当前位置:文档之家› 中考数学专题存在性问题解题策略《角的存在性处理策略》

中考数学专题存在性问题解题策略《角的存在性处理策略》

中考数学专题存在性问题解题策略《角的存在性处理策略》
中考数学专题存在性问题解题策略《角的存在性处理策略》

第1讲 角的存在性处理策略

知识必备

一、一线三等角

1.如图1-1-1,o 90=∠=∠=∠E D ACB 且0

45=∠CAB →CBE ACD ??≌,此为

“一线三直角”全等,又称“K 字型”全等;

图1-1-1 图1-1-2 图1-1-3 图1-1-4

2.如图1-1-2,o

90=∠=∠=∠E D ACB →CBE ACD ??∽,此为“一线三直角”

相似,又称“K 字型”相似;

3.如图1-1-3,o

90=∠=∠=∠E D ACB →CBE ACD ??∽,此为更一般的“一线三等角”.

二、相似三角形的性质

相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例. 三、正切的定义

如图1-1-4,在ABC Rt ?中,b

a

A =∠tan ,即A ∠的正切值等于A ∠的对边与A ∠的邻边之比;同理,a

b

B =

∠tan ,则1tan tan =∠?∠B A ,即互余两角的正切值互为倒数. 方法提炼

一、基本策略:联想构造 二、构造路线

方式(一):构造“一线三等角”

角→构等腰直角三角形→造“一线三直角”全等,如图1-2-1;

图1-2-1

角→构直角三角形→造“一线三直角”相似,如图1-2-2;

A

图1-2-2

α=k →构直角三角形→造“一线三直角”相似,如图1-2-3;

4.“一线三等角”的应用分三重境界;

一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”;

二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题; 三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示;

方式

(二):构造“母子型相似”

“角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似”

,其核心结构如图1-2-8所示.

方式(三):整体旋转法(

*)

DAC DEA

→DA 2=DC ?DE →DG 2+AG 2=DC ?DE

A

A

A

图1-2-3

图1-2-4

图1-2-5

图1-2-6

图1-2-7

图1-2-8

图1-2-10

图1-2-11

图1-2-12

y x 3

344A'

E'

A E O 前两种构造属静态构造方式,再介绍一种动态构造方式,即整体旋转法,其核心思想是“图形的旋转(运动)本质是图形上点旋转(运动);反过来,点的旋转(运动)可以看成该点所在图形的旋转(运动)”.

下面以三个问题说明此法:

问题1 已知点A (3,4),将点A 绕原点O 顺时针方向旋转45o 角,求其对应点A’的坐标.

简析 第一步 (“整体旋转”):如图1-2-9,作AB ⊥y 轴于点B ,则AB =3,OB =4,点A 绕原点O 顺时针方向旋转45o 得到点A ’,可看成Rt △OAB 绕原点O 顺时针方向旋转45o 得到Rt △OA ’B ‘,则A ’B ’=8,OB ’=4,且∠BOB ’=45o ;

第二步(造“一线三直角”):如图1-2-10,依托旋转后的Rt △OA B '',作系列“水平—竖直辅助线”,构造“一线三直角”,即Rt △OCB '∽Rt △B DA '';

事实上,Rt △OCB '与Rt △B DA ''都是等腰直角三角形,于是有OC =B C '=22B D '=A D '=

232,故点A '的坐标为722

(

22

; 问题2 已知点(4,6)A ,将点A 绕原点O 顺时针方向旋转a 角,其中tan a =

12

,求其对应点

A '的坐标.

简析 第一步(“整体旋转”):如图1-2-11,作AB ⊥y 轴于点B,则AB =4,OB =6,将Rt △OAB

绕原点O 顺时针方向旋转a 角得到Rt △OA B '',则A B ''=4,OB '=6,

且tan ∠BOB '=tan a =1

2

图1-2-9

图1-2-13 图1-2-14

第二步(造“一线三直角”):如图1-2-12,依托旋转后的Rt △OA B '',作系列“水平—竖直辅助线”,构造“一线三直角”,即Rt △OCB '∽Rt △B DA '', 于是有B C '=

565,OC =

5

125,A D '=

5

45,B D '=

5

85,故点A '的坐标为55

(

,)55

148.

问题3 已知点(,)A a b ,将点A 绕原点O 顺时针方向旋转a 角,求其对应点A '的坐标. 简析 不是一般性,不妨都在第一象限内思考问题: 第一步(“整体旋转”):如图1-2-13,作AB ⊥y 轴于点B,则AB=a ,OB =b ,将Rt △OAB 绕原点O 顺时针方向旋转a 角得到Rt △OA B '',则A B ''=a ,OB '=b ,且∠BOB '=a ;

第二步(造“一线三直角”):如图1-2-14,依托旋转后的Rt △OA B '',作系列“水平—竖直辅助线”,构造“一线三直角”,即Rt △OCB '∽Rt △B DA '', 于是有B C '=sin b a ,OC =cos b a ,A D '=sin a a ,B D '=cos a a , 故点A '的坐标为(,)cos sin cos sin a a b a b a a a +-.

