当前位置:文档之家› 射影几何(正式版)

射影几何(正式版)

射影几何(正式版)
射影几何(正式版)

射影几何

首先,射影几何学是几何学的一个重要分支学科。概括的说,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的学科。

那射影几何的某些内容在公元前就已经发现了,但直到十九世纪才形成独立体系,趋于完备。

接下来,我将从以下4个方面介绍射影几何。(1,2,3,4)

首先是第一点,从透视学到射影几何

在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临了如何呈现的问题。

例如如何将平行的9个长方体从一个角度观察并呈现在了二维纸面上。正是这种冲突,刺激并导致了富有文艺复兴特色的学科---透视学。

这里不得不提起一个数学透视法的天才,阿尔贝蒂。他是当时意大利著名建筑师、建筑理论家。意大利文艺复兴时期最有影响的建筑理论家。一生致力于理论研究,著有《论绘画》、《论建筑》、《论雕塑》,其中《论建筑》为当时最富影响、最具代表性的建筑理论著作,书内列有研究建筑材料、施工、结构、构造、经济、规划、水文、设计等章节,完整地介绍了他的建筑思想。另外《论绘画》一书(1511)则更是早期数学透视法的代表作,成为射影几何学发展的起点。接下来就是第2点了——射影几何的早期发展

在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,其早期开拓者德沙格、帕斯卡等主要是以欧式几何的方法处理问题(这点很重要)。

但是由于18世纪解析几何、微积分的发展洪流而被人遗忘。

德沙格:生在法国,也死在法国,和当时的笛卡尔、费尔马等领头数学家都是好朋友,这批人的活动和所取得的成就,使法国成为当时世界上最辉煌的国度。身处这一旋涡的德扎格以其新颖的思想和独特的数学方法,对于透视法产生的问题给予数学上解答,开辟了数学的一个新领域,成为射影几何学的先驱的第一人。

帕斯卡:著名的、、和。主要贡献是在上,发现了,并以其名字命名单位。

帕斯卡没有受过正规的。他4岁时母亲病故,他父亲是一位受人尊敬的,在其精心地教育下,帕斯卡很小时就精通。12岁独自发现了“三角形的内角和等于180度”。17岁时帕斯卡写成了数学水平很高的《圆锥截线论》著作,这是他研究德扎尔格关于综合射影几何的经典工作的结果。但不久就失传了,直到1779年才被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线,可以看一下书上的图。

但德沙格、帕斯卡等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分。

直到射影几何的繁荣。

到18世纪末19世纪初,蒙日的《画法几何学》及其学生们的工作,重新激发了人们对综合射影几何的兴趣,法国数学家、化学家和物理学家。蒙日当时著名的几何学家,他创立了,推动了空间解析几何学的独立发展,奠定了空间的宽厚基础。著名高斯在1810年说,蒙日的《画法几何学》一书简明扼要,由浅入深,系统严密,富有创新,体现了“真正的几何精神”,是“智慧的滋补品”。

然而将射影几何变革为具有自己独立的目标与方法的学科的数学家是曾受教于蒙日的庞斯列(1788-1867)

庞斯列:1788年7月1日生于法国梅斯;1867年 12月22日卒于巴黎.几何学、机械原理、工程力学.

庞斯列小时候寄养在亲戚家中,家境贫苦.他由于在校学习成绩优秀,得到一笔助学金,使他能进入大学预科.1807年10月,他考入了巴黎理工科大学,该校有许多法国的著名学者,例如物理学家A.M.安培(Ampére),数学家G.蒙日(Monge)等.1810年9月,他进入梅斯军事工程学院学习,1812年初毕业后分配到荷兰西南部一个小岛的要塞工作.1812年6月参加了拿破仑侵俄战争,是工程兵总参谋部的中尉.战争失败后,在从莫斯科撤退的过程中,他于11月18日在克拉斯诺耶被俘,关押在俄国战俘营中.他利用取暖的木炭在墙上作图,探索几何学问题.由于手头没有参考资料,他便从最基本的理论开始研究,充分利用了这段时间,为他以后的成功打下基础.直到1814年6月他才被释放.同年9月回到法国,1834年成为法国科学院院士,并搬到巴黎居住.1851年成为彼得堡通讯院士.

