地震工程领域的发展。
2. 正文2.1 规范化场地地震动反应谱简介规范化场地地震动反应谱是指将实际场地地震动反应谱进行规范化处理,以消除场地效应和地震动强度的影响,得到一种标准化的地震动反应谱。
规范化场地地震动反应谱可以用于不同场地条件下的地震动响应分析,是工程设计和地震灾害评估中重要的参考依据。
反应谱法的概念反应谱法(Response Spectrum Method)是结构工程中常用的一种分析方法,通过建立结构的加速度-频率响应函数,来对结构在地震作用下的反应进行评估。
它是一种时程分析方法,通过输入合适的地震动输入,模拟结构在地震中的动力响应,并获得结构的最大位移、加速度、剪力等重要指标,以评估结构的抗震性能和结构的安全性。
反应谱法最早由美国地震工程师Nathan M. Newmark在20世纪50年代初提出,是基于结构动力学理论发展而来的一种计算方法。
它是一种简化的分析方法,相比于详细的时程分析,反应谱法考虑了地震波的周期特性和结构的固有特性,能更快速、有效地评估结构在地震中的反应。
反应谱法的核心思想是将地震动输入与结构的动力特性分离开来进行分析。
它假设结构的响应与地震输入的频率有关,而与具体的振幅无关。
在反应谱法中,定义结构的反应谱为在不同频率下结构的峰值加速度、速度或位移(或其他重要参数)。
通常,反应谱法的步骤如下:1.选择一组不同频率下的地震波输入。
2.通过动力分析方法(如有限元分析)计算每个地震波输入下结构的动力响应。
3.对每个地震波输入下的结构响应进行峰值提取,并与对应的频率进行对比。
4.根据一系列提取的峰值与频率点,绘制出结构的反应谱曲线。
反应谱曲线可以用于评估结构的抗震性能,并作为结构设计、修正因素以及抗震评估的依据。
反应谱法可以直观地展示不同频率下结构的响应情况,使得工程师能够更好地理解结构的动力性能和瓶颈,并针对性地进行抗震设计和优化。
反应谱法的优点之一是有效地考虑了结构的非线性特性。
由于结构在地震中会发生非线性变形和破坏,传统的弹性分析方法无法准确地预测这些情况。
而反应谱法可以通过选择不同的地震波输入,模拟结构在不同强度和频率的地震下的响应,更好地预测结构的非线性行为。
此外,反应谱法的应用范围广泛。
它可以用于设计新建筑物的抗震性能评估,也可以用于现有建筑物的抗震加固优化。
1. 地震作用下的运动方程体系的受力平衡方程为I S ()()()0D f t f t f t ++=,其中惯性力I g ()(()())f t mu t mu t =-+,弹性恢复力S ()()f t mu t =-,阻尼力D ()()f t cu t =-代入得()g mu cu ku mu t ++=-, 22()g u u u u t ξωω++=- 2. 反应量在抗震设计中预留防震缝以防止相邻建筑物在地震中相互作用,则需要确定质量的绝对位移()t u t ,如果结构支撑着敏感设备并且要确定传递给设备的运动,那么需要确定质量的绝对加速度()t u t ,体系的内力与质量相对于运动地面的位移u(t )线性相关的。
地震中反应量主要指相对量u (t ),()t u,()t u 和绝对量()t u t ,()t u t ,()t u t3. 反应时程反应时程体系的位移反应时程是()u t 、伪加速度反应时程()A t ,两者的关系为:2()()A t u t ω=给定地面运动()g u t ,单自由度体谱时,地震作用是确定的,每条地震波可以得到各自对应的反应谱。
反应谱的每一条曲线对应一个结构阻尼比,每一个结构阻尼比可得到一条反应谱。
反应谱的结构反应量既可以是系的位移反应只和体系的固有频率和阻尼比有关系,同样,伪加速度反应也一样。
确定出特定体系(固有频率和阻尼比一定)的位移反应和伪加速度反应,可方便地计算体系的内力了。
4. 反应谱用某个反应量的峰值作为体系的固有周期或像圆频率之类的参数的函数图形,称为该反应量的反应谱。
反应谱可以体现出结构的最大反应量与结构自振周期和阻尼比之间关系。
在获得反应绝对加速度,也可以是速度和位移。
反应谱作为地震工程中的一个核心概念,提供了一种方便的手段来概括所有可能的线性自由度体系对地面运动的某个特定分量的峰值反应。
它还提供了一种实用的方法,将结构动力学知识应用于结构的设计以及建筑规范中侧向力条文的制定。
地震反应谱、设计反应谱与地震影响系数谱曲线一直对反应谱这个东西,进来在听完一些免费结构讲座之后,自己总结了一下,梳理了一下几个概念,当然理解这些概念还需要对地震动的一些基本概念有一定理解,下次有机会再将地震动的东西总结一下,希望对初学者有点作用,文中所用图均来自网上。
1.地震反应谱可理解为一个确定的地面运动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引起的各体系最大反应与相应体系自振周期间的关系曲线。
但是,不同场地类别和震中距对反应谱有影响,因而不能直接用于抗震设计,需专门研究可供结构抗震设计用的反应谱,称为设计反应谱。
2.设计反应谱由结构动力学地震系数,该参数可将地震动幅值对地震反应谱的影响分离出来。
地震系数与基本烈度的关系基本烈度6789地震系数k0.050.10(0.15)0.20(0.30)0.40(另:本人对其结果很是不解,由后文可知,地震影响系数最大值等于2.25倍的地震系数,而《抗震规范》2010 表5.1.4-1除以2.25后应该为基本烈度6789地震系数k0.0170.0355(0.0533)0.071(0.106)0.142欢迎大家讨论!)动力系数,是体系最大绝对加速度的放大系数特点:a.是一种规则化的地震反应谱,且动力系数不受地震动振幅的影响。
b.与地震反应谱具有相同的性质,受到体系阻尼比,以及地震动频谱(场地条件和震中距)的影响。
调整:1、为了消除阻尼比的影响由于大多数实际建筑结构的阻尼比在0.05左右,取确定的阻尼比然后不同建筑物根据公式相应调整。
2、按场地震中距将地震动记录分类,消除地震动频谱对地震动的影响。
3、计算每一类地震动记录动力系数的平均值考虑类别相同的不同地震动记录动力系数的变异性。
