浅谈对层次分析法(AHP)的认识
- 格式:doc
- 大小:578.00 KB
- 文档页数:4
层次分析法介绍我顶!一.层次分析法的基本原理1.引言层次分析法(Analytia1 Hierarchy Process,简称AHP)是美国匹兹堡大学教授A.L.Saaty于20世纪70年代提出的一种系统分析方法。
AHP是一种能将定性分析与定量分析相结合的系统分析方法。
AHP是分析多目标、多准则的复杂大系统的有力工具。
它具有思路清晰、方法简便、适用面广、系统性强等特点,便于普及推广,可成为人们工作和生活中思考问题、解决问题的一种方法。
将AHP引入决策,是决策科学化的一大进步。
它最适宜于解决那些难以完全用定量方法进行分析的决策问题,因此,它是复杂的社会经济系统实现科学决策的有力工具。
应用AHP解决问题的思路是:首先,把要解决的问题分层系列化,即根据问题的性质和要达到的目标,将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次结构模型。
然后,对模型中每一层次因素的相对重要性,依据人们对客观现实的判断给予定量表示,再利用数学方法确定每一层次全部因素相对重要性次序的权值。
最后,通过综合计算各层因素相对重要性的权值,得到最低层(方案层)相对于最高层(总目标)的相对重要性次序的组合权值,以此作为评价和选择方案的依据。
2.基本原理我们可以分析下面这个简单的例子,来说明AHP的基本原理。
二.层次分析法的步骤用AHP分析问题大体要经过以下五个步骤:(1)建立层次结构模型;(2)构造判断矩阵;(3)层次单排序;(4)层次总排序;(5)一致性检验。
其中后三个步骤在整个过程中需要逐层地进行。
1.建立层次结构模型运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。
对于决策问题,通常可以将其划分成层次结构模型。
其中:最高层:表示解决问题的目的,即应用AHP所要达到的目标。
中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。
第一单元层次分析法一AHP介绍(The Analgtic Hierarachy Process AHP)、尸、-前言最优化技术在决策分析中占着极重要的位置,数学模型在最优化技术中占着统治地位;由于系统越来复杂,数学模型也越来越复杂,掌握运用困难很多,并且随着复杂性增加,模型解与实际要求距离也在增加。
事实上,数学模型也非万能,决策中大量因素无法定量表示,所以,有时人们不得不回到决策的起点和终点:——人的选择和判断,需要认真地研究选择和判断的规律,这就是AHP 产生的背景。
匹兹堡大学Saaty教授于七十年代中期提出层次分析法AHP。
于80年代初由Saaty 的学生介绍到我国。
层次分析AHP的特点:1. 输入信息主要是决策者的选择和判断。
决策过程充分反映了决策者对决策问题的认识;2. 简洁性:基于高中知识,可不用计算机完成计算;3. 实用性:能进行定量分析,也可定性分析;而通常最优化方法只能用于定量分析;4. 系统性:人们决策大致分三种:(因果判断、概率推断和系统推断),AHP 把问题看作一个系统属于第三种,真正要搞清楚AHP 原理,需要深刻的数学背景。
好在我们只重应用,并不过多涉及AHP 的数学背景。
AHP的主要不足在于:1. AHP只能用于选择方案,而不能生成方案;主观性太强,从层次结构建立,判断矩阵的构造,均依赖决策人的主观判断,选择,偏好,若判断失误,即可能造成决策失误。
规划论——采用较严格的数学计算,把人的主观性降到最低程度;但有些决策结果令决策人难以接受。
AHP——从本质上讲是试图使人的判断条理化,所得结果基本上依据人的主观判断,当决策者的判断因受个人偏好影响对客观规律歪曲时,AHP 的结果显然靠不住,所以,AHP 中通常是群组判断方式。
尽管AHP在理论上尚不完善,应用中也有缺陷;但由于AHP简单、实用,仍被视为是多目标决策的有效方法,至今仍被广泛应用的一种无结构决策方法。
§1 AHP 预备知识(一)1. 特征根与特征向量设A a ij m n为n阶方阵,若存在常数和非零n维向量g (g i,g2, , g n),使得Ag g (1)则称,是矩阵A的特征根(或特征值),非零向量g是矩阵A关于(属于)特征根的特征向量。
层次分析法(AHP)————————————————————————————————作者:————————————————————————————————日期:层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
上层元素对下层元素的支配关系所形成的层次结构被称为递阶层次结构。
当然,上一层元素可以支配下层的所有元素,但也可只支配其中部分元素。
APH层次分析法检验层次分析法(Analytic Hierarchy Process,简称AHP)是由美国经济学家托马斯·塞蒂(Thomas L. Saaty)于20世纪70年代初提出的一种决策分析方法。
该方法通过对决策问题中各个因素之间的相对重要性进行比较,从而得到最终的决策结果。