庞斯列到54岁才结婚.1848年2月法国发生了革命.同年4月底他作为莫泽尔省的代表参加了制宪会议,是一名温和的拥护共和者.同时他被提升为准将,并担任了巴黎理工大学校长,一直工作到1850年10月退休.退休后当过伦敦(1851)和巴黎(1855)国际展览工业机械和工具部的主席.由于他对机械化的飞速发展很感兴趣,便花了多年时间收集19世纪以来各种工业机械和工具在工业中应用状况的资料,并在伦敦的展览会上做了报告.几年以后,庞斯列重新整理和编辑了他已发表和未发表的全部著作.可惜的是,其中一些资料和手稿在第一次世界大战中丢失了.

庞斯列的科学技术工作涉及两个非常不相同的领域:射影几何与应用力学.庞斯列对射影几何的研究主要在1813年到1824年间进行.

1813年他在战俘营中,先着手研究纯理论的解析几何,后来才研究圆锥曲线的射影性质.他研究的射影方法与蒙日不同,采用的是中心射影法.

1820年5月1日,庞斯列将一篇论文“试论圆锥截面的射影性质”送到法国科学院,当时审稿人是法国著名数学家A.L.柯西(Cauchy).柯西对庞斯列的几何方法评价不高,并且批评论文中的基本部分即连续性原理是“大胆引入”,“可能导致明显的错误”.当时法国的数学家们对用数学分析解决实际问题更感兴趣,因此对庞斯列的研究没有给予应有的重视.但庞斯列仍然坚持自己的见解,继续深入探索,重新写了一篇内容更为丰富的论文“图形的射影性质”,于1822年在巴黎发表.这篇论文系统地阐述了柯西批评的连续性原理.这篇论文的发表,对19世纪射影几何的研究和发展起了决定性作用.

庞斯列曾任拿破仑的远征军的工兵中尉,1812年莫斯科战役被俘,度过了两年铁窗生活,在这两年里,庞斯列不借助于任何书本,以炭为笔,在监狱的墙壁上谱写了射影几何的新篇章。获释后他整理出版了《论图形的射影性质》,这部著作立即掀起了19世纪射影几何发展的巨大波澜,带来了这门学科历史的黄金时期

在公元1822年,完成了一部理论严谨、构思新颖的巨著——《论图形的射

影性质》。这部书的问世,标志着射影几何座位一门学科的正式诞生。

与德沙格和帕斯卡等不同,庞斯列并不限于考虑特殊问题。他探讨的是一般问题:图形在投影和截影下保持不变的性质,这也成为他以后射影几何研究的主题。由于距离和交角在投影和截影下会改变,庞斯列选择并发展了对和与调和点列的理论而不是以交比的概念为基础。与他的老师蒙日也不同,庞斯列采用中心投影而不是平行投影,并将其提高为眼界问题的一种方法。在庞斯列实现射影几何目标的一般研究中,利用到了连续性原理和对偶原理,深入研究了极点与极线的概念,给出了极点到极线和从极线到极点的变换的一般表述

在庞斯列用综合的方法为射影几何奠基的同时,

这种代数方法遭到了以庞斯列为首的综合派学者的反对,因此19世纪的射影几何就是在综合派的与代数的两大派之间的激烈争论中前进的,支持庞斯列的还有斯坦纳 沙勒 和施陶特

而即使综合派的著作中也仍然用长度的概念,实际上长度不是射影概念。而长度是在欧式几何中的一个概念,但在1850年前后,数学家们对于射影几何与欧氏几何在一般概念与方法上已经作出区别,但对这两种几何的逻辑关系不甚了了。

直到施陶特在1847年的《位置几何学》中提出一套方案,给交比以重新定义:4

2324131/x x x x x x x x ----,这样施陶特不借助长度概念就得到了建立射影几何的基本工具,从而使射影几何摆脱了度量关系,成为与长度等度量概念无关的全新的学科。