例1(2017日照)如图1-3-1,在平面直角坐标系中,经过点A 的双曲线同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为,∠AOB=∠OBA=45°,则k 的值为_______。

x

y

图1-3-1

B

A

O

x

y

2t t 2图1-3-2

D C B

A

O

简析由题可知,△OAB 为等腰直角三角形;

如图1-3-2,构造“一线三直角”结构,即Rt △OAD ≌Rt △ABC ; 设OD=AC=t ,则A(,t),B(,),从而有t=()(),解得;

因此有。

反思:见等腰直角三角形,造“一线三直角”,即“K 字型”全等。

例2如图1-3-3,已知反比例函数的图像经过点A(3,4),在该图像上找一点P ,使∠POA=45°,则点P 的坐标为_______。

x

y

图1-3-3

P

A

O

x

y

3434图1-3-4

D C P

B A O

简析1(构造“一线三直角”):如图1-3-4,作AB ⊥OA 交OP 于点B ,则△OAB 为等腰直角三角形;

再造“一线三直角”结构,即Rt △OAD ≌Rt △ABC ,由A(3,4),可得OD=AC=4,AD=BC=3,则

B(7,1),故直线OP 的解析式为,且反比例函数的解析式为,联立得,解得(负值舍去),故点P 的坐标为(,)。

简析2(构造“一线三等角”):如图1-3-5,分别过点A 、P 作y 轴的垂线,垂足依次为点D 、E ,再在y 轴上分别找点B 、C ,使BD=AD ,CE=PE ,则∠ABO=∠PCO=45°; 由∠POA=45°,易证△ABO ∽△OCP ,则

,即ABCP=BOOC ;由A(3,4),可得

,BO=BD+OD=7,k=12,再设点P(t ,),则CP=,OC=CE-OE=PE-OE=,从而有,

解得,故点P 的坐标为(

)。

450是一个神奇美妙、让人浮想联翩的角。依托450角,自然联想到构造等腰直角三角形。然后依托等腰直角三角形,再造“一线三直角”,这是处理450角的基本策略之一。

如图1-3-6,若∠C=450,一般有四种方式构造直角三角形,但建议将已知点作为直角顶点,相对而言会更简单。这也体现出了“以不变应万变”的解题策略。

解法1,从头到尾几乎口算,不需要设元,原因在于构造等腰直角三角形时。将已知点A 作为直角顶点,否则需要设元求解,很是麻烦。

解法2,将y 轴看成所谓“一线”。利用一个450角,再补两个“450”角,构造“一线三等角”,设出坐标,巧妙解题,这是角的存在性问题另一种重要处理策略。

x

y 图1-3-5

C

E P

B D A

O

如图1-3-7,已知抛物线27

2

y

x

x c =-+

+与x 轴交于A 、B 两点,且经过点()02C ,

、732D ??

???

,,点P 是直线CD 上方抛物线上一动点,当0=45PCD ∠时,求点P 的坐标。

策略一:450 →构等腰直角三角形→造“一线三直角”. 简析:易求抛物线的解析式为2722y x x =-+

+,直线CD 的解析式为1

22

y x =+ 如图1-3-8,过点D 作DQ ⊥CQ ,交CP 的延长线于点Q ,过点D 作平行于y 轴 的直线,并分别过点C 、Q 向该直线上作垂线,垂足依次为点E 、F ,则△CDQ 为等腰直角三角形,△CED ≌△DFQ ,DF=CE=3,QF=DE=,故Q 点坐标为31322?? ???

利用C 、Q 两点,可以求出直线CP 的解析式32y x =+,在与抛物线联立得

2

32722y x y x x =+???=-++?? ,解得=02x y ??=?(舍去),或1=272

x y ?????=?? ,因此点P 坐标为1722??

???, 类似的,也可以过点P 作垂线等。但不推荐,否则直角顶点未知。需要设元求解,而简析1直角顶点D 已知,故而顺风顺雨。

理论上,在直线CD 上任取一个已知点,将之做为等腰直角三角形的直角顶点,都可顺利解决,如图1-3-9所示,可自行探究。

对比例2,还可以发现,双曲线与抛物线都是“幌子”,借助450角的处理策略,他们仅仅起到最后联立解方程组求交点的作用。练就“慧眼”,便可以“识珠”,很多题目的命制套路就是如此.

策略二:一个45°→补两个45°→造“一线三等角”

如图1-3-10,过点P 、D 向轴上做垂线,补出两个45°角,构出“一线三等角”结

图1-3-7

图1-3-9

图1-3-8

构,即PCE ∽CDF ,则有

DF

CE

CF PE

,即PE ·DF=CE ·CF ; 由题可设P(t ,-t+

27t+2),易得PE=2t ,DF=32,CE=-t+2

7t+2 +t-2=-t2+29t,CF=2-(27-3)=23,因此有2t ·32=23(-t2+29t),解得t=21

(t=0舍去),

故点坐标为(21,2

7

因本题数据的特殊性,最后可以看出,点P 、D 的纵坐标相等,故过点P 、D 向y 轴做垂线,垂足重合,即图中的G 点,其实巧合与否,对解题并无影响;

此外,所谓“一线”,也可以做成“水平线,甚至于“斜线”,可自行探究,一般选择现有的“一线”比较合适。

策略三:一个45°→再补一个45°→造“母子型相似” 如图1-3-11,过点D 作y 轴的平行线交CP 的延长线于点Q ,交x 轴于点G ,再作CE ⊥QG 于点E ,构造等腰RTCEF ,则∠F=45°,EF=CE=3,DE=

2

3 由∠PCD=45°,可得QCD ∽QFC ,易证QC2=QD ·QF ;

设QD=t ,则QC2=QE2+CE2=(t+23)2+9,故有(t+23)2+9=t ·(t+2

9),解得t=

2

15

,故点的坐标为(3,11) 再利用C 、Q 两点,可求出直线的解析式为y=3x+2,与抛物线联立得y=3x=2、y=-x2+27x+2解得x=0、y=2,(舍去)或x=21、y=2

7,故点坐标为(

21,2

7)。 “母子型相似”与“一线三等角”是极其重要的基本相似形,上述解法都将是将其视为“工具”,结合这些基本图形的结构特征,缺啥补啥,巧妙构造,顺利求解.

