第一章 半导体中的电子状态
- 格式:ppt
- 大小:1.85 MB
- 文档页数:87
第一章半导体中的电子状态1.分类说明半导体材料的晶格结构与结合特性。
答:金刚石结构特点:每个原子周围有四个最邻近的原子,组成一个正四面体结构,配位数是4. 夹角109°28′。
金刚石结构可以看成是两个面心立方晶包沿立方体的空间对角线相互位移四分之一对角线套构而成。
闪锌矿结构特点:双原子复式结构,它是由两类原子各自组成的面心立方晶胞沿立方体的空间对角线相互位移四分之一对角线套构而成。
以共价键为主,结合特性具有不同程度的离子性,称为极性半导体。
2.什么是电子共有化运动?原子中内层电子和外层电子参与共有化运动有何不同?答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去。
因而,电子可以在整个晶体上运动。
因为个原子中相似壳层上的电子才有相同能量,电子只能在相似壳层上转移,因此共有化运动的产生是由于不同原子的相似壳层之间的交叠。
由于内外层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。
3.说明能级分裂成能带的根本原因以及内外层能带有何不同?答:根本原因,当周围n个原子相互靠近时,每个原子中的电子除受到本身原子的势场作用外,还要受到其他原子的作用,其结果是每一个n度简并的能级都分裂为n个彼此相距很近的能级;·内壳层原来处于低能级,共有化运动很弱,能级分裂的很小,能带窄。
外壳层电子原来处于高能级,共有化运动显著,能带分裂的厉害,能带宽。
4.原子中的电子自由电子和晶体中电子受势场作用情况有何不同?自由电子和晶体中电子运动情况有何不同?答: 孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,晶体中的电子是在严格周期性重复排列的势场中运动5.导体、半导体和绝缘体能带的区别?答:金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。
绝缘体禁带宽度大,常温下激发到导带的电子很少,导电性差。
大工《半导体物理》考研重点第一章、半导体中的电子状态●了解半导体的三种常见晶体结构即金刚石型、闪锌矿和纤锌矿型结构;以及两种化合键形式即共价键和离子键在不同结构中的特点。
●了解电子的共有化运动;●理解能带不同形式导带、价带、禁带的形成;导体、半导体、绝缘体的能带与导电性能的差异;●掌握本征激发的概念。
●理解半导体中电子的平均速度和加速度;●掌握半导体有效质量的概念、意义和计算。
●理解本征半导体的导电机构;●掌握半导体空穴的概念及其特点。
●理解典型半导体材料锗、硅、砷化镓和锗硅的能带结构。
重要术语:1.允带2.电子的有效质量3.禁带4.本征半导体5.本征激发6.空穴7.空穴的有效质量知识点:学完本章后,学生应具备以下能力:1.对单晶中的允带和禁带的概念进行定性的讨论。
2.讨论硅中能带的分裂。
3.根据K-k关系曲线论述有效质量的定义,并讨论它对于晶体中粒子运动的意义。
4.本征半导体与本征激发的概念。
5.讨论空穴的概念。
6.定性地讨论金属、绝缘体和半导体在能带方面的差异。
第二章、半导体中的杂质和缺陷能级●掌握锗、硅晶体中的浅能级形成原因,多子和少子的概念;●了解浅能级杂质电离能的计算;●了解杂质补偿作用及其产生的原因;。
●了解锗、硅晶体中深能级杂质的特点和作用;●理解错误!未找到引用源。
-错误!未找到引用源。
族化合物中的杂质能级的形成及特点;●了解等电子陷阱、等电子络合物以及两性杂质的概念;●了解缺陷(主要是两类点缺陷弗仑克耳缺陷和肖脱基缺陷)、位错(一种线缺陷)施主或受主能级的形成。
重要术语1.受主原子2.载流子电荷3.补偿半导体4.完全电离5.施主原子6.非本征半导体7.束缚态知识点:学完本章后,学生应具备如下能力:1.描述半导体内掺人施主与受主杂质后的影响。
2.理解完全电离的概念。
第三章热平衡时半导体中载流子的统计分布●掌握状态密度,费米能级的概念;●掌握载流子的费米统计分布和波尔兹曼统计分布;●掌握本征半导体的载流子浓度和费米能级公式推导和计算;●掌握非简并半导体载流子浓度和费米能级公式推导和计算、杂质半导体的载流子浓度以及费米能级随掺杂浓度以及温度变化的规律;●了解简并半导体及其简并化条件。
第一章 半导体中的电子状态 例题:第一章 半导体中的电子状态例1. 证明:对于能带中的电子,K 状态和-K 状态的电子速度大小相等,方向相反。
即:v(k )= -v(-k ),并解释为什么无外场时,晶体总电流等于零。
思路与解:K 状态电子的速度为:1()()()()[]x y zE k E k E k v k i j k h k k k ∂∂∂=++∂∂∂ (1)同理,-K 状态电子的速度则为:1()()()()[]x y zE k E k E k v k i j k h k k k ∂-∂-∂--=++∂∂∂ (2)从一维情况容易看出:()()x x E k E k k k ∂-∂=-∂∂ (3)同理有:()()yy E k E k k k ∂-∂=-∂∂ (4)()()zz E k E k k k ∂-∂=-∂∂ (5) 将式(3)(4)(5)代入式(2)后得:1()()()()[]x y zE k E k E k v k i j k h k k k ∂∂∂-=-++∂∂∂ (6)利用(1)式即得:v(-k )= -v(k )因为电子占据某个状态的几率只同该状态的能量有关,即: E(k)=E(-k)故电子占有k 状态和-k 状态的几率相同,且v(k)=-v(-k),故这两个状态上的电子电流相互抵消,晶体中总电流为零。