射影几何的概念在逻辑上要先于欧氏几何的概念,因而射影几何比欧氏几何更基本。

施陶特的工作鼓舞了英国数学家凯莱(1821-1895)和普吕克的学生克莱因进一步在射影几何概念基础上建立欧氏几何与非欧氏几何的特例,从而为以射影几何为基础来统一各种几何学铺平了道路。

四、射影几何的应用

射影几何学的发展和其他数学分支的发展有密切的关系。特别是“群”的概念产生以后,也被引进了射影几何学,对这门几何学的研究起了促进作用。 对于我们来说,射影几何最重要的应用是在对初等几何数学的指导,它不仅表现在提高数学思想与观念上,还直接表现在对初等几何图形性质的研究中。由射影 几何的性质,指导研究初等几何中的一些问题。

投影:从初中数学的角度来说(可参见人教网九年级下册电子课本第二十九章 投影与视图),一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的叫做物体的投影(projection ),照射光线叫做投影线,投影所在的平面叫做。有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是(parallel projection).由同一点(点光源发出的光线)形成的投影叫做(center projection)。投影线垂直于投影面产生的投影叫做。投影线不平行于投影面产生的投影叫做斜投影。物体正投影的形状、大小与它相对于投影面的位置和角度有关。

射影几何

南京师范大学 毕业设计(论文) (2009 届) 题目:漫谈射影几何的几种子几何及其关系 学院:数学科学学院 专业:数学与应用数学 姓名:刘峰 学号:0 6 0 5 0 2 1 0 指导教师:杨明升 南京师范大学教务处制

漫谈射影几何的几种子几何及其关系 刘峰 数学与应用数学(师范)06050210 一.摘要 射影几何学是研究图形的射影性质,即它们经过射影变换不变的性质. 射影几何集中表现了投影和截影的思想,论述了同一射影下,一个物体的不同截景所形成的几何图形的共同性质,以及同一物体在不同射影下的几何图形的共同性质,一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊地位,通过它可以把其他一些几何联系起来. 概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学. 这门”诞生于艺术的科学”,今天成了最美的数学分支之一. 二.关键词 射影几何,摄影仿射几何,摄影欧氏几何,仿射几何,欧氏几何,射影变换,仿射变换,正交变换,射影变换群,仿射变换群,正交变换群,克莱因变换群. 三.射影几何(projective geometry)的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前. 这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件. 这门几何学就是射影几何学. 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影. 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形. 那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来. 在这个过程中,被描绘下来

射影几何中仿射变换解初等几何题

利用仿射变换可以解决许多初等几何问题,下面给出它在以下几个方面的应用。 平行投影 平行投影是仿射变换中最基本、最简单的一类。因此平行投影变换具有仿射变换中的一切性质。解这类题的关键是选定平行投影方向,应用平行线段之比是仿射不变量。 例1 P 是ABC ?内任一点,连结AP 、BP 、CP 并延长分别交对边于D 、E 、F 。求证: 1=++CF PF BE PE AD PD . [2] C 图1 证明:如图1,分别沿AB 和AC 方向作平行投影。P →P '、P →P ''由仿射变换保简单比不变得, DC DP BD D P AD PD '''==,所以BC P P AD PD ' ''= , 同理 BC C P BE PE ''=,BC BP CF PF ' = , 所以 1''''''=++=++BC BP BC C P BC P P CF PF BE PE AD PD . 例2 一直线截三角形的边或其延长线,所得的顶点到分点和分点到顶点的有向线段的比的乘积等于﹣1,其逆也真。(梅涅劳斯定理 )[3] 分析:如图2,本题要求证明当L 、M 、N 三点共线时,1-=??NB AN MA CM LC BL 。其逆命题亦成立 。 N B A L'(L) A'C B A M M N A' L C 图2 (1)证明梅涅劳斯定理成立 由于要证明的三条线段分别处在三条直线上,不便于问题的证明,为此应用平行投影将其集中到一条直线上,自然采用原三角形的一边最简便。