经过上述三条措施后,再将计算得到的β(T)平滑化后,可得到抗震设计采用的动力系数谱曲线。
3.地震影响系数谱曲线反应谱的局限性:不能反映地震的持续时间(加速度幅值)不能考虑多点激励的影响(刚性地基)不能反映建筑物质量和刚度分布的不均匀不能反映多个阻尼的情况不能反映场地条件和卓越周期的影响不能反映低周疲劳的影响不能反映结构周期不确定性的影响。
【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线地震反应谱、设计反应谱与地震影响系数谱曲线一直对反应谱这个东西,进来在听完一些免费结构讲座之后,自己总结了一下,梳理了一下几个概念,当然理解这些概念还需要对地震动的一些基本概念有一定理解,下次有机会再将地震动的东西总结一下,希望对初学者有点作用,文中所用图均来自网上。
1. 地震反应谱可理解为一个确定的地面运动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引起的各体系最大反应与相应体系自振周期间的关系曲线。
但是, 不同场地类别和震中距对反应谱有影响,因而不能直接用于抗震设计,需专门研究可供结构抗震设计用的反应谱,称为设计反应谱。
由结构动力学789地震系数,该参数可将地震动幅值对地震反应谱的影响分离出来。
与基本烈度的关系基本烈度地震系数k0.050.10(0.15)0.20(0.30)0.40(另:本人对其结果很是不解,由后文可知,地震影响系数最大值等于的地震系数,而《抗震规范》2010表5.1.4-1除以2.25后应该为基本烈度地震系数kJt-/ J w *购)地震系数 2.25 倍0.0170.0355(0.0533)0.071(0.106)0.142欢迎大家讨论〜)a 八=动力系数,是体系最大绝对加速度的放大系数特点:a.是一种规则化的地震反应谱,且动力系数不受地震动振幅的影响。
b.与地震反应谱具有相同的性质,受到体系阻尼比,以及地震动频谱(场地条件和震中距)的影响。
调整:1、为了消除阻尼比的影响由于大多数实际建筑结构的阻尼比在0.05左右,取确定的阻尼比然后不同建筑物根据公式相应调整。
2、按场地震中距将地震动记录分类,消除地震动频谱对地震动的影响。
3、计算每一类地震动记录动力系数的平均值考虑类别相同的不同地震动记录动力系数的变异性。
经过上述三条措施后,再将计算得到的P (T)平滑化后,可得到抗震设计采用的动力系数谱曲线。
工e说讣来fl的站力•罠丁厂lit动耕盘阀期.蚣墙豪捋叽酿尼《鳖卓《”联】』3.地震影响系数谱曲线吏汇:反应谱的局限性:不能反映地震的持续时间(加速度幅值)不能考虑多点激励的影响(刚性地基)不能反映建筑物质量和刚度分布的不均匀不能反映多个阻尼的情况不能反映场地条件和卓越周期的影响不能反映低周疲劳的影响不能反映结构周期不确定性的影响1,万,1,千地质测量质量要求表(吉林参考)11,万1,5千1,2千1,千1,万草测1,2千草沉1对地层划分到组或阶,如范围大应进一步二分或三分,确定1.在1,万分成的基础上,按岩层、岩性特一般地段的研究程含矿层或地积其时代,测定其厚度及产状点进一步详细划分岩层,研究岩石的物质成度可低于1,万或成矿有利质岩2.对标志层、成矿有利的岩层在图上的宽度大于1毫米者应扩分、结构、构造特征,胶结物性质,结核体与之相似。
反映谱的应用及意义相关:当阻尼比给定时,任一结构对给定地震的最大相对位移反应和最大加速度反应仅由自振频率决定。
改变结构的自振频率,就可以得到不同的Sd和Sa。
给定地震作用下,不同周期对应结构地震反应的最大值。
结构的地震反应仅与结构的阻尼比及自珍频率有关。
反应谱的计算要完成一系列具有不同自振周期的结构反应。
利用抗震规范给出的平均反应谱可以得到一个工程场地结构地震反应的最大值。
(?如何由反应谱计算出反应时程?)5.1.5 建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和:形状参数应符合下列要求:1 除有专门规定外,建筑结构的阻尼比应取0.05,地震影响系数曲线的阻尼调整系数应按1.0采用,形状参数应符合下列规定:1)直线上升段,周期小于0.1s的区段。
2)水平段,自0.1s至特征周期区段,应取最大值(αmax)。
3)曲线下降段,自特征周期至5倍特征周期区段,衰减指数应取0.9。
4)直线下降段,自5倍特征周期至6s区段,下降斜率调整系数应取0.02。
反应谱分析建立在振型分解反应谱理论基础上。
振型分解理论将结构的地震作用响应分解为各振型分量的叠加,即对应每个振型都有一个地震作用,然后通过一定的组合方法(SRSS,CQC,ABS等)叠加各振型结构的地震响应得到最终总的结构地震响应值。
振型分解法的数学和力学的本质:首先是利用功的互等定理(贝蒂定理)得到的振型正交性质,从而将多自由度结构振动偏微分方程组解耦成若干等效单自由度体系的常微分方程组,进而得到结构位移响应的解答。
当然,对于地震作用这样的复杂问题,结构振动的偏微分方程组的精确解是难以得到的,而必须采用数值解法。
常采用的数值解法有Wilson-θ法,New mark-β法等。
这些数值积分方法都有对应的求解程序,结构工程师不需要很精通这些数值求解方法的具体过程,而只需要建立一些概念即可。
这里需要注意一个概念:振型分析反应谱法只适用线弹性体系。
如果考虑结构的弹塑性性质,则这种方法不适用。
标准设计反应谱最大值概述说明以及解释1. 引言1.1 概述本篇文章旨在探讨标准设计反应谱最大值的概念、计算方法、解释以及实际应用案例分析。
抗震设计是建筑工程领域中至关重要的部分,而标准设计反应谱最大值作为一个重要指标,对于确保建筑结构的抗震性能起着关键作用。
1.2 文章结构本文共包含五个部分,即引言、标准设计反应谱最大值概述说明、标准设计反应谱最大值的计算方法、标准设计反应谱最大值解释与实际应用案例分析以及结论。
我们将通过这五个部分逐步深入地介绍和阐述标准设计反应谱最大值相关的知识和内容。
1.3 目的本文旨在为读者提供关于标准设计反应谱最大值的全面认识。
通过对其定义、意义及选择方法的详细讲解,读者可以更好地理解该指标在抗震设计中的重要性。