策略四:45°→“整体旋转”+“矩形大法” 第一步(“整体旋转”):如图1-3-12,过两点作相应“水平——竖直辅助线”,构造RTCDE ,再将RTCDE 绕点C 逆时针旋转45°至RTCD ′E ′,则CE ′=CE=3,D ′E ′=DE=

2

3

,且∠ECE ′=45°

第二步(“矩形大法”):如图1-3-13,依托旋转后的Rt △CD ’E ’,作系列“水平——竖直辅助线”,构造矩形CGHK ,则Rt △CGE ’∽Rt △E ’HD ’,

事实上,Rt△CGE’与Rt△E’HD’都是等腰直角三角形,于是有CG=E’G=

22

3

D’H=E’H=

42

3

,则D’K=

22

3

-

42

3

=

42

3

,OK=OC+CK=2+

42

9

,故点D’的坐标为(

42

3

2+

42

9

),下略.

图1-3-13

反思这里运用动态视角,借助旋转的眼光看问题,将点的旋转看成该点所在的直角三角形的旋转,巧思妙构,利用系列“水平——竖直辅助线”,达到“改斜规正,化斜为直”之效,虽然最后的数据稍显“丑陋”,但并不影响此法的通用性与普适性.

因为45°的特殊性,本题还可以尝试采用所谓的“半角模型”来求解.

策略五:45°→正方形中的“半角模型”

简析5 如图1-3-14,作正方形CEFG,使CG边在y轴上,且边EF过点D,直线CP与FG交于点Q;

图1-3-14 图1-3-15

设QG=x ,由∠PCD=45°,结合正方形中“半角模型”,可得QD=QG+DE=x+2

3

,最后锁定Rt △QDF ,由勾股定理得(3-x )2+(

23)2=(x+2

3

)2,解得x=1,故点Q 坐标为(1,5),下略.

反思:正方形中“半角模型”应用广泛,核心结构如图1-3-15所示,其结论众多,常用的有:EF=AE+CF ,EB 平分∠AEF ,FB 平分∠CFE 等,可通过旋转法加以证明;

通过前面的例题探究可以看出:紧抓45°角不放手,扣住一条主线,即“45°角→构造等腰直角三角形→造K 字形全等”,是处理45°角问题的通解通法;

当然也可以构造一些常见的几何模型,如“一线三等角”、“母子形相似”、“半角模型”等;

其实45°角只是一个特例、一个代表而已,若将45°改为30°等特殊角,甚至改成更一般的已知其三角函数值的确定角,都可以类似解决.

例4(2014年临夏)如图1-3-16,在平面直角坐标系xOy 中,顶点为M 的抛物线是由抛物线y=x2-3向右平移一个单位后得到的,它与y 轴负半轴交于点A ,点B 在抛物线上,且横坐标为3.

(1)求点M 、A 、B 坐标;

(2)连接AB AM BM ,求∠ABM 的正切值;

(3)点P 为顶点为M 的抛物线上一点,且位于对称轴右侧,设PO 与x 正半轴的夹角为α,当α=∠ABM 时,求P 点坐标

图1-3-16

简析:(1)图示抛物线的解析式为3)1(2--=x y ,则M ?=∠90MAB (1,-3),A(0,-2),B(3,1); (2)法1(代数法):利用两点间距离公式计算

222MB AB AM 、、。验算222MB AB AM =+,可

证?=∠90MAB ,在Rt △ABM 中,可得

tan ABM ∠=

3

1

=AB AM ; 法2(几何法):如图1-3-17,分别过点B 、M 作y 轴的垂线,垂足依次为点C 、D ,由题可得AD=MD=1,AC=BC,=3,则△ADM 与△ABC 均为等腰直角三角形,故么∠DAM=∠CAB=?45,AM=2,AB=32,从而有么?=∠90MAB ,在Rt △

ABM 中,可得tan ABM ∠=

31

=AB AM ; (3)由题知tan α=tan ABM ∠=3

1

,显然符合条件的点P 有两个:①当点P 在x 轴

上方时,由B(3,1),易知点P 与点B 重合,即点P(3,1); ②当点P 在x 轴下方时,如图1-3-18,作PG 上x 轴

于点G ,则tan α=3

1

=OG PG ,可设PG=m(m>0)则

OG=3m ,故点P (3m ,-m ),代入抛物线得3-1)-(3m =m -2,解得18

97

5,1897521-=+=

m m <0(舍去),故点P )18

975,6975(

+-+ 综上所述:点P

的坐标为(3,1)或

)18

97

5,6975(

+-+。

第(2)小问给我们的解题启示:大胆猜想,小心求证,即为求tan ABM ∠的值,首先从几何直观上猜想?=∠90MAB ,然后利用勾股逆定理验边或几何上导角等加以说理;

而第(3)小问属典型的“角处理”问题,其基本的解题之道是“正切处理”,即通过“横平竖直”辅助线,将角问题转化为边问题,再巧设边长,妙写坐标,代入解析式即可;

另外,本题简单在么a 有一条“水平边”,即平行于坐标轴的边,若无“水平边”或“竖直边”.又如何处理呢请看 下例:

如图1-3-19,二次函数12)(22+--+=m x m m mx y 的图

像与x 轴交于点A 、B ,与y 轴交于点C ,顶点D 的横坐标为1. (1)求二次函数的解析式及A 、B 的坐标;