如图2(a),以MN 为投影方向,将A 、N 、M 点平行投影到直线BC 上的A '、L 、L '点,则 1''-=??=??LB L A LA CL LC BL NB AN MA CM LC BL .即原命题成立。 (2)证明逆命题成立 证明当BC 、CA 、AB 上三点L 、M 、N 满足1-=??NB AN MA CM LC BL 时,则L 、M 、N 三点共线。 设直线MN 交BC 于L ',如图2(b) ,由已知条件知,1''-=??NB AN MA CM C L BL , 所以L '与L 重合,故L 、M 、N 三点共线。 三角形仿射等价性 因为任一三角形可以经过平行投影变成正三角形。因此,如果我们要证明一个有关三角形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明命题对正三角形成立,便可断言命题对任意三角形也成立。而正三角形是最特殊的三角形,它有很多特殊的性质可以利用,证明起来要容易得多。 例3 在ABC ?的中线AD 上任取一点P ,连接BP 、CP ,并延长BP 交AC 于E ,延长CP 交AB 于F ,求证:EF ∥BC . [4] D 'C ' D B B' 图3 证明:如图3,作仿射变换T ,使得ABC ?对应正C B A '''?,由仿射性质可知,点D 、P 、 E 、 F 相应地对应D '、P '、E '、F ',且D A ''为正C B A '''?的中线。 在正C B A '''?中D A ''也是C B ''边上的高,且B '、P '、E '与C '、P '、F '关于D A ''对称,E '、F '到C B ''的距离相等,则F E ''∥C B '', 由于平行性是仿射不变性,因此,在ABC ?中EF ∥BC . 例4 证明G 为ABC ?重心的充要条件是:BGC AGC AGB S S S ???==.[4]

射影几何的诞生与发展

射影几何的诞生与发展 一从透视学到射影几何 1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题: (1)一个物体的同一投影的两个截影有什么共同的性质? (2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系? 2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。 3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。 4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。 5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线 6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。 7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点: 1)一个数学对象从一个形状连续变化到另一形状 2)变换与变换不变性 3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量 二射影几何的繁荣 1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

圆锥曲线和射影几何

圆锥曲线与射影几何 射影几何是几何学的重要内容,射影几何中的一些重要定理与结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。 例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线12 2=-y x 的左支上,A D ≠,直线 CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直 线2 1= x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。 我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据与特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成: 有一点 A 在一条双曲线内部,过A 引两条直线与双曲线分别交于 B , C , D , E 。连 BD ,CE 交于点P ,且P 点在四边形BCDE 外部。 又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连 BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。 D

证明: 对 C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得: DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线, 同理P ,Q ,N 三点共线 所以 P ,Q ,M ,N 四点共线。 又因为 BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A 的极线,即 PQ 是A 的极线。 回到原图,由极线的定义与性质得 PQ OA ,且FAGH 为调与点列。

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计 划书》中提出用变换群对几何学进行分类 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

浅析射影几何及其应用讲解

浅析射影几何及其应用 湖北省黄冈中学 一、概述 射影几何是欧几里得几何学的一个重要分支,研究的是在射影变换中图形所具有的性质。在高等数学中,射影几何的定义是根据克莱因的变换群理论与奥古斯特·费迪南德·莫比乌斯(1970-1868)的齐次坐标理论,这一部分已经涉及了群论和解析几何,但是这两位数学家对于射影几何的发展作出的巨大贡献是令人钦佩的。在本次综合性学习中小组成员对于射影几何的纯几何内容进行了探究,对以下专题进行了研究: 1、射影几何的基本概念及交比不变性 2、笛沙格定理(早期射影几何中最重要的定理之一) 3、对偶原理 4、二次曲线在射影几何上的应用 5、布列安桑定理和帕斯卡定理 6、二次曲线蝴蝶定理