这篇文章将从AHP方法的基本原理、应用场景以及主要优缺点等方面进行分析。
首先,我们需要了解AHP方法的基本原理。
该方法的核心思想是将复杂的决策问题分解为层次结构,根据各个因素之间的相对比较进行权重判断,并最终得到决策结果。
具体来说,AHP方法分为以下几个步骤:1.建立层次结构:将决策问题分解为多个层次,从总目标到具体的因素,形成一个层次结构。
2.构造判断矩阵:通过专家意见、问卷调查或统计数据等方式,确定各个因素之间的相对重要性,并构造成一个判断矩阵。
3.计算判断矩阵的特征向量:通过特征值法或逼近法,计算判断矩阵的特征向量,得到各个因素的权重。
4.一致性检验:通过计算一致性指标和随机一致性指标,检验判断矩阵的一致性程度,以确保判断矩阵的可靠性。
5.计算各层次的权重:根据各个因素的权重和上层因素的权重,计算出各层次的综合权重。
6.最终决策结果:根据各层次的综合权重,得到最终的决策结果。
AHP方法有广泛的应用场景,尤其适用于多因素、多目标、多参考点的决策问题。
例如,在工程项目管理中,可以利用AHP方法对各项指标进行权重比较,从而确定项目的优先级和资源分配计划。
在投资决策中,可以利用AHP方法对不同投资标的的风险、收益、流动性等因素进行评估,帮助投资者做出合理的投资决策。
此外,AHP方法还可以应用于组织评估、供应链管理、市场营销等多个领域。
虽然AHP方法在决策分析中具有一定的优势,但也存在一些局限性。
首先,AHP方法对专家意见的依赖性较高,专家经验和主观判断会对最终决策结果产生较大影响。
其次,AHP方法需要构建判断矩阵,计算复杂,容易产生计算误差。
用人话讲明白AHP层次分析法(非常详细原理+简单工具实现)文章目录1、前言与算法简述2、AHP层次分析法过程 2.1 构建层次评价模型 2.2 构造判断矩阵2.3 层次单排序与一致性检验 2.3.1 层次单排序 2.3.2 求解最大特征根与CI值 2.3.3 根据CI、RI值求解CR值,判断其一致性是否通过。
2.4 层次总排序与一致性检验3、案例以及工具实现 3.1 外出旅游最重视的因素3.1.1 使用工具 3.1.2 案例操作 3.1.3 分析结果解读 3.1.4 小结 3.2 选择最佳外出旅游地 3.2.1 使用工具 3.2.2 案例操作3.1.3 分析结果解读 3.2.4 小结4、代码实现1、前言与算法简述今天应粉丝要求,梳理一下层次分析法。
层次分析法,即Analytic HierarchyProcess(AHP) ,是美国运筹学家 Saaty 于20世纪70年代初期提出的一种主观赋值评价方法。
层次分析法将与决策有关的元素分解成目标、准则、方案等多个层次,并在此基础上进行定性和定量分析,是一种系统、简便、灵活有效的决策方法。
这个算法是一个多指标综合评价算法,由于这个算法简单、实用,因此在经管类或者实际生活中应用的非常多,其一般有两个用途:指标定权给指标制定权重,打个比方,例如选择旅游地这个决策,可能一般我们由以下5个因素组成,但是每个人(主观)对因素的重视程度不一,ahp可以实现在无需搜集数据的情况下,给这些指标制定权重。
量化方案选择同样是选择旅游地这个决策,可能我们有一些方案,例如苏杭、北戴河、桂林这三个方案,层次分析法可以综合以上5个因素,给这些方案计算得出一个量化得分,例如苏杭0.3分、北戴河0.35分、桂林0.45分,这样根据分值大小,我们就可以选择得到内心或者经验上最心怡的方案了。
通过上面讲解层次分析法的作用,在生活、工作中其实我们可以应用这个模型的渠道是非常广的,特别是那些需要主观决策的、或者需要用经验判断的决策方案,例如:买房子(主观决策)选择旅游地(主观决策)给员工进行绩效评估(经验判断)选择开店地址(经验判断)2、AHP层次分析法过程层次分析法的原理,是在分析一个现象或问题之前,首先将现象或问题根据它们的性质分解为有关因素,并根据它们之间的关系分类而形成一个多层次的结构模型。
层次分析法AHP(The analytic hierarchy process)AHP(Analytical Hierarchy Process,AHP)是美国数学家A.L.Saaty在20世纪70年代提出的。
其是一种定性分析和定量分析相结合的评价方法,其在项目风险评价中运用灵活、易于理解,而又具有一定的精度。
其评价的基本思路是:评价者将复杂的风险问题分解为若干层次和若干要素,并在同一层次的各要素之间简单地进行比较、判断和计算,得到不同方案风险的水平,从而为方案的选择提供决策依据。
该方法既可用于评价工程项目标段划分、工程投标风险、报价风险等单项风险水平,又可用于评价工程项目不同方案等综合风险水平。
该方法的特点是:可细化工程项目风险评价因素体系和权重体系,使其更为合理;对方案评价,采用两两比较法,可提高评价的准确程度;对结果的分析处理,可以对评判结果的逻辑性、合理性进行辨别和筛选。
1.AHP风险评价模型用AHP评价工程项目风险,首先是确定评价的目标,再明确方案评价的准则和各指标,然后把目标、评价准则连同各方案构成一个层次结构模型,如图3-1所示。
在这个模型中,评价目标、评价准则和评价方案处于不同的层次。