(2)若点P(0,t)(t<-1)是y 轴上的一点,Q(-5,0),将点Q 绕着点P 按顺时针方向旋转?90得到点E ,当点E 恰好落在该二次函数的图像上时,求t 的值; (3)在(2)的条件下,连接AD 、AE ,若M 是该二次函数图像上的一点,且么

∠DAE=∠MCB ,求点M 的坐标。

简析:(1)由题易得m=-1,则二次函数的解析式为

322++-=x x y 。且有点A(-1,0)及B(3,0);

(2)如图1-3-20,作“K 字型全等”'即Rt △PQR ∽Rt △EPF ,则PF=QR=-t ,EF=PR=5,故点E (-t,t+5),代人抛物线得

3)(2)(52+-+--=+t t t 解得t=-1或-2,因为t<-1,所以

t=-2;

反思“见等腰直角三角形,造K 字型全等”,再次发挥奇效。

(3)同例4,首先验证△DAE 是一个直角三角形,可得tan ∠

DAE=,则tan ∠MCB=,如图1-3-21;

y

x

图1-3-21

1

133

H

G

E

D

A

B

C

O

y

x

图1-3-2233

1

1M 1

N

H

G

A

B

C O

y

x

1

13

3

图1-3-23

M 2

G

G

A

B C

O

显然符合条件的点M 有两个:

①当点M 在CB 的下方时,如图1-2-22,过点B 作BN ⊥CB 交CM 1于点N ,再构造“K 字型相似”,即Rt △BCG ∽Rt △NBH ,其相似比为3,可得N(2,-1),则直线CM 1的解析式为 y=-2x+3, x=0, x=4,

y=-2x+3,与抛物线联立得 y=-x 2+2x+3, 解得 y=3,(舍去)或 y=-5,故点M 1的坐标为(4,-5);

②当点M 在CB 的上方时,如图1-3-23,同上可得N(4,1),进而得点M 2的坐标为(,);

综上所述:点M 的坐标为(4,-5)或(,)。

反思“瞎想与遐想”是一种重要的数学感性意识,是几何学必备的数学素养,本题依然大胆地猜想∠AED=90°,再小心地验算,这里还包含了基本的“确定性思想”;

本题“角处理”的方式其实还是“正切处理”,只不过这里的tan ∠MCB=

,需要再转

化为后续“K 字型”的相似比,才能进一步求解,而后者发挥的作用又是“改邪归正、化斜为直”;

此外,前文中构造的“一线三等角”、“母子型相似”以及“整体旋转法”依然适用本题,有兴趣可以一试。

总结角的存在性问题常见的处理策略有:构造“一线三等角”(含“一线三直角”,即“K 字型”)、 “母子型相似”、“整体旋转法”等;

“角处理”经常利用正切转化为“边处理”,如角定,则正切值定;角相等,则正切值相等,再结合更常见的“横平竖直”辅助线,以达“改邪归正、化斜为直”之效。

类题巩固

1.(2017年湖北孝感)如图1-4-1,在平面直角坐标系中,OA=AB ,∠OAB=90°,反比例函数x

k

y =

(x>0)的图像经过A 、B 两点,若已知A (n ,1),则k 的值为 . y

A

O

x

P

2.如图1-4-2,直线y=3x 与双曲线x

y 3

=

(x>0)交于A 点,点P 是该双曲线第一象限上的一点,且∠AOP=∠1+∠2,则点P 的坐标为 .

y A

O

x

P

1

2

图1-4-2

图1-4-1

3.如图1-4-3,已知反比例函数x

k

y =(x>0)的图像经过点A (4,6),在OA 右侧该图像上找一点P ,使tan ∠POA=

2

1

,则点P 的坐标为 .

O

x

4.如图1-4-4,在矩形ABCD 中,E 是边AB 上的一点,AE=2,BE=4,连接DE ,作∠DEF=45°交边BC 于点F ,若AD=x ,BF=y ,则y 关于x 的函数关系式为 .

A B

C

D

E x

2445°

5.如图1-4-5,抛物线a bx ax y 42

-+=经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B.

(1)求抛物线的解析式;

(2)已知点D (m ,m+1)在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,P 为抛物线上一点,且∠DBP=45°,求点P 的坐标; 变式1:连接BD ,P 为抛物线上一点,且∠DBP=135°,求点P 的坐标; 变式2:连接BD ,P 为抛物线上一点,且tan ∠DBP=2,求点P 的坐标.

图1-4-3

图1-4-4

图1-4-5

备用图

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

中考数学压轴题破解策略专题9《费马点》

专题9《费马点》 破解策略 费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离. 若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点. 1.若三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点 如图在△ABC中,∠BAC≥120°,求证:点A为△ABC的费马点证明: 如图,在△ABC内有一点P延长BA至C,使得AC=AC,作∠CAP=∠CAP,并且使得AP =AP,连结PP 则△APC≌△APC,PC=PC 因为∠BAC≥120° 所以∠PAP=∠CAC≤60 所以在等腰△PAP中,AP≥PP 所以PA+PB+PC≥PP+PB+PC>BC=AB+AC 所以点A为△ABC的费马点 2.若三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点.