同时,在介绍其计算方法和实际应用案例时,读者能够了解如何正确解读和利用该指标进行抗震性能评估和改进措施制定。
最后,我们还将展望该领域未来的研究前景,并提出进一步研究的建议和方向。
通过本文的阅读,希望读者对标准设计反应谱最大值有一个清晰全面的认识,并能够在实际工程中有效地运用。
2. 标准设计反应谱最大值概述说明2.1 反应谱的定义与作用标准设计反应谱是一种描述结构物在地震作用下产生分布响应的函数曲线。
它以频率为横轴,峰值加速度、速度或位移为纵轴,可以直观地表示在不同频率下结构物受到的最大动力响应。
反应谱被广泛应用于抗震设计中,可以评估结构物在地震中的稳定性和安全性。
2.2 标准设计反应谱的意义标准设计反应谱是建筑抗震设计中重要的参考依据。
通过对不同场地条件、不同工程要求和规范的研究,制定出了一系列适用于各种情况下的标准设计反应谱曲线。
这些标准设计反应谱能够代表典型地震作用下结构物的动力响应特点,帮助工程师进行合理可靠地抗震设计。
2.3 正确选择标准设计反应谱的重要性在进行抗震设计时,正确选择适用于具体工程场景和标准规范要求的标准设计反应谱十分重要。
错误的选择可能导致结构物在地震中发生过度响应或失稳,从而危及人身安全和工程质量。
地震加速度反应谱定义地震加速度反应谱是地震工程中最常用的一种地震动强度指标,它是描述地震动力特性的一种特殊函数。
所谓地震反应谱,就是结构物体在地震运动作用下的反应,是地震运动所引起结构物体加速度、速度和位移等参数随时间的变化曲线。
地震反应谱是通过对地震加速度时间历程进行频率分析,得出把每一种频率成分对结构的加速度、速度或位移所产生的贡献都分析出来的曲线。
反应谱表明的是地震运动的强度随频率的变化规律,可以算出结构物体在某一特定频率下的最大响应值,从而为结构物体设计和抗震评价提供依据。
地震反应谱的定义有多种形式,根据设计需要和参数分析要求的不同,可以选择使用不同的定义方式。
一般来说,地震反应谱的定义可以分为时程反应谱、能量反应谱和特征值反应谱等不同类型。
时程反应谱是通过计算地震记录时程与结构物体的响应时程之间的关系,得到的一种地震反应谱。
时程反应谱的计算方法比较复杂,需要进行时域分析和频域分析,取决于地震动的时间历程以及结构物体的动力特性。
能量反应谱是在时程反应谱的基础上,进一步考虑了地震动的能量与振动响应之间的关系,得出的一种反应谱。
能量反应谱可以通过对地震运动频谱进行积分,计算结构物体在某一频率下的能量消耗与输入能量之间的比例,从而得出结构物体在不同频率下的响应能力。
在工程设计中,通常使用的是特征值反应谱,因为它可以比较直观地反映结构物体在不同频率下的响应能力,适合进行结构物体的抗震设计和评估。
在选择地震反应谱时,需要综合考虑设计要求、结构的动力特性和地震活动的历史数据等因素,进行合理的选取和分析。
地震反应谱的意义在于提供了一种衡量地震工程结构物体抗震能力的方法,可以用于评估结构的安全性和稳定性。
在结构物体的设计和施工过程中,需要充分考虑地震反应谱的影响,采取相应的措施加强结构物体的抗震性能,从而保证结构的长期稳定和安全运行。
地震反应谱的应用范围十分广泛,不仅适用于建筑工程、桥梁工程、水利工程等大型结构物体的抗震设计和评估,还可应用于地震动力学研究、地震风险评估和地震预警等方面。
反应谱基本概念反应谱基本概念反应谱是指结构物在地震作用下的最大响应结果。
它描述了地震波在结构物上产生的一系列振动,是结构地震反应特征的全面指标。
反应谱是工程地震学领域中非常重要的一个参数,由多个分量组成,包括加速度、速度、位移和各种响应指标。
1. 加速度反应谱加速度反应谱是指某一结构元件在地震作用下所达到的最大加速度值和所对应的振周期之间的关系曲线,通常用于结构d阶振型、峰值加速度等的计算。
加速度反应谱可以通过谱加法或时程分析法计算得到结构的反应谱曲线。
2. 速度反应谱速度反应谱即某一结构元件在地震作用下所达到的最大速度值和所对应的振周期之间的关系曲线。
速度反应谱通常用于计算结构物的阻尼比、频率和峰值地震反应等参数。
3. 位移反应谱位移反应谱是指某一结构元件在地震作用下所达到的最大位移值和所对应的振周期之间的关系曲线。
位移反应谱通常用于计算最大位移响应、峰值地震反应等参数,是结构抗震设计和分析的重要参考依据。
4. 能量反应谱能量反应谱是指结构物在地震作用下消耗的总能量与频率之间的关系曲线。
能量反应谱通常用于计算能源吸收容量等参数,是结构抗震设计中非常重要的参考依据。
5. 谱加法谱加法是反应谱分析中一种常用的计算方法,它将结构物受多种输入地震加速度地震波作用所产生的反应加和,得出结构整体的反应谱曲线。
谱加法被广泛应用于建筑、桥梁等领域的抗震设计和分析中。
总之,反应谱是地震工程领域关键的性能指标之一,在结构物的抗震设计、强震动下的地震响应分析、地震灾害预防和抵御等方面具有重要意义。
通过对反应谱及其分量的深入研究和计算,可以在抗震设计和抗震分析中提供可靠的理论和技术支持。
地震反应谱曲线地震反应谱曲线地震是一种自然灾害,给人们的生命和财产安全带来了巨大的威胁。
为了研究地震对建筑物的影响,科学家们首先需要了解地震的地面运动特征。
地震反应谱曲线是描述地震运动的重要工具,它对于工程结构的设计和抗震设防具有重要意义。
一、地震反应谱的定义地震反应谱指的是不同频率下地震运动的峰值加速度、速度或位移与频率之间的关系图线。
它是通过分析地震波信号的频谱特征得出的,在评估地震对结构物的影响时非常有用。
二、地震反应谱曲线的特点1. 频率范围广:地震反应谱曲线通常从低频到高频呈幅值递减的趋势。
低频段决定了结构的刚度抗震能力,而高频段则反映了结构的耐震性能,两者求得的反应谱曲线交点位置即为结构的主要抗震频率。
2. 显示地震能量分布:地震反应谱曲线的形态各异,能够反映地震能量在不同频率下的分布情况。
通过观察曲线的特征,可以判断地震引起的结构振动主要频率,从而为工程设计提供依据。
3. 动态特性评估:利用地震反应谱曲线,可以对结构的动态特性进行评估。
例如,通过比较谱曲线与设计反应谱的差异,可以判断结构是否具备足够的抗震能力,是否需要采取加强措施。