二、研究过程 1、射影几何的基本概念及交比不变性 射影几何虽然不属于高考内容,射影几何与较为容易的中学几何具有更加抽象、难以理解的特点,但是射影几何所研究的图形的性质是极具有吸引力的,可以说是中学几何的一个延伸。 射影几何所研究的对象是图形的位置关系,和在射影变换下图形的性质。射影,顾名思义,就是在光源(可以是平行光源或者是点光源),图形保持的性质。在生活中,路灯下人的影子会被拉长,矩形和圆在光源照射下会出现平行四边形和椭圆的影子,图形的形状和大小发生了变化。然而,在这种变换中图形之间的有些位置关系没有变,比如,相切的椭圆和直线在变换之后仍相切。此外,射影几何最重要的概念之一——交比也不会发生改变。 在中学的几何中,我们认为两条平行的直线是不相交的。但是在射影几何中,我们可以规定一簇平行直线相交于平面上一个无穷远点,而通过这个点的所有直线是一簇有确定方向的平行直线。一条直线有且只有一个无穷远点,平面上方向不同的直线经过不同的无穷远点。所有这样的无穷远点构成了一条无穷远直线,同样在三维空间中可类似地定义出无穷远平面,这样就扩充了两个公理: 1、过两点有且只有一条直线 2、两条直线有且只有一个交点 这两条公理对普通点(即非无穷远点)和无穷远点均成立。这两条公

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

射影几何学

射影几何学 射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。 发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在4世纪帕普斯的著作中,出现了帕普斯定理。 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。 射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家——笛沙格和帕斯卡。

笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。 迪沙格在他的著作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用他的名字命名的迪沙格定理:“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。 帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理:“内接于二次曲线的六边形的三双对边的交点共线。”这条定理叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。1658年,他写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。迪沙格和他是朋友,曾经敦促他搞透视学方面的研究,并且建议他要把圆锥曲线的许多性质简化成少数几个基本命题作为目标。帕斯卡接受了这些建议。后来他写了许多有关射影几何方面的小册子。 不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质(长度、角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新的几何体系射影几何。他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。 射影几何的主要奠基人是19世纪的彭赛列。他是画法几何的创始人蒙日的学生。蒙日带动了他的许多学生用综合法研究几何。由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。 1822年,彭赛列发表了射影几何的第一部系统著作。他是认识到射影几何是一个新的数学分支的第一个数学家。他通过几何方法引进无穷远虚圆点,研究了配极对应并用它来确立对偶原理。稍后,施泰纳研究了利用简单图形产生较复杂图形的方法,线素二次曲线概念也是他引进的。为了摆脱坐标系对度量概念的依赖,施陶特通过几何作图来建立直线上的点坐标系,进而使交比也不依赖于长度概念。由于忽视了连续公理的必要性,他建立坐标系的做法还不完善,但却迈出了决定性的一步。 另—方面,运用解析法来研究射影几何也有长足进展。首先是莫比乌斯创建一种齐次坐标系,把变换分为全等,相似,仿射,直射等类型,给出线束中四条线交比的度量公式等。接着,普吕克引进丁另一种齐次坐标系,得到了平面上无穷远线的方程,无穷远圆点的坐标。他还引进了线坐

平面几何四大定理

平面几何四大定理 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Me nelau s)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R,则P、Q 、R共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Pto lemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(S imso n)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△A BC的边BC 上的中线,直线CF 交AD 于F 。求 证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F,交CB 于

平面几何四大定理 D 。 求证: 1FA CF EA BE =+。 【分析】连结并延长AG 交BC 于M,则M为BC 的中点。 DEG 截△AB M→1DB MD GM AG EA BE =??(梅氏定理) D GF 截△AC M→1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE + =MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、C A、AB 边上, λ===EA CE FB AF DC BD ,A D、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△B CE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C。求证:AC 2=AB 2+AB ·B C。