如图,在△ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点为O,求证:点O为△ABC的费马点 证明:在△ABC内部任意取一点O,;连接OA、OB、OC 将△AOC绕着点A逆时针旋转60°,得到△AO′D连接OO′则O′D=OC 所以△AOO′为等边三角形,OO′=AO 所以OA+OC+OB=OO′+OB+O′D 则当点B、O、O′、D四点共线时,OA+OB+OC最小 此时ABAC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O 如图,在△ABC中,若∠BAC、∠ABC、∠ACB均小于120°,O为费马点,则有∠AOB=∠BOC =∠COA=120°,所以三角形的费马点也叫三角形的等角中心

导数中的恒成立和存在性问题

导数中的恒成立和存在性问题

技巧传播 1.恒成立问题的转化:()a f x >恒成立max ()a f x ?>;()a f x ≤恒成立min ()a f x ?≤; 2.能成立问题的转化:()a f x >能成立min ()a f x ?>;()a f x ≤能成立max ()a f x ?≤; 3.恰成立问题的转化:()a f x >在M 上恰成立()a f x ?>的解集为R ()()a f x M M a f x C M >???≤?在上恒成立在上恒成立 ; 另一转化方法:若x D ∈,()f x A ≥在D 上恰成立,等价于()f x 在D 上的最小值min ()f x A =, 若x D ∈,()f x B ≤在D 上恰成立,则等价于()f x 在D 上的最大值max ()f x B =; 4.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则min min ()()f x g x ≥; 5.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则max max ()()f x g x ≤; 6.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则max min ()()f x g x ≥; 7.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则min max ()()f x g x ≤; 8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像上方; 9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像下方;

数列中的存在性问题 经典

专题:数列中的存在性问题 一、单存在性变量 解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。 例1、已知数列{ n a }的前n 项和为 n S =235n n +,在数列{n b }中,1b =8,164n n b b +-=0,问是 否存在常数c 使得对任意n , log n c n a b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由. 解析:假设存在常数c 使得对任意n , log n c n a b +恒为常数M , ∵n S =235n n +, ∴当n =1时,则 1a = 1 S =8, 当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +, 当n =1适合, ∴ n a =62 n +, 又∵164n n b b +-=0, ∴1n n b b +=164, ∴数列{n b }是首项为8,公比为1 64的等比数列, ∴n b = 118( )64n -=962n -, 则 log n c n a b += 9662log 2n c n -++= 62(96)log 2a n n ++-= 6(1log 2)29log 2 a a n -++, 又∵对任意n ,log n c n a b +恒为常数M , ∴ 6(1log 2) a -=0,解得c =2, ∴M = 29log 2 a +=11, ∴存在常数c =2使得对任意n , log n c n a b +恒为常数M =11. 二、双存在型变量 解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

利用导数研究存在性与任意性专题

利用导数研究恒成立、存在性与任意性问题一、利用导数研究不等式恒成立问题 [典例]设f(x)=e x-a(x+1). (1)若?x∈R,f(x)≥0恒成立,求正实数a得取值范围; (2)设g(x)=f(x)+a ex ,且A(x1,y1),B(x2,y2)(x1≠x2)就是曲线y=g(x)上任意两点, 若对任意得a≤-1,直线AB得斜率恒大于常数m,求m得取值范围、[解](1)因为f(x)=e x-a(x+1), 所以f′(x)=e x—a、 由题意,知a>0, 故由f′(x)=e x-a=0, 解得x=lna。 故当x∈(-∞,ln a)时, f′(x)<0,函数f(x)单调递减; 当x∈(ln a,+∞)时, f′(x)>0,函数f(x)单调递增、 所以函数f(x)得最小值为f(lna)=e ln a—a(ln a+1)=-a ln a。 由题意,若?x∈R,f(x)≥0恒成立, 即f(x)=e x—a(x+1)≥0恒成立, 故有—alna≥0, 又a>0,所以ln a≤0,解得0<a≤1、 所以正实数a得取值范围为(0,1]. (2)设x1,x2就是任意得两个实数,且x1<x2。 则直线AB得斜率为k=g x2-g x1 x2-x1 , 由已知k>m, 即g x2—g x1 x2-x1 >m. 因为x2—x1>0, 所以g(x2)-g(x1)>m(x2—x1),

即g(x2)—mx2〉g(x1)-mx1. 因为x10), 则h′(x)=x+3x-1 x2、

中考数学专题存在性问题解题策略角的存在性处理策略

第1讲 角的存在性处理策略 知识必备 一、一线三等角 1.如图1-1-1,o 90=∠=∠=∠E D ACB 且0 45=∠CAB →CBE ACD ??≌,此为 “一线三直角”全等,又称“K 字型”全等; 图1-1-1 图1-1-2 图1-1-3 图1-1-4 2.如图1-1-2,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为“一线三直角” 相似,又称“K 字型”相似; 3.如图1-1-3,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为更一般的“一线三等角”. 二、相似三角形的性质 相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例. 三、正切的定义 如图1-1-4,在ABC Rt ?中,b a A =∠tan ,即A ∠的正切值等于A ∠的对边与A ∠的邻边之比;同理,a b B = ∠tan ,则1tan tan =∠?∠B A ,即互余两角的正切值互为倒数. 方法提炼 一、基本策略:联想构造 二、构造路线 方式(一):构造“一线三等角” 1.45o 角→构等腰直角三角形→造“一线三直角”全等,如图1-2-1; 图1-2-1 2.30o 角→构直角三角形→造“一线三直角”相似,如图1-2-2;

A 图1-2-2 3.tan α=k →构直角三角形→造“一线三直角”相似,如图1-2-3; 4.“一线三等角”的应用分三重境界; 一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”; 二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题; 三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示; 方式 (二):构造“母子型相似” “角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似 ”,其核心结构如图1-2-8所示. 方式(三):整体旋转法( *) DAC DEA →DA 2=DC ?DE →DG 2+AG 2=DC ?DE 定 定 定 定 定 定 定 定 A A A 图1-2-3 图1-2-4 图1-2-5 图1-2-6 图1-2-7 图1-2-8