三、地震反应谱曲线的应用1. 结构设计:地震反应谱曲线为工程师提供了一种根据地震特性来设计结构的方法。
通过根据地震反应谱曲线设置结构的抗震设防水平,可以提高建筑物在地震发生时的抗震能力,减少房屋倒塌的风险。
2. 结构改造和加固:对于现有结构,通过分析地震反应谱曲线,可以确定结构在不同频率下的刚性和柔性区域,从而有针对性地进行结构改造和加固。
3. 地震监测:利用反应谱曲线,可以对地震波的频谱特性进行分析和研究。
这对于了解地震来源、判断地震破坏机理以及预测未来地震的趋势都具有重要意义。
四、地震反应谱曲线的研究挑战地震反应谱曲线的研究需要对大量的地震波数据进行分析和处理。
由于地震波的复杂性和不确定性,研究人员需要解决诸如地震波的输入、缩尺效应、平衡调整和截断频率等问题。
elcentro波反应谱
El Centro波是一种著名的地震波,其反应谱是地震工程领域中常用的重要工具之一。
这种地震波得名于美国加利福尼亚州El Centro地区的一次大地震,该地震所产生的地震波被广泛用于地震工程研究。
El Centro波的反应谱是通过分析地震波的特性得出的,它可以反映结构在地震作用下的动力响应情况。
具体而言,反应谱是一种描述结构在不同频率下的动力响应的图表,可以帮助工程师更好地了解结构的抗震性能和可靠性。
在地震工程领域中,El Centro波的反应谱被广泛应用于各种工程结构的抗震设计和评估中。
例如,在建筑设计中,工程师可以使用反应谱来评估建筑结构的抗震性能,以确保建筑在地震中的安全性。
在桥梁、隧道、水库等大型工程的设计中,反应谱也是必不可少的工具之一。
通过对El Centro波的反应谱进行分析,工程师可以确定结构在地震中的最大加速度、速度和位移等关键参数。
这些参数可以帮助工程师评估结构的承载能力和耐震性,从而为结构的安全性和可靠性提供保障。
除了在抗震设计和评估中的应用外,El Centro波的反应谱还可以用于地震预警和地震灾害预测等方面。
通过对地震反应谱的分析,可以预测可能发生的强震和其对结构可能造
成的影响,从而为应急救援和灾后重建提供有力的支持。
总之,El Centro波的反应谱是地震工程领域中非常重要的工具之一。
它可以帮助工程师更好地了解结构的抗震性能和可靠性,为结构的安全性和可靠性提供保障,同时也可以用于地震预警和地震灾害预测等方面,具有重要的应用价值。
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法;该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应;振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用;适用条件1高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算;此为底部剪力法的适用范围2除上述结构以外的建筑结构,宜采用“振型分解反应谱法”;3特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算;刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响的主要参数刚重比=DiHi/GiDi-第i楼层的弹性等效刚度,可取该层与层间位移的比值Hi-第iGi-第i楼层重力荷载设计值刚重比与结构的成正比关系;的调整将导致结构侧移刚度的变化,从而影响到刚重比;因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法;同样,对刚重比的调整也可能影响周期比;特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法的影响较大,应该予以考虑;规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的;长细比长细比=计算长度/回转半径;所以很显然,减小计算长度或者加大回转半径即可;这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数则与柱子两端的约束刚度有关;说白了就是要看与柱相连的梁或者基础是否给力,如果这些构件的刚度越高,那么长度系数就越小,柱子的计算长度也就越短;具体公式你可以去看钢结构规范,我记得长度系数的具体算法是附录D;至于回转半径,那是个几何概念,你去看看基本的几何手册当然要高中以上的就明白如何加大回转半径了,大学课本上有;高层设计的难点在于竖向承重构件柱、剪力墙等的合理布置,设计过程中控制的目标参数主要有如下七个:一、轴压比:轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现;2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度;二、剪重比:剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“”2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;2当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;3当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求;三、刚度比:刚度比不满足时的调整方法:2、人工调整:如果还需人工干预,可按以下方法调整:1适当降低本层层高,或适当提高上部相关楼层的层高;2适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度;四、位移比:主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应;见抗规3.4.2,高规位移比不满足时的调整方法:1、程序调整:SATWE程序不能实现;2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