评析:该题从晶体中作共有化运动电子的平均漂移速度与能量E 的关系以及相同能量状态电子占有的机率相同出发,证明K 状态和-K 状态的电子速度大小相等,方向相反,以及无电场时,晶体总电流为零。
例2. 已知一维晶体的电子能带可写成:2271()(cos 2cos6)88h E k ka ka m a ππ=-+式中,a 为晶格常数。
试求:(1) 能带的宽度;(2) 能带底部和顶部电子的有效质量。
思路与解:(1)由E(k)关系得:223(2sin 2sin 6)4dE h ka ka dk m a πππ=-=231(3sin 2sin 2)4h ka ka m a πππ- (1)222221(18sin 2cos 2cos 2)2d E h ka ka ka dk m ππππ=- (2)令 0dE dk = 得:21sin 212ka π= 1211cos 2()12ka π∴=±当cos 2ka π=2)得:222211(180121221212d E h dk m mπ=⨯=>对应E(k)的极小值。
第五章非平衡载流子一重要术语解释1.载流子的产生:电子从价带跃入导带,形成电子-空穴对的过程。
2.载流子的复合:电子落入价带中的空能态(空穴)导致电子-空穴对消灭的过程。
3.过剩载流子:过剩电子和空穴的总称。
4.过剩电子:导带中超出热平衡状态浓度的电子浓度。
5.过剩空穴:价带中超出热平衡状态浓度的空穴浓度。
6.过剩少子寿命:过剩少子在复合前存在的平均时间。
7.产生率:电子-空穴对产生的速率(/cm3-s)8.复合率:电子-空穴对复合的速度(#/cm3-s)8.小注入:过剩载流子浓度远小于热平衡多子浓度的情况。
9.扩散:粒子高浓度区向低浓度运动的过程。
10.扩散系数:关于粒子流动与粒子浓度梯度之间的参数。
11.扩散电流:载流子扩散形成的电流。
12.少子扩散长度:少子在复合前的平均扩散的距离:数学表示为τD,其中D和τ分别为少子的扩散系数和寿命。
13.准费米能级:电子和空穴的准费米能级分别将电子和空穴的非平衡状态浓度与本征载流子浓度以及本征费米能级联系起来。
14.表面态:半导体表面禁带中存在的电子能态。
15.表面复合速度:二知识点学完本章后,读者应具备以下能力:1.论述非平衡载流子产生和复合的概念。
2.论述过剩载流子寿命的概念。
3.理解电子和空穴的准费米能级。
4.计算给定浓度的过剩载流子的复合率。
5.论述载流子扩散电流密度。
6.论述爱因斯坦关系。
7.论述连续性方程的推导过程。
8.运用连续性方程解决不同的问题。
三复习题1.为什么热平衡状态电子的产生率与复合率相等?2.为什么一般的连续性方程为非线性方程?3.定性解释为什么在外加电场作用下,过剩载电子和空穴会向同在一方向运动。
4.定性解释为什么在小注入条件下,过剩载流子寿命可以归纳为少子的寿命。
5.分别论述电子和空穴的准费米能级的定义。
6.一般情况下,为什么半导体表面的过剩载流子浓度要低于内部的过剩载流子浓度?7.写出电子和空穴的扩散电流浓度方。
8.爱因斯坦关系是什么?。
半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。
2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。
能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。
3.半导体中电子所受的外力dtdkh f ⋅=的计算。
4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。
施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。
深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。
深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。
3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。
在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。
设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。
第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为 nm 的一维晶格,当外加102V/m 、107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102V/m 时,88.310t s -=⨯;当E = 107V/m 时,138.310t s -=⨯。