备战中考数学平行四边形(大题培优 易错 难题)及答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域; (2)当∠B =70°时,求∠AEC 的度数; (3)当△ACE 为直角三角形时,求边BC 的长. 【答案】(1)()223 03y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为 2117 +. 【解析】 试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论. (2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°. 又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论. (3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论. ②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴2 2221y x =+-, 则()223 03y x x x = -++<< (2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°. 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°. (3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x = --

导数压轴题型第6讲 恒成立与存在性问题(mathtype WORD精编版)

一、 恒成立与存在性 函不等式恒成立问题的转化技巧 (1)()a f x ≥(或()a f x ≤)恒成立?()max a f x ≥(或()min a f x ≤); (2)()a f x ≥(或()a f x ≤)有解?()min a f x ≥(或()max a f x ≤); (3) ()()f x g x ≥恒成立?()min 0F x ≥((其中()()()F x f x g x =-(),也可证其加强命题 ()()min max f x g x ≥ (4)()()f x g x ≥有解?()max 0F x ≥(其中()()()F x f x g x =-). (5) ()()f m g n ≥恒成立?()()min max f x g x ≥ (6)()a f x =有解,则a 的范围是()f x 的值域 1. 恒成立常见处理方法 (1) 参变分离 若对任意的0x >,恒有()ln 10x px p ≤->,则p 的取值范围是((((() A . (]0,1((((B .()1,+∞((((C .()0,1(((D .[)1, +∞ 【答案】D 【解析】 法一:最值理论 ()ln 10h x x px =-+≤恒成立 令()()1'00px h x x x -=>=,则1 0x p =>, 故()h x 在110, ,,p p ???? ↑+∞↓ ? ?? ??? , 故只需1ln 0h p p ?? =-≤ ??? ,故1p ≥ 法二:分离参数

()ln 1x p g x x +≥ =,令()2ln '0x g x x -==,则1x =,()()0,1,1,↑+∞↓ 故 ()11p g ≥= 法三:二级结论 ln 1x x ≤-恒成立,则当1p ≥时,ln 11x x px ≤-≤- 法四:特殊值探路 ()ln 10x px p ≤->对于0x ?>恒成立 当1x =时,1p ≥ 又11ln px x x -≥-≥成立 【考点】恒成立(最值理论,分类参数均可) 已知函数()(x e f x mx e x =-为自然对数的底数),若()0f x >在(0,)+∞上恒成立,则实数m 的取值范围是((((() A .(,2)-∞(((( B .2 (,)4e -∞((((C .(,)e -∞((((D .2,4e ??+∞ ??? 【解答】解:若()0f x >在(0,)+∞上恒成立, 则2x e m x <在(0,)+∞恒成立, 令2()x e h x x =,(0)x >, 3 (2)()x e x h x x -'=, 令()0h x '>,解得:2x >, 令()0h x '<,解得:02x <<, 故()h x 在(0,2)递减,在(2,)+∞递增, 故()min h x h =(2)2 4 e =, 故2 4e m <, 故选:B . 【考点】分离参数

2017年数学中考专题《存在性问题》

2017年数学中考专题《存在性问题》 题型概述 【题型特征】存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高.存在性问题按定性可分为:肯定型和否定型.存在性问题在假设存在以后进行的推理或计算,对基础知识,基本技能要求较高,并具备较强的探索性.正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验. 【解题策略】不同的存在性问题解法不同.下面按照解法及设问方式的不同将存在性问题分为代数方面的存在性问题(如方程根是否存在、最值是否存在等)、点的存在性问题(如构成特殊图形的点是否存在)并举例分析. (1)代数方面的存在性问题的解法思路是:将问题看成求解题,进行求解,进而从有解或无解的条件,来判明数学对象是否存在,这是解决此类问题的主要方法. (2)点的存在性问题的解法思路是:假设存在→推理论证→得出结论.若能导出合理的结果,就做出“存在”的判断;若导出矛盾,就做出不存在的判断. 真题精讲 类型一 代数方面的存在性问题 典例1 (2016·广东梅州)如图,在平面直角坐标系中,已知抛物线2 y x bx c =++过,,A B C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上. (1)b = ,c = ,点B 的坐标为 ;(直接填写结果) (2)是否存在点P ,使得ACP ?是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由; (3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标. 【解析】二次函数的图象及其性质,三角形中位线定理,应用数学知识综合解决问题的能力. 【全解】(1)-2 -3 (-1,0) (2)存在. 第一种情况,当以C 为直角顶点时,过点C 作1CP AC ⊥,交抛物线于点1P .过点1P 作y 轴的垂线,垂足是M .如图(1), ,90OA OC AOC =∠=?Q , 45OCA OAC ∴∠=∠=?. 190ACP ∠=?Q , 11 904545MCP CPM ∴∠=?-?=?=∠. 1MC MP ∴=.