下:1由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在构造措施上对楼板的刚度予以保证;2利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度;也可找出位移最小的节点削弱其刚度;直到位移比满足要求;五、周期比:周期比不满足时的调整方法:1、程序调整:SATWE程序不能实现;2、人工调整:只能通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向包括平动方向和扭转方向的刚度,或削弱需要增大周期方向的刚度;当结构的第一或第二振型为扭转时可按以下方法调整:1SATWE程序中的振型是以其周期的长短排序的;“结构在两个主轴方向的动力特性周期和振型宜相近”;3当第一振型为扭转时,说明结构的抗扭刚度相对于其两个主轴第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴的抗侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度;4当第二振型为扭转时,说明结构沿两个主轴方向的抗侧移刚度相差较大,结构的抗扭刚度相对其中一主轴第一振型转角方向的抗侧移刚度是合理的;但相对于另一主轴第三振型转角方向的抗侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围主要是沿第一振型转角方向的刚度;5在进行上述调整的同时,应注意使周期比满足规范的要求;6当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求;六、刚重比:刚重比不满足时的调整方法:1、程序调整:SATWE程序不能实现;2、人工调整:只能通过人工调整增强竖向构件,加强墙、柱等竖向构件的刚度;七、层间受剪承载力比:层间受剪承载力比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中的“指定薄弱层个数”2、人工调整:如果还需人工干预,可适当提高本层构件强度如增大柱箍筋和墙水平分布筋、提高混凝土强度或加大截面以提高本层墙、柱等抗侧力构件的抗剪承载力,或适当降低上部相关楼层墙、柱等抗侧力构件的抗剪承载力;上述几个参数的调整涉及构件截面、刚度及平面位置的改变,在调整过程中可能相互关联,应注意不要顾此失彼;如果结构竖向较规则,第一次试算时可只建一个结构标准层,待结构的周期比、位移比、剪重比、刚重比等满足之后再添加其它标准层;这样可以减少建模过程中的重复修改,加快建模速度;自振周期特征周期1、自振周期:是结构本身的动力特性;与结构的高度H,宽度B有关;当自振周期与地震作用的周期接近时,共振发生,对建筑造成很大影响,加大震害;2、特征周期:是建筑场地自身的周期,抗震规范中是通过地震分组和地震烈度查表确定的;结构的自振周期顾名思义是反映结构的动力特性,与结构的质量及刚度有关,具体对单自由度就只有一个周期,而对于多自由度就有同模型中采用的自由度相同的周期个数,周期最大的为基本周期,设计用的主要参考数据而特征周期是,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制包括震源深度、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别,所以我认为特征周期同时反映了地震动及场地的特性它在确定地震影响曲线时用到1.特征周期:是建筑物场地的地震动参数由场地的地质条件决定;2.自振周期有结构子身的结构特点决定用结构力学方法求解;主要指第一振型的主振周期3.结构的自振周期主要是避免与场地的卓越周期重合产生共振;4.卓越周期与特征周期有关;卓越周期由场地的覆盖土层厚度和土层剪切波速计算求解见工程地质手册;设计特征周期:抗震设计用的地震影响系数曲线中,反映地震等级,震中距和场地类别等因素的下降段起始点对应的周期值.-----根据其所在地的设计地震分组和场地类别确定.详见抗震规范.自振周期:是结构本身的动力特性.与结构的H,B有关.当自振周期与地震作用的1/f接近时,共振发生,对建筑造成很大影响.另外:目前就场地的有关周期,经常出现场地脉动卓越周期,地震动卓越周期和反应谱特征周期等名词;就以上3个周期概念来说,其确切的含义是清楚的,场地脉动周期是在微小震动下场地出现的周期,也可以说是微震时的卓越周期;地震动卓越周期是在受到地震作用下场地出现的周期,一般情况下它大于脉动周期一般1.2~2.0;场地卓越周期反应场地特征,地震动卓越周期不但反应场地特征,而且反应地震特征如近、远震则明显不同;由此可见二者震动干扰源有区别,另外反映的特征也是不同的;反应谱特征周期一般是指规范反应谱平台段与下降衰减段的拐点周期,它表示规范反应谱值随周期变化的突变特征,是平均意义上的参数,它综合反映场地和地震环境的影响;三者之间有一定关系,但概念不一样,在工程上不能等同;-----结构自振周期、设计特征周期、场地卓越周期和脉动周期之间的关系;自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构固有的特性;基本周期T1:结构按基本振型完成一次自由振动所需的时间;通常需要考虑两个主轴方向的和扭转方向的基本周期;设计特征周期Tg:抗震设计用的地震影响系数曲线的下降阶段起始点所对应的周期值,与地震震级、震中距和场地类别等因素有关;场地卓越周期Ts:根据场地覆盖层厚度H和土层平均剪切波速Vs计算的周期,表示场地土最主要的振动特征;场地卓越周期只反映场地的固有特征,不等同于设计特征周期;场地脉动周期Tm:应用微震仪对场地的脉动、又称为”常时微动”进行观测所得到的振动周期;场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关系又有区别; 1、门式刚架问答一看弯矩图时,可看到弯矩,却不知弯矩和构件截面有什么关系答:受弯构件受弯承载力Mx/γxWx+My/γyWy≤f其中W为截面抵抗矩根据截面抵抗矩可手工算大致截面2、就是H型钢平接是怎样规定的答:想怎么接就怎么接,呵呵.