判据层指标层方案层图3-1 AHP风险评价模型2.因素两两比较评分和判断矩阵工程项目风险评价模型确定后,请具有项目风险管理经验的人员对各风险因素进行两两比较评分。
两两比较评分,则以表3-3所示的分值表示。
经评分可得若干两两判断矩阵,见表3-4。
表3-3 项目风险评价表 分值 定 义1 i 因素与j 因素同样重要 3 i 因素比j 因素略重要 5 i 因素比j 因素稍重要 7 i 因素比j 因素重要得多 9 i 因素比j 因素重要得很多2,4,6,8, i 与j 两因素重要性比较结果处于以上结果的中间倒数 j 与i两因素重要性比较结果是i 与j 两因素重要性比较结果的倒数 表3-4 两 两 判 断 矩 阵 表3. 计算各判断矩阵权重、排序,并作一致性检验(1)求判断矩阵每行所有元素的几何平均值i w :1nniijj w a(3-1)(2)将i w 归一化,计算w i:1i inii w w w(3-2)(3)计算判断矩阵的最大特征值max:max1()nii inA (3-3)上式中,)(ωA i为向量)(ωA 的第i 个元素。
AHP层次分析法第一篇:AHP层次分析法层次分析法层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。
其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。
最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。
层次分析法的基本步骤1、建立层次结构模型。
在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。
最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。
当准则过多时(譬如多于9个)应进一步分解出子准则层。
2、构造成对比较阵。
从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构追成对比较阵,直到最下层。
浅谈对层次分析法(AHP)的认识
层次分析法的简介及学习体会
层次分析法(AHP)就是将决策总是有关的元素分解成目标、准则、方案等层次,在此
基础之上进行定性和定量分析的决策方法。
短学期里,在有限的几节课上,老师给我们介绍了层次分析法的背景、基本步骤、应
用与解法等。现在,我将在本文中浅谈一下自己上完课后对层次分析法的认识理解,阐述层
次分析法的基本步骤,并举出一个使用层次分析法的案例,最后对层次分析法的优缺点进行
评估。
层次分析模型是数学建模中常用的模型。在现实世界中,无论是日常工作还是生活,涉
及经济社会等因素,往往会遇到决策的问题,比如如何选择旅游景点的问题、选择升学志愿
的问题、对企业进行评估的实例等等。在决策者作出最后的决定以前,他必须考虑很多方面
的因素或者判断准则,最终通过这些准则作出选择。层次分析法是解决这类问题的行之有效
的方法。层次分析法将复杂的决策系统层次化,通过逐层比较各种关联 因素的重要性来为
分析、决策提供定量的依据。
层次分析法的基本步骤
1. 建立层次分析结构模型
深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上
层受下层影响,而层内各因素基本上相对独立。
如在老师教案中的例子——选择旅游地中,将决策问题分为3个层次:目标层O,准则
层C,方案层P;每层有若干元素, 各层元素间的关系用相连的直线表示。通过相互比
较确定各准则对目标的权重,及各方案对每一准则的权重。将上述两组权重进行综合,
确定各方案对目标的权重。
2. 构造成对比较阵
用成对比较法和1-9尺度,构造各层对上一层每一因素的成对比较阵。
3. 计算权向量并作一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性检验,若通过,则特征向量为
权向量。
4. 计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
层次分析法的案例分析——AHP 建模实例
层次分析法的优缺点
优点:
(1) AHP 把研究对象作为一个系统, 按照分解、比较判断和综合的思维方式进行决策, 是
系统分析的重要工具。
(2) AHP 把定性和定量方法相结合, 能处理许多用传统的最优化技术无法着手的实际问
题, 应用范围很广.并且这种方法将决策者与决策分析者相互沟通, 决策者甚至也可以直接
运用它, 因此增加了决策的有效性。
(3) AHP 的基本原理、步骤及计算非常简便, 结果简单明确, 易于被决策者了解和掌握。
局限:
AHP 从建立层次结构模型到构造两两比较判断矩阵, 人的主观因素的作用较大, 采取
专家群体判断的办法是克服这一局限性的有效途径。然而,只要对系统的分析及问题的因素
了解得愈透彻, 愈能得到合理的判断和正确的排序结果。
参 考 文 献
[1] 姜启源. 1995 年全国大学生数学建模竞赛. 数学的实践与认识, 1996, 26 (1) : 1~ 3