中考数学压轴题破解策略专题中点模型

专题19《中点模型》 破解策略 1.倍长中线 在△ABC中.M为BC边的中点. 图1 图2 (1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM. (2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BDM ≌△CEM, 遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法. 2.构造中位线 在△ABC中.D为AB边的中点, 图1 图2 (1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=1 2 B C. (2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=1 2 AE. 三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线, 3.等腰三角形“三线合一” 如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C. 对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.4.直角三角形斜边中线 如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=1 2 AC. 反过来,在△ABC中,点D在AC边上,若BD=AD=CD=1 2 AC,则有∠ABC=900

例题讲解 例1 如图,在四边形ABCD 中,E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结AG 、BG 、CG 且∠AGD =∠BGC ,若AD 、BC 所在直线互相垂直,求AD EF 的值 解 由题意可得△AGB 和△DGC 为共顶点等顶角的两个等腰三角形, 所以△AGD ≌△BGC ,△AGD ∽△EGF . 方法一:如图1,连结CE 并延长到H ,使EH =EC ,连EH 、AH ,则 AH ∥BC ,AH =BC ,而AD =BC ,AD ⊥BC 所以AD =AH ,AD ⊥AH ,连结DH ,则△ADH 为等腰直角三角形,又因为E 、F 分别为CH 、CD 的中点,所以=12 AD AD EF DH = 方法二:如图2,连结BD 并取中点H ,连结EH ,FH .则EH = 12AD ,且EH ∥AD ,FH =12BC , 而AD =BC ,AD ⊥BC ,所以△EHF 为等腰直角三角形,所以2=AD EH EF EF = 例2 如图,在△ABC 中,BC =22,BD ⊥AC 于点D ,CE ⊥AB 于E ,F 、G 分别是BC 、DE 的中点,若ED =10,求FG 的长. 解:连结EF 、DF ,由题意可得EF 、DF 分别为RT △BEC ,RT △BDC 斜边的中线,所以DF =EF = 12 BC =11,而G 为DE 的中点,所以DG =EG =5,FG ⊥DE ,所以RT △FGD 中,FG = 例3 已知:在RT △ACB 和RT △AEF 中,∠ACB =∠AEF =900 ,若P 是BF 的中点,连结PC 、PE (1)如图1,若点E 、F 分别落在边AB 、AC 上,请直接写出此时PC 与PE 的数量关系. (2)如图2,把图1中的△AEF 绕着点A 顺时针旋转,当点E 落在边CA 的延长线上时,上述结论是否成立若成立,请给予证明;若不成立,请说明理由. (3)如图3,若点F 落在边AB 上,则上述结论是否仍然成立若成立,请给予证明;若不成立,请说明理由. 解(1)易得PC =PE =12 BF ,即PC 与PE 相等. (2)结论成立.理由如下:

中考专题存在性问题解题策略 角的存在性处理策略

第1讲 角的存在性处理策略 知识必备 一、一线三等角 1.如图1-1-1,o 90=∠=∠=∠E D ACB 且045=∠CAB →CBE ACD ??≌,此为“一线三直角”全等,又称“K 字型”全等; 图1-1-1 图1-1-2 图1-1-3 图1-1-4 2.如图1-1-2,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为“一线三直角”相似,又称“K 字型”相似; 3.如图1-1-3,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为更一般的“一线三等角”. 二、相似三角形的性质 相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例. 三、正切的定义 如图1-1-4,在ABC Rt ?中,b a A =∠tan ,即A ∠的正切值等于A ∠的 对边与A ∠的邻边之比;同理,a b B =∠tan ,则1tan tan =∠?∠B A ,即互余两角的正切值互为倒数. 方法提炼 一、基本策略:联想构造 二、构造路线 方式(一):构造“一线三等角” 1.45o 角→构等腰直角三角形→造“一线三直角”全等,如图1-2-1;

图1-2-1 2.30o 角→构直角三角形→造“一线三直角”相似,如图1-2-2; 图1-2-2 3.tanα=k →构直角三角形→造“一线三直角”相似,如 图1-2-3; 4.“一线三等角”的应用分三重境界; 一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”; 二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题; 三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示; 方式 (二):构造“母子型相似” “角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似”,其核心结构如图1-2-8所示. 方式(三):整体旋转法(*) 前两种构造属静态构造方式,再介绍一种动态构造方式,即整体旋转法,其核心思想是“图形的旋转(运动)本质是图形上点旋转(运动);反过来,点的旋转(运动)可以看成该点所在图形的旋转(运动)”. 下面以三个问题说明此法: 问题1 已知点A (3,4),将点A 绕原点O 顺时针方向旋转45o角,求其对应点A’的坐标. 简析 第一步 (“整体旋转”):如图1-2-9,作AB ⊥y 轴于点B ,则AB =3,OB =4,点A 绕原点O 顺时针方向旋转45o得到点A ’,可看成Rt △OAB 绕原点O 顺时针方向旋转45o得到Rt △OA ’B ‘,则 图1-2-3 图1-2-4 图1-2-5 图1-2-6 图1-2-7 图1-2-8

历年中考数学难题及答案.doc

如对你有帮助,请购买下载打赏,谢谢! 20.(本小题满分8分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=?利润成本 ) 22.(本小题满分10分) 某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368 y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示. (1)试确定b c 、的值; (2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式; (3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 21.(本题满分10分)星期天,小明和七名同学共8 乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯? (2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式? 20.(9分)某项工程,甲工程队单独完成任务需要40天.若乙队先做30天后,甲、乙两队一起合做20请问: (1)(5分)乙队单独做需要多少天才能完成任务? (2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分 工程用了y 天.若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到 70天,那么两队实际各做了多少天? 3、(2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y (元)与周次x 之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(8 12+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? 5、(2009年滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围; (2)当降价多少元时,每星期的利润最大?最大利润是多少? 20.(本题满分8分)如图,在□ABCD 中,∠BAD 为钝角,且AE ⊥BC ,A F ⊥CD . (1)求证:A 、E 、C 、F 四点共圆; (2)设线段BD 与(1)中的圆交于M 、N .求证:BM =ND . 第20题图 N M F E B D A C y 2