主要考虑的是弯矩和/或剪力的传递.另外,在动力荷载多得地方,设计焊接节点要尤其小心平接:3、“刨平顶紧”,刨平顶紧后就不用再焊接了吗答:磨光顶紧是一种传力的方式,多用于承受动载荷的位置;为避免焊缝的疲劳裂纹而采取的一种传力方式;有要求磨光顶紧不焊的,也有要求焊的;看具体图纸要求;接触面要求光洁度不小于12.5,用塞尺检查接触面积;刨平顶紧目的是增加接触面的接触面积,一般用在有一定水平位移、简支的节点,而且这种节点都应该有其它的连接方式比如翼缘顶紧,腹板就有可能用栓接;一般的这种节点要求刨平顶紧的部位都不需要焊接,要焊接的话,刨平顶紧在焊接时不利于融液的深入,焊缝质量会很差,焊接的部位即使不开坡口也不会要求顶紧的;顶紧与焊接是相互矛盾的,所以上面说顶紧部位再焊接都不准确,不过也有一种情况有可能出现顶紧焊接,就是顶紧的节点对其它自由度的约束不够,又没有其它部位提供约束,有可能在顶紧部位施焊来约束其它方向的自由度,这种焊缝是一种安装焊缝,也不可能满焊,更不可能用做主要受力焊缝;4、钢时,挠度超出限值,会后什么后果答:影响正常使用或外观的变形;影响正常使用或耐久性能的局部损坏包括裂缝;影响正常使用的振动;影响正常使用的其它特定状态;5、挤塑板的作用是什么答:挤塑聚苯乙烯XPS保温板,以聚苯乙烯树脂为主要原料,经特殊工艺连续挤出发泡成型的硬质板材;具有独特完美的闭孔蜂窝结构,有抗高压、防潮、不透气、不吸水、耐腐蚀、导热系数低、轻质、使用寿命长等优质性能的环保型材料;挤塑聚苯乙烯保温板广泛使用于墙体保温、低温储藏设施、泊车平台、建筑混凝土屋顶极结构屋顶等领域装饰行业物美价廉的防潮材料;挤塑板具有卓越持久的特性:挤塑板的性能稳定、不易老化;可用30--50年,极其优异的抗湿性能,在高水蒸气压力的环境下,仍然能够保持低导热性能;挤塑板具有无与伦比的隔热保温性能:挤塑板因具有闭孔性能结构,且其闭孔率达99%,所以它的保温性能好;虽然发泡聚氨酯为闭孔性结构,但其闭孔率小于挤塑板,仅为80%左右;挤塑板无论是隔热性能、吸水性能还是抗压强度等方面特点都优于其他保温材料,故在保温性能上也是其他保温材料所不能及的;挤塑板具有意想不到的抗压强度:挤塑板的抗压强度可根据其不同的型号厚度达到150--500千帕以上,而其他材料的抗压强度仅为150--300千帕以上,可以明显看出其他材料的抗压强度,远远低于挤塑板的抗压强度;挤塑板具有万无一失的吸水性能:用于路面及路基之下,有效防水渗透;尤其在北方能减少冰霜及受冰霜影响的泥土结冻等情况的出现,控制地面冻胀的情况,有效阻隔地气免于湿气破坏等;6、什么是长细比回转半径:根号下惯性矩/面积长细比=计算长度/回转半径答:结构的长细比λ=μl/i,i为回转半径长细比;概念可以简单的从计算公式可以看出来:长细比即构件计算长度与其相应回转半径的比值;从这个公式中可以看出长细比的概念综合考虑了构件的端部约束情况,构件本身的长度和构件的截面特性;长细比这个概念对于受压杆件稳定计算的影响是很明显的,因为长细比越大的构件越容易失稳;可以看看关于轴压和压弯构件的计算公式,里面都有与长细比有关的参数;对于受拉构件规范也给出了长细比限制要求,这是为了保证构件在运输和安装状态下的刚度;对稳定要求越高的构件,给的稳定限值越小;7、受弯工字梁的受压翼缘的屈曲,是沿着工字梁的弱轴方向屈曲,还是强轴方向屈曲答:当荷载不大时,梁基本上在其最大刚度平面内弯曲,但当荷载大到一定数值后,梁将同时产生较大的侧向弯曲和扭转变形,最后很快的丧失继续承载的能力;此时梁的整体失稳必然是侧向弯扭弯曲;解决方法大致有三种:1、增加梁的侧向支撑点或缩小侧向支撑点的间距2、调整梁的截面,增加梁侧向惯性矩Iy或单纯增加受压翼缘宽度如吊车梁上翼缘3、梁端支座对截面的约束,支座如能提供转动约束,梁的整体稳定性能将大大提高8、钢结构中为什么没有钢梁的受扭计算答:通常情况下,钢梁均为开口截面箱形截面除外,其抗扭截面模量约比抗弯截面模量小一个数量级,也就是说其受扭能力约是受弯的1/10,这样如果利用钢梁来承受扭矩很不经济;于是,通常用构造保证其不受扭,故规范中没有钢梁的受扭计算;9、无吊车采用砌体墙时的柱顶位移限值是h/100还是h/240答:轻钢确实已经勘误过此限值,主要是1/100的柱顶位移不能保证墙体不被拉裂;同时若墙体砌在刚架内部如内隔墙,我们计算柱顶位移时是没有考虑墙体对刚架的嵌固作用的夸张一点比喻为框剪结构;10、什么叫做最大刚度平面答:最大的刚度平面就是绕强轴转动平面,一般截面有两条轴,其中绕其中一条的转动惯性矩大,称为强轴,另一条就为弱轴;11、采用直缝钢管代替无缝管,不知能不能用答:结构用钢管中理论上应该是一样,区别不是很大,直缝焊管不如无缝管规则,焊管的形心有可能不在中心,所以用作受压构件时尤其要注意,焊管焊缝存在缺陷的机率相对较高,重要部位不可代替无缝管,无缝管受加工工艺的限制管壁厚不可能做的很薄相同管径的无缝管平均壁厚要比焊管厚,很多情况下无缝管材料使用效率不如焊管,尤其是大直径管;无缝管与焊管最大的区别是用在压力气体或液体传输上DN;12、剪切滞后和剪力滞后有什么区别吗它们各自的侧重点是什么答:剪力滞后效应在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象;剪力滞后,有时也叫剪切滞后,从力学本质上说,是圣维南原理,具体表现是在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后;墙体上开洞形成的空腹筒体又称框筒,开洞以后,由于横梁变形使剪力传递存在滞后现象,使柱中正应力分布呈抛物线状,称为剪力滞后现象;13、地脚螺栓锚固长度加长会对柱子的受力产生什么影响答:锚栓中的轴向拉应力分布是不均匀的,成倒三角型分布,上部轴向拉应力最大,下部轴向拉应力为0;随着锚固深度的增加,应力逐渐减小,最后达到25~30倍直径的时候减小为0;因此锚固长度再增加是没有什么用的;只要锚固长度满足上述要求,且端部设有弯钩或锚板,基础混凝土一般是不会被拉坏的;14、应力幅准则和应力比准则的异同及其各自特点答:长期以来钢结构的疲劳设计一直按应力比准则来进行的.