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

射影几何的起源

射影几何的起源 在欧洲文艺复兴时期,许多著名的画家,包括多才多艺的达·芬奇,以他们非凡的技巧和才能,为透视学的研究,作出了卓越的贡献。他们的成果,很快地影响到几何学,并孕育出一门新的几何学分支——射影几何。 所谓射影是指:从中心O发出的光线投射锥,使平面Q上的图形Ω,在平面P上获得截景Ω1。则Ω1称为Ω关于中心O在平面P上的射影。 射影几何就是研究在上述射影变换下不变性质的几何学。 为射影几何的诞生奠基的,是两位法国数学家:笛沙格(Desargues,1591~1661)和帕斯卡(Pascal,1623~1662)。 公元1636年,笛沙格发表了题为《用透视表示对象的一般方法》一书。 在这本书里,笛沙格首次给出了高度、宽度和深度“测尺”的概念,从而把绘画理论与严格的科学联系起来。 公元1639年,笛沙格在平面与圆锥相截的研究中,取得了新的突破。 他论述了三种二次曲线都能由平截面圆锥而得,从而可以把这三种曲线都看盾成是圆的透视图形。这使有关圆锥曲线的研究,有了一种特别简捷的形式。 不过,笛沙格的上述著作后来竟不幸失传,直到200年后,公元1845年的一天,法国数学家查理斯,由于一个偶然的机会,在巴黎的一个旧书摊上,惊异地发现了笛沙格原稿的抄本,从而使笛沙格这一被埋没了的成果,得以重新发放光辉! 笛沙格之所以能青史留名,还由于以下的定理:如果两个空间三角形对应顶点的三条联线共点,那么它们对应边直线的交点共线。这个定理后来便以笛沙格的名字命名。 有趣的是:把笛沙格定理中的“点”改为“直线”,而把“直线”改为“点”,所得的命题依然成立。即如果两个空间三角形的对应边直线的三个交点共线,那么它们对应顶点的联线共点。 在射影几何中,上述现象具有普遍性。一般地,把一个已知命题或构图中的词语,按以下“词典”进行翻译: 将得到一个“对偶”的命题。两个互为对偶的命题,要么同时成立,要么同时不成立。这便是射影几何中独有的“对偶原理”。 射影几何的另一位奠基者是数学史上公认的“神童”法国数学家帕斯卡。

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

射影几何观点在初等几何中的应用

答卷封面 (COVER) 课程名称(Subject):高等几何 编号(No.): 系别(Department): 信息科学系 专业(Major):数学与应用数学 姓名(Name): 学号(Student’s Number): 注意事项(Notes) 1.考生需按题签将上述有关项目填写清楚 2.字迹要清楚,保持卷面清洁。 3.交卷时请将本答卷和题签一起上交,题签作为封面下一页装订。 1、Candidates should fill in the information appropriately. 2、Keep the handwriting clear and the paper tidy. 3、Candidate should hand in this cover and paper together; the answer sheet should be attached to the cover.

摘要 射影几何在初等几何中的应用是十分广泛的。 射影几何是研究射影性质和射影不变量的几何。如同素性,结合性,交比等。 射影几何对初等几何教学的指导,不仅表现在提高数学思想与观点上,还直接表现在对初等几何图形性质的研究中。可以通过图形的仿射性质和射影性质,指导研究初等几何中的一些问题。完全四点(线)形的调和性是射影几何的重要不变性,它在射影几何中占有重要地位,不仅如此,它在初等几何中也有广泛应用。由于它跟初等几何课程有紧密的联系,它对未来中学数学教师在几何方面基础的培养、观点的提高、思维的灵活、方法的多样起着重要作用,从而有助于中学数学教学质量的提高和科研能力的培养。 射影几何最重要的应用是在对初等几何数学的指导,它不仅表现在提高数学思想与观念上,还直接表现在对初等几何图形性质的研究中。由射影几何的性质,指导研究初等几何中的一些问题。 本文就简单介绍了仿射变换、笛沙格定理、点列中四点的交比、线束中四条直线的交比在初等几何中的应用。

平面几何定理及公式

平面几何定理及公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360°

高中平面几何定理

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去 这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 222 2 2 a c b m a -+= . 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2=== ---= . 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2 cos 2)(2A c b b c a p bcp c b t a += -+=(其中p 为周长一半). 6. 正弦定理: R C c B b A a 2sin sin sin === ,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+ ∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向 一边作垂线,其延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2 就是点P 对 于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一 点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即 AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的 距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三 角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马

相关主题
文本预览
相关文档 最新文档