(完整版)中考数学压轴题破解策略专题18《弦图模型》

专题18《弦图模型》 破解策略 1.内弦图 如图,在正方形ABCD中,BF⊥CG,CG⊥DH,DH⊥AE,AE⊥BF,则△ABE≌△BCF≌△CDG≌△DAH.证明因为∠ABC=∠BFC=90° 所以∠ABE+∠FBC=∠FBC+∠FCB-90°. 所以∠ABE=∠FC B. 又因为AB=B C.所以△ABE≌△BCF, 同理可得△ABE≌△BCF≌△CDG≌△DAH. D C 2.外弦圈 如图,在正方形ABCD中,点M,N,P,Q在正方形ABCD边上,且 四边形MUPQ为正方形,则△QBM≌△MCN≌△NDP≌△PAQ. 证明因为∠B=∠QMN=∠C=90°, 所以∠BQM+∠QMB=∠QMB+∠NMC=90°, 所以∠BQM=∠NM C. 又因为QM=MN,所以△QBM≌△MCN. 同理可得△QHM≌△MCN≌△NDP≌△PAQ. N Q D A 3.括展 (1)如图,在Rt△ABH中.∠ABH=90°,BE⊥AH于点E.所以 △A BE≌△BHE≌△AH B. (2)如图,在Rt △QBM和Rt△BLK中,QB=BL,QM⊥BK,所以 △QBM≌△BLK.

证明因为∠BLK=90°,QM⊥BK, 所以∠KBL+∠QMB=∠KBI十∠K=90° 所以∠QMB=∠K, 又因为QB=BL. 所以△QBM≌△BLK. 例题讲解 例1四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连结CE,以CE 为边,作正方形CEFG(点D,F在直线CE的同侧),连结BF.当点E在线段AD上时,AE =1,求BF的长. G 解如图,过点F作FH⊥AD交AD的延长线于点H, 延长FH交BC的延长线于点K. 因为四边形ABCD和四边形CEFG是正方形, 根据“弦图模型”可得△ECD≌△FEH,所以FH=ED=AD-AE=3,EH=CD=4.因为CDHK为矩形,所以HK=CD=4,CK=DH=EH-ED=1. 所以FK=FH十HK=7,BK=BC+CK=. 5. 所以BF

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

平行四边形的存在性问题

平行四边形的存在性问题 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点. 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 灵活运用向量和中心对称的性质,可以使得解题简便. 针对训练 1.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标. 解析、由y=-x2-2x+3=-(x+3)(x-1)=-(x+1)2+4, 得A(-3,0),B(1,0),C(0,3),P(-1,4). 如图,过△P AC的三个顶点,分别作对边的平行线,三条直线两两相交的三个交点就是要求的点M. ①因为AM1//PC,AM1=PC,那么沿PC方向平移点A可以得到点M1. 因为点P(-1,4)先向下平移1个单位,再向右平移1个单位可以与点C(0,3)重合,所以点A(-3,0)先向下平移1个单位,再向右平移1个单位就得到点M1(-2,-1). ②因为AM2//CP,AM2=CP,那么沿CP方向平移点A可以得到点M2. 因为点C(0,3)先向左平移1个单位,再向上平移1个单位可以与点P(-1,4)重合,所以点A(-3,0)先向左平移1个单位,再向上平移1个单位就得到点M2(-4,1). ③因为PM3//AC,PM3=AC,那么沿AC方向平移点P可以得到点M3. 因为点A(-3,0)先向右平移3个单位,再向上平移3个单位可以与点C(0,3)重合,所以点P(-1,4)先向右平移3个单位,再向上平移3个单位就得到点M3(2,7). 2.如图,在平面直角坐标系xOy中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标. 解析.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0). ①如图1,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB 的中点(1,0)对称,所以点M的横坐标为2. 当x=2时,y =-x2+2x+3=3.此时点M的坐标为(2,3).

历年中考数学难题及答案

应用题 20.(本小题满分8分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售 价至少是多少元?(利润率100%=?利润 成本 ) 22.(本小题满分10分) 某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系 式3 368 y x =- +,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示. (1)试确定b c 、的值; (2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式; (3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? y 2

21.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯? (2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式? 20.(9分)某项工程,甲工程队单独完成任务需要40天.若 乙队先做30天后,甲、乙两队一起合做20天就恰好完成任务. 请问: (1)(5分)乙队单独做需要多少天才能完成任务? (2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分 工程用了y 天.若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到 70天,那么两队实际各做了多少天? 3、(2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y (元)与周次x 之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为 12)8(8 1 2+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每 件获得利润最大?并求最大利润为多少? 5、(2009年滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围; (2)当降价多少元时,每星期的利润最大?最大利润是多少?

中考数学试题与参考答案

20XX 年广东省初中毕业生学业考试 数 学 说明:1.全卷共6页,满分为120 分,考试用时为100分钟。 2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。用2B 铅笔把对应该号码的标号涂黑。 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 5.考生务必保持答题卡的整洁。考试结束时,将试卷和答题卡一并交回。 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( ) A.15 B.5 C.-1 5 D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。20XX 年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( ) A.0.4×910 B.0.4×1010 C.4×910 D.4×1010 3.已知70A ∠=?,则A ∠的补角为( ) A.110? B.70? C.30? D.20? 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( ) A.1 B.2 C.-1 D.-2 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A.95 B.90 C.85 D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线2 2(0)k y k x = ≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )

相关主题
文本预览
相关文档 最新文档