对于一定的荷载循环次数,构件的疲劳强度σmax和以应力比R为代表的应力循环特征密切相关.对σmax引进安全系数,即可得到设计用的疲劳应力容许值〔σmax〕=fR把应力限制在〔σmax〕以内,这就是应力比准则;自从焊接结构用于承受疲劳荷载以来,工程界从实践中逐渐认识到和这类结构疲劳强度密切相关的不是应力比R,而是应力幅Δσ.应力幅准则的计算公式是Δσ≤〔Δσ〕〔Δσ〕是容许应力幅,它随构造细节而不同,也随破坏前循环次数变化.焊接结构疲劳计算宜以应力幅为准则,原因在于结构内部的残余应力.非焊接构件.对于R>=0的应力循环,应力幅准则完全适用,因为有残余应力和无残余应力的构件疲劳强度相差不大.对于R<0的应力循环,采用应力幅准则则偏于安全较多;15、什么是热轧,什么是冷轧,有什么区别答:热扎是钢在1000度以上用轧辊压出,通常板小到2MM厚,钢的高速加工时的变形热也抵不到钢的面积增大的散热,即难保温度1000度以上来加工,只得牺牲热轧这一高效便宜的加工法,在常温下轧钢,即把热轧材再冷轧,以满足市场对更薄厚度的要求;当然冷轧又带来新的好处,如加工硬化,使钢材强度提高,但不宜焊,至少焊处加工硬化被消除,高强度也无了,回到其热轧材的强度了,冷弯型钢可用热扎材,如钢管,也可用冷扎材,冷扎材还是热轧材,2MM厚是一个判据,热轧材最薄2MM厚,冷扎材最厚3MM;16、为什么梁应压弯构件进行平面外平面内稳定性计算,但当坡度较小时可仅计算平面内稳定性即可答:梁只有平面外失稳的形式;从来就没有梁平面内失稳这一说;对柱来说,在有轴力时,平面外和平面内的计算长度不同,才有平面内和平面外的失稳验算;对刚架梁来说,尽管称其为梁,其内力中多少总有一部分是轴力,所以它的验算严格来讲应该用柱的模型,即按压弯构件的平面内平面外都得算稳定;但当屋面坡度较小时,轴力较小,可忽略,故可用梁的模型,即不用计算平面内稳定;门规中的意思P33,17、为何次梁一般设计成与主梁铰接答:如果次梁与主梁刚接,主梁同一位置两侧都有同荷载的次梁还好,没有的话次梁端弯矩对于主梁来说平面外受扭,还要计算抗扭,牵扯到抗扭刚度,扇性惯性矩等;另外刚接要增加施工工作量,现场焊接工作量大大增加.得不偿失,一般没必要次梁不作成刚接;18、高强螺栓长度如何计算的答:高强螺栓螺杆长度=2个连接端板厚度+一个螺帽厚度+2个垫圈厚度+3个丝口长度;19、屈曲后承载力的物理概念是什么答:屈曲后的承载力主要是指构件局部屈曲后仍能继续承载的能力,主要发生在薄壁构件中,如冷弯薄壁型钢,在计算时使用有效宽度法考虑屈曲后的承载力;屈曲后承载力的大小主要取决于板件的宽厚比和板件边缘的约束条件,宽厚比越大,约束越好,屈曲后的承载力也就越高;在分析方法上,目前国内外规范主要是使用有效宽度法;但是各国规范在计算有效宽度时所考虑的影响因素有所不同;20、什么是塑性算法什么是考虑屈曲后强度答:塑性算法是指在超静定结构中按预想的部位达到屈服强度而出现塑性铰,进而达到塑性内力重分布的目的,且必须保证结构不形成可变或瞬变体系;考虑屈曲后强度是指受弯构件的腹板丧失局部稳定后仍具有一定的承载力,并充分利用其屈曲后强度的一种构件计算方法;21、软钩吊车与硬钩有什么区别答:软钩吊车:是指通过钢绳、吊钩起吊重物;硬钩吊车:是指通过刚性体起吊重物,如夹钳、料耙;硬钩吊车工作频繁.运行速度高,小车附设的刚性悬臂结构使吊重不能自由摆动;22、什么叫刚性系杆,什么叫柔性系杆答:刚性系杆即可以受压又可以受拉,一般采用双角钢和圆管,而柔性系杆只能受拉,一般采用单角钢或圆管;23、长细比和挠度是什么关系呢答:1.挠度是加载后构件的的变形量,也就是其位移值;2."长细比用来表示轴心受力构件的刚度"长细比应该是材料性质;任何构件都具备的性质,轴心受力构件的刚度,可以用长细比来衡量;3.挠度和长细比是完全不同的概念;长细比是杆件计算长度与截面回转半径的比值;挠度是构件受力后某点的位移值;24、请问地震等级那4个等级具体是怎么划分的答:抗震等级:一、二、三、四级;抗震设防烈度:6、7、8、9度;抗震设防类别:甲、乙、丙、丁四类;地震水准:常遇地震、偶遇地震、少遇地震、罕遇地震;25、隅撑能否作为支撑吗和其他支撑的区别。
【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线地震反应谱、设计反应谱与地震影响系数谱曲线一直对反应谱这个东西,进来在听完一些免费结构讲座之后,自己总结了一下,梳理了一下几个概念,当然理解这些概念还需要对地震动的一些基本概念有一定理解,下次有机会再将地震动的东西总结一下,希望对初学者有点作用,文中所用图均来自网上。
1.地震反应谱可理解为一个确定的地面运动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引起的各体系最大反应与相应体系自振周期间的关系曲线。
但是,不同场地类别和震中距对反应谱有影响,因而不能直接用于抗震设计,需专门研究可供结构抗震设计用的反应谱,称为设计反应谱。
2.设计反应谱由结构动力学地震系数,该参数可将地震动幅值对地震反应谱的影响分离出来。
地震系数与基本烈度的关系基本烈度6789地震系数k0.050.10(0.15)0.20(0.30)0.40(另:本人对其结果很是不解,由后文可知,地震影响系数最大值等于2.25倍的地震系数,而《抗震规范》2010 表5.1.4-1除以2.25后应该为基本烈度6789地震系数k0.0170.0355(0.0533)0.071(0.106)0.142欢迎大家讨论~)动力系数,是体系最大绝对加速度的放大系数特点:a.是一种规则化的地震反应谱,且动力系数不受地震动振幅的影响。
b.与地震反应谱具有相同的性质,受到体系阻尼比,以及地震动频谱(场地条件和震中距)的影响。
调整:1、为了消除阻尼比的影响由于大多数实际建筑结构的阻尼比在0.05左右,取确定的阻尼比然后不同建筑物根据公式相应调整。
2、按场地震中距将地震动记录分类,消除地震动频谱对地震动的影响。
3、计算每一类地震动记录动力系数的平均值考虑类别相同的不同地震动记录动力系数的变异性。
经过上述三条措施后,再将计算得到的β(T)平滑化后,可得到抗震设计采用的动力系数谱曲线。
3.地震影响系数谱曲线反应谱的局限性:不能反映地震的持续时间(加速度幅值)不能考虑多点激励的影响(刚性地基)不能反映建筑物质量和刚度分布的不均匀不能反映多个阻尼的情况不能反映场地条件和卓越周期的影响不能反映低周疲劳的影响不能反映结构周期不确定性的影响1,万,1,千地质测量质量要求表(吉林参考)11,万 1,5千 1,2千 1,千 1,万草测 1,2千草测 1 2 3 4 5 6 7 一沉 1对地层划分到组或阶,如范围大应进一步二分或三分,确定1.在1,万分成的基础上,按岩层、岩性特一般地段的研究程含矿层或地积其时代,测定其厚度及产状点进一步详细划分岩层,研究岩石的物质成度可低于1,万或成矿有利质岩 2.对标志层、成矿有利的岩层在图上的宽度大于1毫米者应扩分、结构、构造特征,胶结物性质,结核体与之相似。
抗震设计中反应谱得应用
一.什么就是反应谱理论
在房屋工程抗震研究中,反应谱就是重要得计算由结构动力特性所产生共振效应得方法、它得书面定义就是“在给定得地震加速度作用期间内,单质点体系得最大位移反应、速度反应与加速度反应随质点自振周期变化得曲线。
用作计算在地震作用下结构得内力与变形",反应谱理论考虑了结构动力特性与地震动特性之间得动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生得共振效应,但其计算公式仍保留了早期静力理论得形式。
地震时结构所受得最大水平基底剪力,即总水平地震作用为:
FEK = kβ(T)G
式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a得比值,它表示地震时结构振动加速度得放大倍数。
β(T)=Sa(T)/a
反应谱理论建立在以下基本假定得基础上:1)结构得地震反应就是线弹性得,可以采用叠加原理进行振型组合;2)结构物所有支承处得地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动得过程就是平稳随机过程。
二.实际房屋抗震设计中得应用
为了进行建筑结构得抗震设计,必须首先求得地震作用下建筑结构各构件得内力。
一般而言,求解建筑结构在地震作用下构件内力得方法主要有两种,一种就是建立比较精确得动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型得准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构得加速度反映,求出该结构体系得惯性力,将此惯性力作为一种反映地震影响得等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。
实践也证明此方法更适合工程技术人员采用、由于目前抗震规范中得地震作用反应谱仅考虑结构发生弹性变形情况下所得得反应谱,因此当结构某些部位发生非线性变形时,抗震规范中得反应谱就不能适用,而应采用弹塑性反应谱来进行计算。
因此选用合适得弹塑性反应谱并提出适当得地震作用计算方法在我国抗震设计中具有重要得现实意义。
弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间得关系。
下面就普通房屋设计中得弹塑性反应谱设计来举例说明。
反应谱就是指单自由度体系对于某地面运动加速度得最大反应与体系得自振特性(自振周期与阻尼比)之间得函数关系。
抗震规范中所采用得弹性反应谱如图1所示⋯ ,它就是在计算了大量地面运动加速度得基础上,确定地震影响系数与特征周期T之间关系得曲线
图一:地震影响系数曲线
图一中绘出得弹性加速度反应谱其表达式如下
其中,
为曲线下降段衰减系数,;
为阻尼比;
为阻尼比调整系数,;
为直线下降段斜率调整系数,;
为场地土得特征周期;
为最大地震影响系数。
依据适当得模型,列出相应关系模型式,再将各相应系数带入,即可得到建立在此模型上得弹塑性反应谱。
在应用弹性反应谱对多层房屋进行抗震设计时,通常将每一层楼面或楼盖得质量及上下各一半得楼层结构质量集中到楼面或楼盖标高处,作为一个质点,并假定由无重得弹性直杆支撑于地面,把整个结构简化成1个多质点弹性体系。
多自由度体系得水平地震作用可用各质点所受得惯性力来代表,故对应于第j振型质点i上得水平地震作用为
式中,
表示对应于第j振型质点i上得最大水平地震作用;
表示质点i得质量;
表示第j振型下质点i得最大绝对加速度反应;
表示第j振型下质点i得位移幅值;
表示第j振型参与系数、
根据随机振动理论,如假定地震时得地面运动为平稳随机过程,则对于各平动振型产生得地震作用效应可近似地采用“平方与开方"法确定,因此第i层剪力可由下式表示
当发生罕见地震时,由于地震作用比多遇到地震时得地震作用要大得多,因此若假设第i,i+1,…,i+L层已经发生塑性变形,这时上式变为
第i层层间位移为
式中,
表示第i层得楼层剪力;表示第i层得楼层侧移刚度。
利用以上得一系列公式就能利用反应谱法设计结构得抗震性能。
三.我得心得体会
在进行建筑结构得抗震设计时,必须首先求得地震作用下建筑结构各构件得内力。
反应谱法以其特有得简洁,直观,易于掌握等特点,称为了在房屋设计中抗震设计得首选方法。
将结构体系得惯性力当做地震得等效力得方法也更接近实际情况,避免了因为近似取模型造成得过大误差。
总而言之,反应谱方法通过反应谱得概念,既考虑了结构动力特性与地震动特性之间得关系,又充分应用了静力理论,巧妙地将动力问题静力化,使复杂得结构地震作用及其效应得计算变得简单易行。
但就是,综合这两天我对相关文献得阅读,我发现反应谱法还就是有许多问题,例如由于实际条件所限,可能不能充分体现结构自重对构件内力得影响,可能导致模型得破坏形态与结
构在地震作用下得实际破坏形态不完全相同,又例如计算中相关系数众多,而且系数得取值范围比较宽泛,容易导致计算结果误差范围过大,失去参考价值,因此反应谱法还就是有继续完善得空间,值得我们去研究改善。